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Abstract. We decompose the Jacobian variety of hyperelliptic curves up to

genus 20, defined over an algebraically closed field of characteristic zero, with

reduced automorphism group A4, S4, or A5. Among these curves is a genus 4
curve with Jacobian variety isogenous to E2

1 × E2
2 and a genus 5 curve with

Jacobian variety isogenous to E5, for E and Ei elliptic curves. These types

of results have some interesting consequences to questions of ranks of elliptic

curves and ranks of their twists.

1. Introduction

Curves with Jacobian varieties that have many elliptic curve factors in
their decompositions have been studied in many different contexts. Ekedahl
and Serre found examples of curves whose Jacobians split completely into
elliptic curves (not necessarily isogenous) [10]. In genus 2, Cardona showed
connections between curves whose Jacobians have two isogenous elliptic
curve factors and Q-curves of degree 2 and 3 [5]. There are applications
of such curves to ranks of twists of elliptic curves [18], results on torsion
[13], and cryptography [9].

Let JX denote the Jacobian variety of a curve X and ∼ represent an
isogeny between abelian varieties. Consider the following question.

Question 1. For a fixed genus g, what is the largest positive integer t such
that JX ∼ Et×A for some curve X of genus g, where E is an elliptic curve
and A an abelian variety?

In [16] a method for decomposing the Jacobian variety JX of a curve X
with automorphism group G was developed, based on idempotent relations
in the group ring Q[G]. This technique yielded thitherto unknown examples
of curves of genus 4 through 6 where t is maximal possible (t equals the
genus g). For genus 7 through 10, examples of curves whose Jacobians have
many isogenous elliptic curves in their decompositions were also found. All
these examples consisted of non-hyperelliptic curves.

In this paper we apply the methods in [16] to hyperelliptic curves with
certain automorphism groups. Let X be a hyperelliptic curve defined over a
field of characteristic 0, with hyperelliptic involution ω. The automorphism
group of the curve X modulo the subgroup 〈ω〉 is called the reduced auto-
morphism group and must be one of the groups Cn, Dn, A4, S4, or A5 where
Cn represents the cyclic group of order n and Dn is the dihedral group of
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order 2n. This follows from a result of Dickson on transformations of binary
forms [6].

We study hyperelliptic curves with reduced automorphism group one of
A4, S4, or A5. These reduced automorphism groups were chosen for two rea-
sons. First, results from genus 2 and 3 suggest that these families may yield
curves with many isogenous elliptic curve factors in higher genus. Second,
for any genus, the list of full automorphism groups with reduced automor-
phism group one of A4, S4, or A5 is manageable.

The method from [16] is reviewed in Section 3 and proofs of results for
genus up to 20 appear in Section 4. This bound of genus 20 is somewhat
arbitrary. The technique will work for any genus but the computations
become more complicated as the genus increases. Section 5 discusses some
computational obstructions to producing results in higher genus. In that
section we also work with families of curves with 3 particular automorphism
groups. These groups have special properties which allow us to prove results
about the decomposition of the curves’ Jacobians for arbitrary genus.

A brief word on which field the curves are defined over in this paper.
Unless specifically stated otherwise, curves are defined over an algebraically
closed field of characteristic zero. The method of decomposition works gen-
erally for curves over any field, however a particular field must be specified
in order to determine the automorphism group of the curve. In each indi-
vidual case, the decomposition results will hold for the Jacobian of the curve
defined over any field containing the field of definition of the automorphism
group of that particular curve. Partial answers to the question posed above
are known for curves over fields of characteristic p.

2. Overview of Results

The decompositions of Jacobian varieties of hyperelliptic curves with re-
duced automorphism group A4, S4, or A5 up to genus 20 are summarized in
Theorem 4. Jacobian varieties with several isogenous elliptic curve factors
are also found and many are improvements on best known results for t [16].
Two results of particular interest are:

Theorem 1. The hyperelliptic curve of genus 4 with affine model

X : y2 = x(x4 − 1)(x4 + 2
√
−3 x2 + 1)

has a Jacobian variety that decomposes as E2
1 × E2

2 for two elliptic curves
Ei.

Theorem 2. The genus 5 hyperelliptic curve with affine model

X : y2 = x(x10 + 11x5 − 1)

has JX ∼ E5 for the elliptic curve E : y2 = x(x2 + 11x− 1).

The first theorem is an improvement from best known decompositions of
genus 4 hyperelliptic curves from [17]. The second theorem is, to the author’s
knowledge, the first known example in the literature of a hyperelliptic curve
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with a Jacobian variety that decomposes into 5 isogenous elliptic curves over
a number field. Proofs of these results may be found in Section 4.

3. Review of Technique

Fix k an algebraically closed field of characteristic 0. Throughout the
paper the word curve will mean a smooth projective variety of dimension 1.
For simplicity, models are affine, when given. Any parameters in the affine
model (labeled as “ai”) are elements in k. Also ζn will denote a primitive
nth root of unity.

Given a curve X of genus g over a field k, the automorphism group of
X is the automorphism group of the field extension k(X) over k, where
k(X) is the function field of X. This group will always be finite for g ≥ 2.
Throughout G will denote the automorphism group of a curve X. In the
case of hyperelliptic curves over algebraically closed fields of characteristic
zero, all possible automorphism groups are known for a given genus [2],[4],
[19].

Kani and Rosen prove a result connecting certain idempotent relations
in End0(JX) = End(JX) ⊗Z Q to isogenies among images of JX under en-
domorphisms. If α1 and α2 are elements in End0(JX) then α1 ∼ α2 if
χ(α1) = χ(α2), for all Q-characters χ of End0(JX).

Theorem 3. (Theorem A, [14]) Let ε1, . . . , εn, ε
′
1, . . . , ε

′
m ∈ End0(JX) be

idempotents. Then the idempotent relation

ε1 + · · ·+ εn ∼ ε′1 + · · ·+ ε′m

holds in End0(JX) if and only if there is the isogeny relation

ε1(JX)× · · · × εn(JX) ∼ ε′1(JX)× · · · × ε′m(JX).

There is a natural Q-algebra homomorphism from Q[G] to End0(JX),
denoted by e. It is a well known result of Wedderburn [8, §18.2] that any
group ring of the form Q[G] has a decomposition into the direct sum of
matrix rings over division rings ∆i:

(1) Q[G] ∼=
⊕
i

Mni(∆i).

Define πi,j to be the idempotent in Q[G] which is the zero matrix for all
components except the ith component where it is the matrix with a 1 in the
(j, j) position and zeros elsewhere. The following equation is an idempotent
relation in Q[G]:

1Q[G] =
⊕
i,j

πi,j .

Applying the map e and Theorem 3 to it gives

(2) JX ∼
⊕
i,j

e(πi,j)JX .
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Recall our primary goal is to study isogenous elliptic curves that appear
in the decomposition above. In order to identify which summands in (2)
have dimension 1, work in [11, §5.2] is used to compute the dimensions of
these factors. This requires a certain representation of G.

Definition. A Hurwitz representation V of a group G is defined by the
action of G on H1(X,Z)⊗Q.

The character of this representation may be computed as follows. Given
a map of curves from X to Y =X/G (where Y has genus gY ), branched at
s points with monodromy g1, . . . , gs ∈ G, let χ〈gi〉 denote the character of
G induced from the trivial character of the subgroup of G generated by gi
(observe that χ〈1G〉 is the character of the regular representation) and let
χtriv be the trivial character of G. The character of V is defined as

(3) χV = 2χtriv + 2(gY − 1)χ〈1G〉 +
∑
i

(χ〈1G〉 − χ〈gi〉).

Note that for a hyperelliptic curve X, the quotient X/G ∼= P1 (since G
contains the hyperelliptic involution) and so gY = 0. Also, χ〈gi〉 = χ〈gj〉 if

〈gi〉 and 〈gj〉 are conjugate subgroups.
Each gi may be written as a permutation in some Sn, the symmetric group

on n elements. The monodromy type of a cover will be written as an ordered

tuple (t
(a1)
1 , . . . , t

(as)
s ) where t

(ai)
i corresponds to gi and denotes a permuta-

tion consisting of ai ti-tuples. If χi is the irreducible Q-character associated
to the ith component from (1), then the dimensions of the summands in (2)
are

(4) dim e(πi,j)JX =
1

2
dimQ πi,jV =

1

2
〈χi, χV 〉.

See [11, §5.2] for more information on the dimension computations.
Hence given an automorphism group G of a curve X and monodromy

for the cover X over Y, to compute these dimensions we first determine the
degrees of the irreducible Q-characters of G, which will be the ni values in
(1). Next we identify elements of the automorphism group which satisfy
the monodromy conditions. We compute the Hurwitz character for this
group and covering using (3) and finally compute the inner product of the
irreducible Q-characters with the Hurwitz character.

Again, the particular interest is in isogenous factors. The following propo-
sition gives a condition for the factors to be isogenous.

Proposition 1. [17] With notation as above, e(πi,j1)JX ∼ e(πi,j2)JX .

Suppose a curve of genus g has automorphism group with group ring
decomposition as in (1) with at least one matrix ring of degree close to g
(so one ni value close to g; call it nj). If the computations of dimensions
of abelian variety factors outlined above lead to a dimension 1 variety in
the place corresponding to that matrix ring (the jth place), Proposition
1 implies that the Jacobian variety decomposition consists of nj isogenous
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elliptic curves. Our goal then is to apply the steps above to hyperelliptic
curves up to genus 20 with reduced automorphism group isomorphic to A4,
S4, or A5.

4. Results

For hyperelliptic curves over an algebraically closed field of characteristic
zero, there is at most one family of curves of a given genus with reduced
automorphism group isomorphic to each of A4, S4, and A5. A curve with
such a reduced automorphism group exists only if the genus is in certain
residue classes modulo 6, 12, and 30, respectively [19].

For each reduced automorphism group there are several possible full au-
tomorphism groups. Table 1 lists all groups and the modular conditions for
their existence in a certain genus, as well as monodromy type, listed using
the notation described in the previous section. This table is a reproduction
of one in [19]. Explanations of how the data in this table was produced
may be found there, along with affine models for all families. The groups
W2 = 〈u, v, | u4, v3, vu2v−1u2, (uv)4〉 and W3 = 〈u, v | u4, v3, u2(uv)4, (uv)8〉
are both groups of order 48.

Applying the technique in Section 3 to hyperelliptic curves of genus 3
through 20 produces results that are summarized in the following theorem.

Theorem 4. For hyperelliptic curves up to genus 20 defined over an alge-
braically closed field of characteristic zero with reduced automorphism group
A4, S4, or A5, Table 2 gives a decomposition of the Jacobian of these curves
up to isogeny. In the table Ei represents an elliptic curve and Ai,j is an
abelian variety of dimension i > 1, indexed if necessary by j. The dimen-
sion of the family with each automorphism group in the moduli space is also
included.

The technique described in the previous section does not necessarily guar-
antee the finest decomposition of the Jacobian varieties. We have not ruled
out the possibility that that some of the abelian varieties e(πi,j)JX from (2)
decompose further. However, for those curves in Table 2 which have affine
models defined over Q, we found a finite field where the factorization of the
zeta function of that curve is no better than what our Jacobian decomposi-
tions predict. Hence, in those cases, the decomposition cannot be any finer,
at least over Q.

4.1. Finding Monodromy and Q-characters. Computationally for hy-
perelliptic curves, finding the branching data is the most difficult part of the
technique summarized in Section 3, since the list of possible automorphism
groups is well known and most of these groups have easily identifiable char-
acter tables. An algorithm to generate a database of automorphism groups
of Riemann surfaces was developed in the computer algebra package GAP
[12] and implemented up to genus 48 by Breuer [3]. The algorithm relies on
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Table 1. Full Automorphism Groups of Hyperelliptic Curves with
Certain Reduced Automorphism Groups

Group Genus Monodromy

A4 A4 × C2 5 mod 6 (3(8), 3(8), 2(12), . . . , 2(12))

A4 × C2 1 mod 6 (3(8), 6(4), 2(12), . . . , 2(12))

A4 × C2 3 mod 6, g > 3 (6(4), 6(4), 2(12), . . . , 2(12))

SL2(3) 2 mod 6, g > 2 (4(6), 3(8), 3(8), 2(12), . . . , 2(12))

SL2(3) 4 mod 6 (4(6), 3(8), 6(4), 2(12), . . . , 2(12))

SL2(3) 0 mod 6, g > 6 (4(6), 6(4), 6(4), 2(12), . . . , 2(12))

S4 S4 × C2 11 mod 12 (3(16), 4(12), 2(24), . . . , 2(24))

S4 × C2 3 mod 12 (6(8), 4(12), 2(24), . . . , 2(24))

GL2(3) 2 mod 12 (3(16), 8(6), 2(24), . . . , 2(24))

GL2(3) 6 mod 12 (6(8), 8(6), 2(24), . . . , 2(24))

W2 5 mod 12 (4(12), 4(12), 3(16), 2(24), . . . , 2(24))

W2 9 mod 12 (4(12), 4(12), 6(8), 2(24), . . . , 2(24))

W3 8 mod 12 (4(12), 3(16), 8(6), 2(24), . . . , 2(24))

W3 0 mod 12 (4(12), 6(8), 8(6), 2(24), . . . , 2(24))

A5 A5 × C2 29 mod 30 (3(40), 5(24), 2(60), . . . , 2(60))

A5 × C2 5 mod 30 (3(40), 10(12), 2(60), . . . , 2(60))

A5 × C2 15 mod 30 (6(20), 10(12), 2(60), . . . , 2(60))

A5 × C2 9 mod 30 (6(20), 5(24), 2(60), . . . , 2(60))

SL2(5) 14 mod 30 (4(30), 3(40), 5(24), 2(60), . . . , 2(60))

SL2(5) 20 mod 30 (4(30), 3(40), 10(12), 2(60), . . . , 2(60))

SL2(5) 24 mod 30 (4(30), 6(20), 5(24), 2(60), . . . , 2(60))

SL2(5) 0 mod 30 (4(30), 6(20), 10(12), 2(60), . . . , 2(60))

the classifications of small groups in GAP. While the algorithm itself com-
putes branching data, specific information about the monodromy was not
recorded when Breuer originally ran the program.

In Magma [1] we have now implemented a working version of Breuer’s
algorithm which does output the monodromy data. In cases below where
the monodromy may not be obvious (for instance if there is more than 1
conjugacy class of elements of a certain order for a particular automorphism
group) this program provides the monodromy data.

We use Magma to compute the Hurwitz character χV and the inner prod-
uct of χV with the irreducible Q-characters. The Q-character tables for the



ELLIPTIC FACTORS IN JACOBIANS OF HYPERELLIPTIC CURVES 7

Table 2. Jacobian Variety Decompositions

Genus Automorphism Jacobian

Group Dimension Decomposition

3 S4 × C2 0 E3

4 SL2(3) 0 E2
1 × E2

2

5 A4 × C2 1 E3 ×A2

W2 0 E2
1 × E3

2

A5 × C2 0 E5

6 GL2(3) 0 E2
1 × E4

2

7 A4 × C2 1 E1 × E3
2 × E3

3

8 SL2(3) 1 A2
2,1 ×A2

2,2

W3 0 E4 ×A2
2

9 A4 × C2 1 E3 ×A3
2

W2 0 E1 × E2
2 ×A3

2

A5 × C2 0 E4
1 × E5

2

10 SL2(3) 1 A2
2 ×A2

3

11 A4 × C2 2 A2 ×A3
3

S4 × C2 1 E3 ×A2,1 ×A3
2,2

12 SL2(3) 1 A2
2 ×A2

4

W3 0 A2
2,1 ×A4

2,2

13 A4 × C2 2 E ×A3,1 ×A3
3,2

14 SL2(3) 2 A2
3 ×A2

4

GL2(3) 1 A4
2 ×A2

3

SL2(5) 0 E4
1 × E6

2 ×A2
2

15 A4 × C2 2 A3
2 ×A3

3

S4 × C2 1 E × E2
2 ×A3

4

A5 × C2 0 E4
1 × E5

2 ×A3
2

16 SL2(3) 2 A2
3 ×A2

5

17 A4 × C2 3 E ×A4,1 ×A3
4,2

W2 1 E ×A2
2 ×A3

4

18 SL2(3) 2 A2
3 ×A2

6

GL2(3) 1 A2
3,1 ×A4

3,2

19 A4 × C2 3 E ×A3
2 ×A3

4

20 SL2(3) 3 A2
4 ×A2

6

W3 1 A2
2,1 ×A2

2,2 ×A4
3

SL2(5) 0 E4 ×A2
2,1 ×A6

2,2
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groups considered in this paper are well known in the literature so, alterna-
tively, the computations could be done by hand.

4.2. Reduced Automorphism Group A4. If a hyperelliptic curve has
reduced automorphism group isomorphic to A4, its full automorphism group
is isomorphic to SL2(3) or A4×C2. For 3 ≤ g ≤ 20 the former group occurs
in genus 4, and all even genera greater than or equal to 8, while the latter
group occurs in odd genera at least 5.

The group SL2(3) has seven conjugacy classes. The identity, the unique
element of order 2, and all the order 4 elements form three distinct conjugacy
classes. The order 3 and order 6 elements split into two conjugacy classes.
The group ring Q[G] has Wedderburn decomposition

Q[SL2(3)] ∼= Q⊕Q⊕M2(Q(ζ3))⊕M2(Q(ζ3))⊕M3(Q).

So SL2(3) has two Q-characters of degree 1 (χ1 and χ2), two of degree 2 (χ3

and χ4), and one of degree 3 (χ5). The values of these characters on the
conjugacy classes of SL2(3) are well known and given in Table 3 [7].

Table 3. Q-character Table for SL2(3)

Conjugacy Class Order
1 2 3 3 4 6 6

χ1 1 1 1 1 1 1 1
χ2 2 2 −1 −1 2 −1 −1
χ3 2 −2 −1 −1 0 1 1
χ4 4 −4 1 1 0 −1 −1
χ5 3 3 0 0 −1 0 0

Recall from Section 2:

Theorem 1. The hyperelliptic curve of genus 4 with affine model

X : y2 = x(x4 − 1)(x4 + 2
√
−3 x2 + 1)

has a Jacobian variety that decomposes as E2
1 × E2

2 for two elliptic curves
Ei.

Proof. This curve has automorphism group SL2(3) and monodromy type

(4(6), 3(8), 6(4)) [19]. Thus the monodromy consists of elements g1, g2, and
g3 ∈ SL2(3) of order 4, 3, and 6, respectively. As noted above, the six
elements of order 4 are all in the same conjugacy class. Thus χ〈g〉 (the
induced character of the trivial character of the subgroup generated by g ∈
G) will be the same for all g of order 4 and similarly for elements of order 3
or 6 since all order 3 and all order 6 elements generate conjugate subgroups.
Computing the Hurwitz character yields

χV = 2χtriv − 2χ〈1G〉 + (χ〈1G〉 − χ〈g1〉) + (χ〈1G〉 − χ〈g2〉) + (χ〈1G〉 − χ〈g3〉)
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= 2χtriv + χ〈1G〉 − χ〈g1〉 − χ〈g2〉 − χ〈g3〉.
The value of χV on conjugacy classes (listed in the same order as in

Table 3) is the 7-tuple (8,−8,−1,−1, 0, 1, 1). Computing the inner product
of the irreducible Q-characters with χV yields a value of 2 for each of the
degree 2 characters and zero for all the other characters. Applying (4) and
Proposition 1 gives JX ∼ E2

1 × E2
2 . �

Similar results may be found for g ≥ 8. See Section 5 for generalization
to arbitrary even genus.

The group A4×C2 has four irreducible Q-characters of degree 1 and two
of degree 3. For genus 5, the family of curves with affine model

X : y2 = x12 − ax10 − 33x8 + 2ax6 − 33x4 − ax2 + 1

has automorphism group A4×C2 and monodromy type (3(8), 3(8), 2(12), 2(12))
[19]. We compute the Hurwitz character using the monodromy found through
Breuer’s algorithm, and then compute the inner products of the irreducible
Q-characters and the Hurwitz character. The inner product is 4 for one of
the degree 1 characters and 2 for one of the degree 3 characters. By (4),
the Jacobian variety of X decomposes into a dimension 2 variety and three
dimension 1 varieties. Proposition 1 asserts that the three elliptic curves
in this decomposition are isogenous and so JX ∼ A2 × E3 for some abelian
variety A2 and an elliptic curve E.

Similar computations as in the case of genus 5 give the decompositions
for higher odd genus described in Table 2.

4.3. Reduced Automorphism Group S4. When a hyperelliptic curve
has reduced automorphism group S4, there are four options for its full auto-
morphism group: S4×C2, GL2(3), W2 = 〈u, v | u4, v3, vu2v−1u2, (uv)4〉 and
W3 = 〈u, v | u4, v3, u2(uv)4, (uv)8〉 (the notation for the latter two groups of
order 48 is as in [19]).

In genus 3, 11, and 15 there are curves with full automorphism group
S4 ×C2. In [17], the Jacobian variety of the genus 3 curve was decomposed
into the product of three isogenous elliptic curves. This result also appears
in the literature using other techniques [15].

The decompositions of the families of genus 11 and genus 15 curves may
be found using monodromy computed with Breuer’s algorithm. The group
S4 × C2 has three degree 1, two degree 2, and three degree 3 irreducible
Q-characters. Applying this information to the technique in Section 3 yields
the decompositions listed in Table 2

As determined in [19], there is one curve, up to isomorphism, of genus 6
with automorphism group GL2(3):

X : y2 = x(x4 − 1)(x8 + 14x4 + 1).
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Additionally, there is a 1-dimensional family of curves of genus 14 and 18
with this automorphism group.

This group has 2 irreducible Q-characters each of degrees 1, 2, and 3, as
well as one of degree 4. In genus 6, the inner products of the irreducible Q-
characters with the Hurwitz character give values of 2 for one of the degree
2 characters and for the degree 4 character, from which we may conclude
that JX ∼ E2

1 ×E4
2 . Similar computations yield JX ∼ A2

3×A2
4 for the genus

14 curves and JX ∼ A2
3,1 ×A4

3,2 for the genus 18 curves.

For genus 5 and 9 there is one curve with automorphism group W2 and in
genus 17 there is a one dimensional family of curves with this automorphism
group. In genus 5 the curve has an affine model

X : y2 = x12 − 33x8 − 33x4 + 1,

in genus 9 a model is

X : y2 = (x8 + 14x4 + 1)(x12 − 33x8 − 33x4 + 1),

and in genus 17 a model is

X : y2 = (x12−33x8−33x4+1)(x24+ax20+(759−4a)x16+2(3a+1288)x12+(759−4a)x8+ax4+1).

This group has 8 irreducible Q-characters: three of degree 1, two of de-
gree 2, and three of degree 3. Computations with the genus 5 curve yield
JX ∼ E2

1 × E3
2 while for genus 9, JX ∼ E1 × E2

2 × A3
2 and for genus 17,

JX ∼ E ×A2
2 ×A3

4.

In genus 8 the curve with model

X : y2 = x(x4 − 1)(x12 − 33x8 − 33x4 + 1)

has automorphism group W3 and monodromy type (4(12), 3(16), 8(6)). The
irreducible Q-characters consist of two each of degrees 1, 2, and 3 as well as
one of degree 4. Computations give the Jacobian of this curve decomposing
as A2

2 × E4. For higher genus curves with this automorphism group, see
general results in Section 5.3.

In [16], considering different families of curves up to genus 10 we found a
genus 8 curve with Jacobian decomposition A4×E2

1×E2
2 so the result above

is an improvement on the bound of t from the question in the introduction.

4.4. Reduced Automorphism Group A5. Similar to the A4 case, if a
hyperelliptic curve has reduced automorphism group isomorphic to A5, its
full automorphism group is isomorphic to A5×C2 or SL2(5) [19]. In genus 14
and 20 there is a hyperelliptic curve with automorphism group isomorphic
to SL2(5). This group has special properties which allow us to prove results
about the decomposition of Jacobians generally for any genus. In Section
5.2 we discuss the general results.
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There is one curve each, up to isomorphism, of genus 5, 9, and 15 with
automorphism group A5×C2. In Section 2 the following result is mentioned,
which we prove now.

Theorem 2. The genus 5 hyperelliptic curve with affine model

X : y2 = x(x10 + 11x5 − 1)

has automorphism group A5 ×C2, monodromy type (3(40), 10(12), 2(60)), and
JX ∼ E5 for the elliptic curve E : y2 = x(x2 + 11x− 1).

Proof. The model, automorphism group, and monodromy are from [19] (al-
though note the slight correction here of the model listed in that paper).
The irreducible Q-characters of this group consist of 2 each of degree 1, 3,
4, and 5 characters. The monodromy will be g1, g2, and g3 ∈ G of order
3, 10, and 2 respectively, which may be computed using Breuer’s algorithm
[3]. Table 4 gives the values of the irreducible Q-characters on the conjugacy
classes of A5 × C2.

Table 4. Q-character Table for A5 × C2

Conjugacy Class Order
1 2 2 2 3 5 5 6 10 10

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 1 −1 −1 −1
χ3 6 −6 −2 2 0 1 1 0 −1 −1
χ4 6 6 −2 −2 0 1 1 0 1 1
χ5 4 4 0 0 1 −1 −1 1 −1 1
χ6 4 −4 0 0 1 −1 −1 −1 1 1
χ7 5 5 1 1 −1 0 0 −1 0 0
χ8 5 −5 1 −1 −1 0 0 1 0 0

The Hurwitz character is

χV = 2χtriv − 2χ〈1G〉 + (χ〈1G〉 − χ〈g1〉) + (χ〈1G〉 − χ〈g2〉) + (χ〈1G〉 − χ〈g3〉)

= 2χtriv + χ〈1G〉 − χ〈g1〉 − χ〈g2〉 − χ〈g3〉
and its value on conjugacy classes (in the same order as Table 4) is given
by the 10-tuple (10,−10, 2,−2,−2, 0, 0, 2, 0, 0). The inner product of each of
the irreducible Q-characters with χV results in a value of zero for all except
one of the degree 5 characters, where the inner product is a 2. By (4) and
Proposition 1 this gives the desired decomposition. �

Applying this same idea to the genus 9 curve with affine model

X : y2 = x20 − 228x15 + 494x10 − 228x5 + 1
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yields inner products with a value of 0 for all irreducible Q-characters except
for one degree 4 and one degree 5 character, where the inner product is 2.
Again, by (4) and Proposition 1, JX is thus isogenous to E4

1×E5
2 , for elliptic

curves Ei.
Similar computations in genus 15 for a curve with model

X : y2 = x(x10 + 11x− 1)(x20 − 228x15 + 494x10 − 228x5 + 1)

yield the decomposition JX ∼ E4
1 × E5

2 ×A3
2.

5. General Results

One obstacle to extending these results to higher genus is the computation
of the monodromy for the cover X → X/G. Beyond genus 48, Breuer’s
algorithm cannot currently compute the monodromy in many cases.

The groups SL2(3), SL2(5), and W3 all share the following property. If
X is a curve with automorphism group one of these groups and if m is the
order of any element of the monodromy of the cover X over X/G, then
χ〈gi〉 = χ〈gj〉 whenever |gi| = |gj | = m. This allows us to compute the
Hurwitz character for X just by knowing the monodromy type. We then
apply the technique from Section 3 to produce general decompositions for
arbitrary genus.

Since the induced characters of the trivial character of the subgroups
generated by the monodromy elements are completely determined by the
orders of the elements, from now on χ〈gi〉 will mean the induced character of
the trivial character of the subgroup generated by an element of G of order
i (so no longer the ith element of the monodromy).

Recall that our technique does not necessarily guarantee the finest de-
composition of the Jacobian variety. It is possible that for specific genera
below the Jacobian decomposes further.

5.1. SL2(3). For g > 2, every even order genus has a hyperelliptic curve
over k with automorphism group SL2(3). Let

G(x) =
∏
i

(x12 − aix10 − 33x8 + 2aix
6 − 33x4 − aix2 + 1).

Table 5 gives affine models and monodromy for curves of each even genus.
These results may be found in [19]. Also recall the Wedderburn decom-
position of Q[SL2(3)] and the irreducible characters of SL2(3) from Section
4.2.

Computing the Hurwitz character (3) requires computing χ〈gi〉 (the trivial
character of 〈gi〉 induced to SL2(3)) for each branched point gi. The mon-
odromy types give us the order of each branch point. As mentioned above,
for this particular group, the order of the element is sufficient to compute
the induced character. Table 6 lists the values of these induced characters
on each conjugacy class.
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Table 5. Hyperelliptic Curves with Automorphism Group SL2(3)

Genus Affine Model Monodromy

2 mod 6 y2 = x(x4 − 1)G(x) (4(6), 3(8), 3(8), 2(12), . . . 2(12)︸ ︷︷ ︸
g−2
6

)

4 mod 6 y2 = x(x4 − 1)(x4 + 2
√
−3 x2 + 1)G(x) (4(6), 3(8), 6(4), 2(12), . . . 2(12)︸ ︷︷ ︸

g−4
6

)

0 mod 6 y2 = x(x4 − 1)(x8 + 14x4 + 1)G(x) (4(6), 6(4), 6(4), 2(12), . . . 2(12)︸ ︷︷ ︸
g−6
6

)

Table 6. Induced Characters for SL2(3)

Conjugacy Class Order
1 2 3 3 4 6 6

χ〈g2〉 12 12 0 0 0 0 0
χ〈g3〉 8 0 2 2 0 0 0
χ〈g4〉 6 6 0 0 2 0 0
χ〈g6〉 4 4 1 1 0 1 1

• If X is a curve with genus g ≡ 2 mod 6, let d = g−2
6 be the dimension

of the family of curves of genus g with this automorphism group. Applying
the monodromy information given in Table 5 to (3) yields

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − 2χ〈g3〉 − dχ〈g2〉.

Computing the inner product of each irreducible Q-character (see Table 3)
with χV gives JX ∼ A2

d+1 ×A2
2d.

• If X is a curve with genus g ≡ 4 mod 6 then d = g−4
6 and applying the

monodromy information from Table 5,

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g6〉 − χ〈g3〉 − dχ〈g2〉.

This gives JX ∼ A2
d+1 ×A2

2d+1.

• Finally, if X is a curve with genus g ≡ 0 mod 6 then d = g−6
6 and applying

the monodromy in Table 5,

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − 2χ〈g6〉 − dχ〈g2〉.

This gives JX ∼ A2
d+1 ×A2

2(d+1).
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5.2. SL2(5). If g ≡ 0, 14, 20, or 24 mod 30 there is a hyperelliptic curve
of that genus with automorphism group SL2(5). Table 7 lists models and
monodromy for these curves (see [19] for computations of these models)
where,

G(x) =
∏
i

((ai−1)x60−36(19ai+29)x55+6(26239i−42079)x50−540(23199ai−19343)x45+

105(737719ai−953143)x40−72(1815127ai−145087)x35−4(8302981ai+49913771)x30+

72(1815127ai − 145087)x25 + 105(737719ai − 953143)x20 + 540(23199ai − 19343)x15+

6(26239ai−42079)x10+36(19ai+29)x5+(ai−1))

F (x) = x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1
H(x) = x20 − 228x15 + 494x10 + 228x5 + 1
K(x) = x(x10 + 11x5 − 1).

Table 7. Hyperelliptic Curves with Automorphism Group SL2(5)

Genus Affine Model Monodromy

14 mod 30 y2 = F (x)G(x) (4(30), 3(40), 5(24), 2(60), . . . 2(60)︸ ︷︷ ︸
g−14
30

)

20 mod 30 y2 = K(x)F (x)G(x) (4(30), 3(40), 10(12), 2(60), . . . 2(60)︸ ︷︷ ︸
g−20
30

)

24 mod 30 y2 = H(x)F (x)G(x) (4(30), 6(20), 5(24), 2(60), . . . 2(60)︸ ︷︷ ︸
g−24
30

)

0 mod 30 y2 = K(x)H(x)F (x)G(x) (4(30), 6(20), 10(12), 2(60), . . . 2(60)︸ ︷︷ ︸
g−30
30

)

Again, regardless of which element of a certain order is chosen, the induced
character will be the same as those listed in Table 8. The group ring for this
group is

Q[SL2(5)] ∼= Q⊕M2(Q(ζ5))⊕M3(Q(ζ5))⊕ 2M4(Q)⊕ 2M5(Q)⊕M6(Q).

Table 8. Induced Characters for SL2(5)

Conjugacy Class Order
1 2 3 4 5 5 6 10 10

χ〈g2〉 60 60 0 0 0 0 0 0 0
χ〈g3〉 40 0 4 0 0 0 0 0 0
χ〈g4〉 30 30 0 2 0 0 0 0 0
χ〈g5〉 24 0 0 0 4 4 0 0 0
χ〈g6〉 20 20 2 0 0 0 2 0 0
χ〈g10〉 12 12 0 0 2 2 0 2 2
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Computing the inner products of the irreducible Q-characters (which are
well known [7] and χV (listed below for the 4 cases) produces decompositions
of the form A2

2(d+1) × A4
j × A6

k where d, j, and k are determined by the

congruence class of g mod 30 (and d is the dimension of the family of curves
with this automorphism group).

• If g ≡ 14 mod 30 then d = g−14
30 and the Hurwitz character is

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g3〉 − χ〈g5〉 − dχ〈g2〉

and j = 2d+ 1, and k = 3d+ 1.

• When g ≡ 20 mod 30 then d = g−20
30 , the Hurwitz character is

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g3〉 − χ〈g10〉 − dχ〈g2〉,

j = 2d+ 1, and k = 3d+ 2.

• If g ≡ 24 mod 30 then d = g−24
30 , the Hurwitz character is

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g6〉 − χ〈g5〉 − dχ〈g2〉

and j = 2(d+ 1) and k = 3d+ 2.

• And if g ≡ 0 mod 30 then d = g−30
30 and the Hurwitz character is

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g6〉 − χ〈g10〉 − dχ〈g2〉

so j = 2(d+ 1) and k = 3(d+ 1).

5.3. W3. When g ≡ 0 or 8 mod 12, there is a curve of that genus with
automorphism group W3. Models and monodromy are listed in Table 9
where

G(x) =
∏
i

(
x24 + aix

20 + (759− 4ai)x
16 + 2(3ai + 1288)x12 + (759− 4ai)x

8 + aix
4 + 1

)
and H(x) = x(x4 − 1)(x12 − 33x8 − 33x4 + 1). Again, explanations of these
models and monodromy are in [19].

Table 9. Hyperelliptic Curves with Automorphism Group W3

Genus Affine Model Monodromy

8 mod 12 y2 = H(x)G(x) (4(12), 3(16), 8(6), 2(24), . . . , 2(24)︸ ︷︷ ︸
g−8
12

)

12 mod 12 y2 = (x8 + 14x4 + 1)H(x)G(x) (4(12), 6(8), 8(6), 2(24), . . . , 2(24)︸ ︷︷ ︸
g−12
12

)
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W3 has two each of degree 1, 2, and 3 irreducible Q-characters and one
of degree 4 and

Q[W3] ∼= Q⊕Q⊕M2(Q)⊕M2(Q(ζ8))⊕ 2M3(Q)⊕M4(Q).

As in the previous two cases, there is only one possible value for the
induced character, except for order 4 elements. However only certain order
4 elements show up in the monodromy and they all have the same induced
character.

Table 10. Induced Characters for W3

Conjugacy Class Order
1 2 3 4 4 6 8 8

χ〈g2〉 24 24 0 0 0 0 0 0
χ〈g3〉 16 0 4 0 0 0 0 0
χ〈g4〉 12 12 0 2 0 0 0 0
χ〈g6〉 8 8 2 0 0 2 0 0
χ〈g8〉 6 6 0 2 0 0 2 2

• When g ≡ 8 mod 12, d = g−8
12 , the Hurwitz character is

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g3〉 − χ〈g8〉 − dχ〈g2〉
and JX ∼ A2

2(d+1) ×A
4
2d+1.

• When g ≡ 0 mod 12 and d = g−12
12 , the Hurwitz character is

χV = 2χtriv + (d+ 1)χ〈1g〉 − χ〈g4〉 − χ〈g6〉 − χ〈g8〉 − dχ〈g2〉
and Jx = A2

2(d+1),1 ×A
4
2(d+1),2.
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[13] Howe, Everett W. and Leprévost, Franck and Poonen, Bjorn. Large torsion subgroups of split

Jacobians of curves of genus two or three. Forum Math. 12 : 315–364, 2000.

[14] Kani, Ernst and Rosen, Michael. Idempotent relations and factors of Jacobians. Math. Ann.
284 (2): 307–327, 1989.

[15] Kuwata, Masato. Quadratic twists of an elliptic curve and maps from a hyperelliptic curve.

Math. J. Okayama Univ., 47 : 85–97, 2005.
[16] Paulhus, Jennifer. Decomposing Jacobians of curves with extra automorphisms. Acta Arith-

metica. 132 : 231–244, 2008.

[17] Paulhus, Jennifer. Elliptic factors in Jacobians of low genus curves. PhD Thesis, University
of Illinois at Urbana-Champaign, 2007.

[18] Rubin, Karl and Silverberg, Alice. Rank frequencies for quadratic twists of elliptic. curves,

Exper. Math. 10: 559–569, 2001.
[19] Shaska, Tanush. Determining the automorphism group of a hyperelliptic curve. Proceedings

of the 2003 International Symposium on Symbolic and Algebraic Computation. 248–254 (elec-
tronic), ACM, New York, 2003.

Department of Mathematics and Statistics, Grinnell College, Grinnell, IA 50112

E-mail address: paulhusj@grinnell.edu


