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[5] Günter Löh and Wolfgang Niebuhr, A new algorithm for constructing large Carmichael num-
bers, Math. Comp. 65 (1996), no. 214, 823–836.

[6] David Wagner, A generalized birthday problem (extended abstract), Advances in Cryptology
– CRYPTO 2002, Lecture Notes in Comput. Sci., vol. 2442, Springer, Berlin, 2002, pp. 288 –
303.

[7] Ming Zhi Zhang, A method for finding large Carmichael numbers, Sichuan Daxue Xuebao 29
(1992), no. 4, 472–479.

Higher order Carmichael numbers

Holy Grail problem is to construct higher order Carmichael numbers, of which the $620 problem
of Pomerance, Selfridge, and Wagstaff is a special case. See [3] for a definition and the following
equivalent condition.

Theorem 1 Composite n is a Carmichael of order m if and only if n is square free and for every
prime divisor p of n and for every 1 ≤ r ≤ m, there exists i ≥ 0 with n ≡ pi mod (pr − 1).

Build the set
Sm(Λ) = {p prime, pr − 1 | Λ for all 1 ≤ r ≤ m}

and find a subset that products to 1 modulo Λ. More difficult since density is lower.

Carmichael with ten billion prime factors

Λ = 216·37·55·74·113·132·172·192·232·292·31·37·41·43·47·53·59·61·67·71·73·79·83·89·97

With this choice N = 10333230324. It took 98 seconds to find an appropriate subset of size
819 to exclude. The resulting Carmichael number has 10333229505 prime factors and its decimal
expansion would have 295 billion digits.

With Λ ≈ 2191 applying Kuperberg directly would take approximately 22
√

191 = 228 operations.

In practice algorithm chose m = 17 so

Λ̂ = 216·37·55·74·113·132·172·192·232·292·31·37·41·43·47·53·59 .

With Λ̂ ≈ 2141 we instead anticipate 22
√

141 = 224 operations. Indeed, the algorithm succeeded
with only 16 million primes in G′.

New contribution

Inspiration from [5]: elements of P not uniformly distributed modulo Λ. Instead distributed
symmetrically, with p ≡ 1 mod qhi

i more likely. Note the proportion of divisors of Λ divisible by
qhi
i is 1

hi+1.

Definition 3 Define a subgroup G′ of G as (Z/Λ̂Z)× with Λ̂ =
∏m

i=1 qhi
i , where

m = min
1≤j≤r

j such that N ·
r∏

i=j+1

1

hi + 1
> (log Λ)4

√∑j
i=1 hi log qi .

While constructing P we pick out elements in G′, and the claim is that there are enough for the
Kuperberg algorithm to still work. Under reasonable assumptions the complexity in terms of N
is

2O(
√

(log N)(log log N)2) .

Kuperberg idea

Discovered independently by Flaxman and Przydatek [2], though they didn’t extend to make the
best possible improvement.

Assumptions: Group G has a sequence of
√

log2 |G| subgroups Gk with factor groups of size
2
√

log2 |G|. Have ai distributed independently and symmetrically (i.e. Pr[ai = x] = Pr[ai = x−1]

in G), and n > 22
√

log2 |G|.

Algorithm: At level k, have bi ∈ Gk where bi are products of the ai. Pair bi so their products are
in Gk+1. At level k =

√
log2 |G| a product is the identity, and this is the solution.

Complexity: Will succeed with high probability while requiring O(22
√

log2 |G|) group operations
and space for O(22

√
log2 |G|) group elements.

Subset product problem

Let G be an abelian group, and let a1, . . . , an be elements of G. The subset product problem is to
find a subset of the ai that product to the identity in G (more generally, any element of G).

Definition 2 The density of a subset product problem is given by

n

log2(|G|)
.

Solutions will be rare unless density is greater than 1. Problems with density 1 are the most
difficult. Problems with greater density are easier, both in the sense that new algorithms are
applicable and in the sense that existing algorithms perform better.

Erdős construction

A positive integer n is Carmichael if it is a Fermat pseudoprime to the base a for all a coprime to
n. For constructions we use the following equivalent definition.

Definition 1 (Korselt criterion) An integer n is Carmichael if it is squarefree and p − 1 | n − 1
for all primes p dividing n.

The following construction of Erdős is widely used both in theory [1] and in practice [7].

1. Choose Λ =
∏r

i=1 qhi
i where q1 . . . qr are the first r primes in order and the hi are all at least 1

and non-increasing.

2. Construct the set P = {p prime : p− 1 | Λ, p - Λ}. Let N = |P|.

3. Construct Carmichael n as a product of primes in P in one of two ways:

(a) Find a subset S of P such that ∏
p∈S

p ≡ 1 mod Λ .

Then by Definition 1 n =
∏

p∈S p is Carmichael.

(b) Alternatively, let b ≡
∏

p∈P p mod Λ and find a subset T of P such that∏
p∈T

p ≡ b mod Λ .

Then n =
∏

p∈P\T p is Carmichael.

Recent records

Here are Carmichael numbers with a record number of prime factors. We start with Löh and
Niebuhr [5] since their backtracking algorithm vastly outperformed previous methods.

Löh and Niebuhr (1996): 1, 101, 518 prime factors

Alford and Grantham (2003): 19, 565, 300 prime factors (*)

Hayman and Shallue (Oct 2011): 1, 021, 449, 117 prime factors

Hayman and Shallue (Nov 2011): 10, 333, 229, 505 prime factors (**)

(*) In addition, a Carmichael number with k prime factors for all 3 ≤ k ≤ 19565220.

(**) Stored as ASCII with one prime per line, this requires nearly 311 gigabytes.

Introduction

We have constructed a Carmichael number with a record number of prime factors. Such construc-
tions are showcases for recent advances in subset-product algorithms that work on problems of
very high density [2, 4, 6]. Our new contribution is to show that these techniques can be applied
to a subgroup of the natural group that arises from the standard Erdős construction.
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