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Abstract. Let A = E1×E2 be be the product of two elliptic curves over Q,
both having a rational five torsion point Pi. Set B = A/〈(P1, P2)〉. In this
paper we give an algorithm to decide whether the Tate-Shafarevich group of
the abelian surface B has square order or order five times a square, assuming
that we can find a basis for the Mordell-Weil groups of both Ei, and that the
Tate-Shafarevich groups of the Ei are finite.

We considered all pairs (E1, E2), such that the Ei have conductor or coef-
ficients smaller than some given bounds. This gives 20.0 million of pairs and
we could apply the algorithm to 18.6 million of them. It turns out that about
49% of these pairs have a Tate-Shafarevich group of non-square order.

1. Introduction

Let A be an abelian variety over a number field K. Then the Tate-Shafarevich
group X(A/K) plays an important role in understanding the arithmetic of A.
For example, it contains information on the tightness of the upper bound on the
Mordell-Weil rank obtained by m-descent. Moreover the order of this group, which
is conjectured to be finite, plays a role in the Birch and Swinnerton-Dyer conjecture.

The Tate-Shafarevich group comes with a pairing, the so-called Cassels-Tate
pairing, which depends on the choice of a polarization λ : A→ A∨:

〈·, ·〉λ : X(A/K)×X(A/K)→ Q/Z.

Let X(A/K)nd denote the Tate-Shafarevich group modulo its maximal divisible
subgroup. If λ is an isomorphism, i.e., A is principally polarized, then the induced
pairing on X(A/K)nd is non-degenerate. If moreover this pairing is alternating,
then for all primes p the cardinality of the p-divisible part X(A/K)nd[p∞] is a
perfect square, thus if X(A/K) is finite, its order is a perfect square.

Tate [16] showed that if λ is an isomorphism and is also induced from a K-
rational divisor on A then the Cassels-Tate pairing is actually alternating, as for
example for elliptic curves. However, if dimA > 1 then A may not admit a principal
polarization and even when A is principally polarized then this polarization need
not to be induced by a K-rational divisor on A. Poonen and Stoll [9] in fact showed
that there exist genus 2 curves C such that #X(J(C)) is twice a square. Moreover,
they showed that if one assumes that X(J(C)) is finite for all genus 2 curves C/Q
then the density of the Jacobians of genus 2 curves that have non-square order
Tate-Shafarevich groups exists, and they showed numerically that it is about 0.13.
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For arbitrary abelian varieties Flach [2] showed that if #X(A/K) = kn2, with k
square free, then k divides two times the degree of any polarization on A. Hence for
principally polarized abelian varieties one has that #X(A/K) is either a square
or twice a square, if it is finite, but for general abelian varieties there are more
possibilities. Stein [14] constructed for every prime number p < 25, 000 an example
of a p− 1-dimensional abelian variety Ap/Q such that #X(Ap) = pn2.

We restrict now to the case of dimA = 2. The constructions of Poonen-Stoll and
of Stein yield examples of abelian surfaces such that #X(A/K) is a square, twice a
square or three times a square. One might wonder which further possibilities occur.
Recently, the first author [4] showed that there exist abelian surfaces such that the
Tate-Shafarevich group has order five times a square and seven times a square.

In this paper we will have a closer look on the construction of abelian surfaces
with Tate-Shafarevich group of order five times a square. The examples of [4]
are members of a two dimensional family of abelian surfaces with a polarization
of degree 52. Moreover, one can show that for a general member of this family
every polarization it possesses has degree a multiple of 5, thus they are not a priori
excluded by Flach’s theorem and might have a Tate-Shafarevich group of order five
times a square.

The construction of this family goes as follows. Let (E,O) be an elliptic curve
over Q with a point P of order 5, then there exists a d ∈ Q∗ such that ((E,O), P )
is isomorphic to ((Ed, O), (0, 0)) with

Ed : y + (d+ 1)xy + dy = x3 + dx2.

Take now two numbers d1, d2 ∈ Q∗ and consider Bd1,d2 := Ed1×Ed2/〈(0, 0)×(0, 0)〉.
Then Ad1,d2 := Ed1 × Ed2 → Bd1,d2 is an isogeny of degree 5. Moreover, if the
two elliptic curves are not isogenous, then all polarization on Bd1,d2 have degree
divisible by 5. The Bd1,d2 ’s are the family we consider. In our case we know that
X(Ad1,d2/Q) has square order, if it is finite, since it is isomorphic to the product
of the two Tate-Shafarevich groups of Ed1 and Ed2 .

The behavior of the Tate-Shafarevich group under isogenies is well-known. This
behavior is part of Tate’s proof of the invariance of the Birch and Swinnerton-Dyer
conjecture; for more on this see Section 2. The upshot of this is the following:
Let ϕ : A → B be an isogeny and assume that either #X(A/K) or #X(B/K)
is finite (which implies that both are finite). Denote by ϕ∨ : B∨ → A∨ the dual
isogeny. For a field L ⊃ K denote by ϕL : A(L) → B(L) the induced map on
L-rational points. Let S be a finite set of places containing the primes where A has
bad reduction, the infinite places and the primes dividing the degree of ϕ. Then
the following holds:

#X(A/K)

#X(B/K)
=

# kerϕK# cokerϕ∨K
# kerϕ∨K# cokerϕK

∏
v∈S

# cokerϕKv

# kerϕKv

.

In Sections 4 and 5 we show that for our choice of abelian surfaces the above
mentioned cardinalities of kernels and co-kernels can be determined, provided one
has a basis for the Mordell-Weil group of both Ed1 and Ed2 . (Actually something
weaker is enough, see end of Section 4.) Hence, given a basis for the Mordell-Weil
groups of both elliptic curves we can determine whether #X(B/Q) is a square or
a non-square.

For almost all pairs (d1, d2), such that max(|ui|, |vi|), for di = ui/vi, is bounded
by N = 50, 000 and the conductor of Edi is bounded by C = 106, we computed
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this product of cardinalities of kernels and cokernels. There are 2, 445, 366 such
pairs and we computed 2, 418, 900 of them. 47.00% of these surfaces have a Tate-
Shafarevich group of non-square order. Also we computed these cardinalities for a
lot of pairs (d1, d2), such that the absolute value of the numerator and denominator
of di is bounded by N = 100. There are 18, 522, 741 of such pairs and we could
compute this product for 17, 155, 153 of them. We obtain that for 49.22% of the
abelian surfaces for which we could determine this product, it turned out not to
be a square. We expect that a density exists and that it is around 0.5. For some
heuristics see the end of the last section.

The outline of this paper is as follows. In Section 2 we discuss some preliminar-
ies and in Section 3 we explain in more detail the construction of the considered
familiy of abelian surfaces. In Section 4 we discuss how we can calculate the global
quotient and which conditions on Ed1 and Ed2 are needed for this. In Section 5
we discuss how we calculate the local quotient, which turns out to be much easier
computationally. In Section 6 we sketch the algorithm used for the computations
of the densities and finally in Section 7 we discuss the obtained results.

2. Preliminaries

Let K be a number field, and let GK be the absolute Galois group Gal(K/K).
For a (finite or infinite) place v of K denote by Kv its completion with respect to
v and GKv

its absolute Galois group.
Let A/K be an abelian variety. Denote by A∨ the dual abelian variety. Then

the Tate-Shafarevich group of A/K is defined as

X(A/K) := ker

(
H1(GK , A)→

∏
v

H1(GKv
, A)

)
,

where the product is taken over all finite and infinite places of K. Let ϕ : A → B
be an isogeny of abelian varieties, then the ϕ-Selmer group of A/K is defined as

Sϕ(A/K) := ker

(
H1(GK , A[ϕ])→

∏
v

H1(GKv , A)

)
.

Here [·] means “kernel of”.
The Tate-Shafarevich group is torsion. It is conjectured to be finite and the ϕ-

Selmer group is known to be finite. Them-torsion subgroup of the Tate-Shafarevich
group fits in an exact sequence

0→ A(K)/mA(K)→ S[m](A/K)→X(A/K)[m]→ 0.

I.e., it measures the difference between the m-Selmer group and A(K)/mA(K).
In theory the m-Selmer group is computable, hence the Tate-Shafarevich group
measures the difference between the upper bound on the Mordell-Weil rank obtained
by doing m-descent and the actual Mordell-Weil rank of A.

The Tate-Shafarevich group plays also a role in the Birch and Swinnerton-Dyer
conjecture:

Conjecture 2.1 (Birch and Swinnteron-Dyer). Let A/K be an abelian variety and
L(A, s) its L-series. Set r := rkA(K). Then X(A/K) is finite, L(A, s) has a zero
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of exact order r at s = 1, and

lim
s→1

L(A, s)

(s− 1)r
=

2r#X(A/K)RA
∏∫

A(Kv)
|ω|v

#A(K)tor#A∨(K)tor
.

The left hand side of this conjecture is invariant under isogeny. Cassels [1]
(dimA = 1) and Tate [16] (dimA ≥ 1) proved that the right hand side is also
invariant under isogeny. I.e., if ϕ : A→ B is an isogeny then

#X(A/K)

#X(B/K)
=
RB#A(K)tor#A

∨(K)tor
∏∫

B(Kv)
|ω|v

RA#B(K)tor#B∨(K)tor
∏∫

A(Kv)
|ω|v

.

This formula was used by Schaefer and the second author [7] to provide examples of
elliptic curves with large Selmer groups, by Matsuno [8] and by the second author
[6] to provide examples of elliptic curves with large Tate-Shafarevich groups and by
Flynn and Grattoni [3] to compute several Selmer groups.

However, for calculation purposes the right hand side is not suitable. One can
rewrite the right hand side as follows: For a field L ⊃ K let ϕL denote the group
homomorphism ϕL : A(L)→ B(L). Then

#X(A/K)

#X(B/K)
=

# kerϕK# cokerϕ∨K
# kerϕ∨K# cokerϕK

∏
v

# cokerϕKv

# kerϕKv

.

We will call the first factor with the ϕK the global factor, the second factor with
the ϕKv

the local factor. If v is a finite prime of good reduction and v does not
divides the degree of the isogeny then # cokerϕKv

= # kerϕKv
, hence the product

on the right hand side is a finite product, where only the bad primes, the infinite
primes and the primes dividing the degree of the isogeny are taken into account.

It is known that if the analytic rank of an elliptic curve is at most 1, then its
Tate-Shafarevich group is finite and the analytic rank equals the Mordell-Weil rank;
otherwise we will assume these two conjectures.

3. Constructing a family of abelian surfaces

We will construct a two-dimensional family of abelian surfaces B/K, whose mem-
bers are quotients of products of two elliptic curves E1, E2 by an isogeny of degree
5. Therefore #X(B/K) · 5a = #X(E1 × E2), for an a ∈ Z. Since #X(E1 × E2)
is a square it follows that #X(B/K) modulo squares is one of {1, 5}. Additionally
we have that for a general member of this family every polarization has degree
divisible by 5. Thus Flach’s theorem does not restrict us further.

Let G/K be a group scheme of prime order `. Let E1, E2/K be two elliptic
curves such that G is a subgroup scheme of both E1 and E2. Let A = E1×E2 and
B = A/G. Then ϕ : A → B has degree `. Moreover, one can show that either E1

and E2 are isogenous or every polarization on B has degree a multiple of `. Hence
for general E1, E2 we are in the second case.

Consider the case G = Z/`Z, i.e., G is generated by a K-rational point. Since
for ` > 4 the functor Y1(`) is representable one has a universal family of elliptic
curves E with a point P of order `. In the case ` = 5 the universal family is given
by

Ed : y2 + (d+ 1)xy + dy = x3 + dx2, P = (0, 0),

for any d ∈ K∗ with d2 + 11d − 1 6= 0. The four non-trivial 5-torsion points are
(0, 0), (−d, d2), (−d, 0), (0,−d). If we move (0,−d) to (0, 0) and bring the curve in
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standard form we obtain Ed. If we move (−d, d2) or (−d, 0) to (0, 0) and bring the
elliptic curve in standard form then we obtain E−1/d.

We restrict now to the case K = Q, ` = 5, and G is generated by a Q-rational
point. Fix d1 and d2 inQ∗, set A := Ed1×Ed2 . The rational 5-torsion subgroup of A
has four diagonally embedded subgroups of order 5. Let G = Z/5Z be one of those,
i.e., it is the subscheme of A generated by (0, 0) × [n](0, 0), with n ∈ {1, 2, 3, 4}.
Let B := A/G. Then B is a candidate for an abelian surface such that X(B/Q)
has order five times a square. To actually check whether X(B/Q) has non-square
order we will now calculate both the local and the global factor.

Note, that the 16 surfaces B/Q one obtains by replacing di by −1/di and using
the four values of n break into two pairs of 8 isomorphic surfaces. For fixed d1, d2
the surfaces corresponding to n = 1, 4 lie in one of these isomorphism classes and
those for n = 2, 3 in the other one. We will see in the next two sections that for
fixed d1, d2 the size of X(B/Q) is independent of n, thus all 16 surfaces will have
Tate-Shafarevich groups of same cardinality. Therefore, for the computations we
will only consider the case d1, d2 > 0 and n = 1.

Let A′ be the quotient of Ed1 × Ed2 by 〈(0, 0) × O,O × (0, 0)〉 and E′di be the
quotient of Edi by 〈(0, 0)〉. The isogeny A→ A′ factors as A→ B → A′. Consider
now the dual picture

(A′)∨ → B∨ → A∨.

Since A and A′ are products of elliptic curves, they are principally polarized. There-
fore we have the following factorization

A′ → B∨ → A.

The kernel of A′ → A is Cartier dual to the kernel of A → A′, and hence is
isomorphic to (µ5)2. The kernel of A′ → B∨ is isomorphic to µ5 embedded with
(1,−n) in (µ5)2.

Summarizing we have the following diagram:

B
ψ

&&MMMMMMMMMMMM

A = Ed1 × Ed2

ϕ

88qqqqqqqqqqqq
ρ=η1×η2

,,
A′ = E′d1 × E

′
d2

ψ∨
xxqqqqqqqqqqq

ρ∨

ll

B∨
ϕ∨

ffMMMMMMMMMMM

Lemma 3.1. Suppose L = Q. Then kerϕQ
∼= Z/5Z and kerϕ∨Q = 0.

Proof. Since A[ϕ] = Z/5Z it follows that A′[ϕ∨] = µ5. Taking Q-rational points
yields the lemma. �

Lemma 3.2. Suppose L = R. Then kerϕR
∼= Z/5Z and cokerϕR = 0.

Proof. The first assertion is automatic. The non-trivial element in Gal(C/R) acts
on the fiber of an element of B(R) under ϕC either by swaping elements or fixing
them. Since the degree of ϕ is not divisible by 2 at least one element in the fiber is
fixed, hence lies in A(R). �
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Let S be the set of primes where A has bad reduction, together with 5. Using
the above lemmas it follows that

#X(A/Q)

#X(B/Q)
=

# cokerϕ∨Q
# cokerϕQ

∏
v∈S

# cokerϕQv

# kerϕQv

.

In the next two sections we will first explain how to determine the first factor, the
global factor, then how to determine the second factor, the local factor.

4. Determining the global factor

To determine #cokerϕ∨
Q

#cokerϕQ
we assume for the moment that one has a basis for the

Mordell-Weil groups Ed1(Q), Ed2(Q), E′d1(Q) and E′d2(Q). We will now explain
how one can determine cokerϕQ and cokerϕ∨Q from this.

Using ρ∨ = ϕ∨ ◦ψ∨ we obtain a surjective homomorphism coker ρ∨Q → cokerϕ∨Q.
With Hilbert’s Theorem 90 we obtain

H1(GQ, A
′[ρ∨]) = H1(GQ,µ

2
5) = (Q∗/Q∗5)2,

H1(GQ, B
∨[ϕ∨]) = H1(GQ,µ5) = Q∗/Q∗5.

The surjection coker ρ∨Q → cokerϕ∨Q becomes (x, y) 7→ xn/y as the map from
(Q∗/Q∗5)2 to Q∗/Q∗5. One sees immediately that the image of this map is inde-
pendent of n, hence to compute cokerϕ∨Q we may set n = 1. In order to determine
cokerϕ∨Q it suffices to determine a basis for both coker η∨i,Q in Q∗/Q∗5. This can
be done quite easily following [13, Exercise 10.1]: Suppose that f is a function on
Edi with divisor 5(0, 0) − 5O. Then there exists a unique constant c ∈ Q∗/Q∗5

such that the map
coker η∨i,Q → Q∗/Q∗5,

sending P 6= (0, 0), O to cf(P ) mod Q∗5, is a well-defined and injective group
homomorphism and its image agrees with the image of the natural embedding
of coker η∨i,Q into H1(GQ, E

′
di

[η∨i ]) ∼= Q∗/Q∗5. In our case we can take the function
f = −x2 + y + xy and the constant c = 1. The point (0, 0) is mapped to d−1 and
O to 1 by linearity.

An element of Q∗/Q∗5 is determined by the valuations at each prime. Write
now d = u/v and let S be the set of all primes p dividing five times the minimal
discriminant of Ed, i.e., p | 5uv(u2 + 11uv − v2). Define

Q(S, 5) := {x ∈ Q∗/Q∗5 | vp(x) ≡ 0 mod 5, ∀p /∈ S}.

From the same exercise from [13] it follows that f(coker η∨Q) ⊂ Q(S, 5). Hence we
can represent an element of coker η∨Q by its valuation at each prime number p ∈ S.
Once the cokernels of both η∨i,Q are established, the cokernel of ϕ∨Q can be computed
easily.

To determine the cokernel of ϕQ we use the following exact sequence

0→ ker(ψQ)/ϕ(ker ρQ)→ cokerϕQ
ψ→ coker ρQ → cokerψQ → 0.

Note that ker(ψQ) = ϕ(ker ρQ). Set K := Q(ζ5), where ζ5 is a primitive fifth root
of unity. Then the restriction map H1(GQ,Z/5Z) → H1(GK ,Z/5Z) is injective
since the kernel of this map has exponent dividing both [K : Q] = 4 and #Z/5Z.
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Since A[ϕ], A[ρ] and B[ψ] are isomorphic to µ5, µ5 ×µ5 and µ5 over K we obtain
the following commutative diagram with embeddings as vertical maps.

0 // cokerϕQ
ψ //

��

coker ρQ //

��

cokerψQ
//

��

0

0 // K∗/K∗5 // (K∗/K∗5)2 // K∗/K∗5 // 0

As above the lower second horizontal map is just (x, y) 7→ xn/y. Hence to determine
cokerϕQ it suffices to determine the kernel of xn/y on coker η1,Q × coker η2,Q →
cokerψQ. Again this is independent of n. We do this as follows:

(1) For some d̃ ∈ K there is aK-isomorphism τ : E′d → Ed̃, sending a generator
of ker η∨ to (0, 0). The map f : E′d → K∗/K∗5 is then P 7→ −x(τ(P ))2 +
y(τ(P )) + x(τ(P ))y(τ(P )). Hence we have to determine τ . This can be
done easily for each individual curve E′d.

(2) To represent elements in coker ηQ ⊂ K∗/K∗5 note that the class number
of K∗ equals 1. Set

K(S, 5) := {x ∈ K∗/K∗5 | vp(x) ≡ 0 mod 5, ∀p /∈ S},

where S contains all primes p of K being a bad prime of Ed or dividing 5,
i.e., all primes p ofK lying over a primes p, such that p | 5uv(u2+11uv−v2).
From [13, Exercise 10.9] it follows that f(coker ηQ) ⊂ K(S, 5). Hence to
represent elements in coker ηQ we have to fix a generator tp for each prime
p ∈ S, and we have to fix generators for the unit group of K modulo fifth
powers. The field K is well-known and it is easy to see that the unit group
is generated by −ζ5 and (1 + ζ5). Hence we can write

f(P ) ≡ ζa05 (1 + ζ5)a1
∏
p∈S

t
vp(f(P ))
p

modulo fifth powers.

Remark 4.1. We can weaken the assumption of having a basis for the Mordell-
Weil groups Ed1(Q), Ed2(Q), E′d1(Q) and E′d2(Q). It is actually sufficient to just
have generators of a finite index sublattice of these four groups, such that the index
is not divisible by 5, i.e., the generators of infinite order are not divisible by 5
modulo torsion. This is the case, since the images of such sublattices in the co-
kernels of η∨i , respectively ηi, are the complete co-kernels. Also it is sufficient to
just know such sublattices of Ed1(Q) and Ed2(Q), since suitable dual sublattices
can be easily computed using the isogenies ηi. One only has to calculate the images
of the generators under ηi and then check if their span contains points divisible by
5 modulo torsion.

5. Determining the local factor

We want to calculate #cokerϕQp

#kerϕQp
for all bad primes p and for p = degϕ = 5. Since

the kernel of ϕQp is generated by a Q-rational point it follows that # kerϕQp = 5.
The size of the co-kernel of ϕQp depends on the reduction of Ed1 and Ed2 , but turns
out to be independent of n.
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For η := ηi, we first describe how coker ηQp
depends on the reduction type of

E := Edi . Write di =: u/v with u, v ∈ Z and gcd(u, v) = 1. Then E has the
following global minimal equation

E : y2 + (u+ v)xy + uvy = x3 + uv2x2

and discriminant −(uv)5(u2 + 11uv − v2).

Lemma 5.1. E has the following reduction type at a prime p:
(1) If p | uv then the reduction is split multiplicative and the point (0, 0) does

not lie on the identity component of the Néron model of E.
(2) If p | u2 + 11uv− v2 then (0, 0) lies on the identity component of the Néron

model of E and either p = 5, or p ≡ ±1 mod 5 holds. If p = 5 the reduction
is additive, if p ≡ 1 mod 5 then the reduction is split multiplicative, and if
p ≡ 4 mod 5 then the reduction type is non-split multiplicative.

Proof. Let E be E mod p and Ens be the smooth locus of E. If p | uv then E has
equation y2 + αxy = x3, for some non-zero α ∈ Z/pZ. In particular, (0, 0) mod p
is a node of E and the tangent cone is generated by x = −αy and y = 0, hence the
reduction is split multiplicative. Since (0, 0) reduces to the singular point of E this
point does not lie on the identity component of the Néron model of E.

If p | u2 +11uv−v2 then the reduction of (0, 0) is both on Ens and is non-trivial.
In particular the order of the reduction of (0, 0), which is 5, divides #Ens(Fp). If
the reduction is split multiplicative then this group has order p−1, if the reduction
is non-split then this group has order p + 1, and if the reduction is additive then
this group has order p, i.e., p ≡ 1 mod 5, p ≡ −1 mod 5, and p = 5 respectively. �

Let E′ := E′di be the isogenous elliptic curve. Denote by cE,p and cE′,p the local
Tamagawa numbers, i.e., the number of components of the Néron model.

Lemma 5.2. For the Tamagawa quotient we have

cE′,p

cE,p
=


1
5 , if p | uv,
5, if p | u2 + 11uv − v2 and p ≡ 1 mod 5,

1, otherwise.

Proof. Since η has degree 5 it follows that that cE′,p
cE,p

= 5a for some a ∈ Z. If the
reduction is different from split multiplicative then cE,p and cE′,p are at most 4,
hence a = 0 and cE,p = cE′,p.

In [4, Proposition 2.25] it is shown by using Tate curves that if the reduction
is split multiplicative then a ∈ {−1, 1}, depending on whether the kernel is on the
identity component of the Néron model or not. �

If p - deg η = 5 then from [10, Lemma 3.8] it follows that #coker ηQp

#ker ηQp
=

cE′,p
cE,p

.
Using this it follows easily that

Lemma 5.3. Suppose p is a prime different from 5.
(1) If p | u2 + 11uv − v2 and p ≡ 4 mod 5, then coker ηQp

= Z/5Z.
(2) If p | u2 + 11uv − v2 and p ≡ 1 mod 5, then coker ηQp

= (Z/5Z)2.
(3) If p | uv, then coker ηQp = 0.
(4) If p is good for E, then coker ηQp = Z/5Z.
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Now coker ηQp
⊂ H1(GQp

,Z/5Z). From [12, Section II.5 Theorem 2, Proposi-
tion 17] it follows that for p - deg η = 5

#H1(GQp ,Z/5Z) = #H0(GQp ,Z/5Z)#H0(GQp ,µ5) = 5a,

with a = 1, if p ≡ 4 mod 5, and a = 2, if p ≡ 1 mod 5. From this it follows that

Proposition 5.4. Suppose p is a prime of bad reduction for E and p 6= 5 with
p | u2 + 11uv − v2. Then coker ηQp = H1(GQp ,Z/5Z).

We now return to our abelian surface A. Then the above proposition enables us
to determine cokerϕQp

for bad primes different from 5.

Proposition 5.5. Suppose p is a prime of bad reduction for A, p 6= 5. Then
cokerϕQp

is isomorphic as an abelian group to
0, if p | u1v1u2v2,
(Z/5Z)2, if p | gcd(u21 + 11u1v1 − v21 , u22 + 11u2v2 − v22), p ≡ 1 mod 5,

Z/5Z, otherwise.

Proof. Recall that cokerϕQp
= ker

(
coker η1,Qp

× coker η2,Qp
→ cokerψQp

)
, which

equals(
coker η1,Qp × coker η2,Qp

)
∩ ker

(
H1(GQp ,Z/5Z)2 → H1(GQp ,Z/5Z)

)
.

The surjective mapH1(GQp ,Z/5Z)2 → H1(GQp ,Z/5Z) is given by (x, y) 7→ nx−y.
Suppose that p | u1v1u2v2, then by Lemma 5.3 we have that coker ηi,Qp

= 0, for at
least one i, and therefore cokerϕQp

= 0.
Suppose now p - u1v1u2v2. By assumption one of the Edi has bad reduction

at p, let’s say Ed1 . Since p - 5u1v1 it follows from the above proposition that
coker η1,Qp = H1(GQp ,Z/5Z) and hence cokerϕQp

∼= coker η2,Qp . Now Ed2 has
either additive or good reduction. The reduction of Ed2 is additive if and only if
p | gcd(u21 + 11u1v1 − v21 , u22 + 11u2v2 − v22). Now apply Lemma 5.3 to deduce the
structure of coker η2,Qp

, hence the structure of cokerϕQp
. �

It remains to check the case p = 5. As before, we first have a look at the elliptic
curve E. If 5 | uv then as above the reduction is split multiplicative and cE′,p

cE,p
= 1

5 .
Using Tate curves one easily shows that coker ηQp = 0.

If 5 | u2 + 11uv− v2 then the reduction is additive. In particular the component
groups of E and E′ have the same order, which is also the case if the reduction
is good. Therefore cE′,p

cE,p
= 1. The isogeny η : E → E′ can be written as a power

series in one variable in a neighbourhood of the point O. Again from [10, Lemma
3.8] it follows that

# coker ηQ5

# ker ηQ5

= |η′(0)|−15 ,

where |η′(0)|5 is the normalized 5-adic absolute value of the leading coefficient of
the power series representation of η evaluated at 0. This can be easily computed
using Vélu’s algorithm [17]. In [4, Proposition 2.9] it is shown that in the additive
case v5(u2 +11uv−v2) ∈ {2, 3} and that if v5(u2 +11uv−v2) = 2 then |η′(0)|5 = 1,
and if v5(u2 + 11uv − v2) = 3 then |η′(0)|5 = 1/5. If E has good reduction at
p = 5 then it follows that # coker ηQp

= # ker ηQp
, because in this case we also

have |η′(0)|5 = 1. We summarize as follows.

Lemma 5.6. Suppose p = 5.
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(1) If p | uv, then coker ηQp
= 0.

(2) If p is good for E, then coker ηQp = Z/5Z.

(3) If p | u2 + 11uv − v2, then coker ηQp
=

{
(Z/5Z)2, 53 | u2 + 11uv − v2,
Z/5Z, otherwise.

Now we can calculate cokerϕQp in the remaining case p = 5.

Lemma 5.7. The cardinality of cokerϕQ5
equals the cardinality of kerϕQ5

, unless
(1) 5 | u1v1u2v2. In this case # cokerϕQ5 = 0.
(2) 53 | gcd(u21 + 11u1v1− v21 , u22 + 11u2v2− v22). In this case # cokerϕQ5

= 52.

Proof. If coker ηi,Q5 = 0, for one i, then cokerϕQ5 = 0. The first condition is
equivalent with 5 | u1v1u2v2.

Suppose now that coker ηi,Q5
6= 0 for both i, which implies that p = 5 is ad-

ditive or good for Edi . We need two facts from [12, Section II.5 Proposition 18,
Theorem 5], namely H1(GQ5

,Z/5Z) = (Z/5Z)2 and H1
nr(GQ5

,Z/5Z) = Z/5Z.
As in the previous proposition we have that if coker η1,Q5 = H1(GQ5 ,Z/5Z),
then cokerϕQ5

∼= coker η2,Q5 and vice versa. This gives the second case of the
lemma, since coker ηi,Q5

= (Z/5Z)2 if and only if 53 | u2i + 11uivi − v2i , and
coker ηi,Q5

= Z/5Z otherwise.
It remains to consider coker η1,Q5

= coker η2,Q5
= (Z/5Z). In this case one can

show that coker ηi,Q5 = H1
nr(GQ5 ,Z/5Z), for both i; see [4, Proposition 3.5] and

[11, Section 3]. Thus the kernel of coker η1,Q5
× coker η2,Q5

→ cokerψQ5
, which

equals cokerϕQ5
, has five elements. This finishes the proof. �

Putting everything together yields

Proposition 5.8. Let p be a prime. Then

# cokerϕQp

# kerϕQp

is a non-square if and only if one of the following occurs
(1) p | u1v1u2v2,
(2) p | gcd(u21 + 11u1v1 − v21 , u22 + 11u2v2 − v22) and p ≡ 1 mod 5,
(3) p3 | gcd(u21 + 11u1v1 − v21 , u22 + 11u2v2 − v22) and p = 5.

6. Algorithm

The code was implemented in Sage [15] and is available at [5]. The algorithm
consists of two main steps and an initialization step, which we call step 0. In step
1 one creates a database of elliptic curves having a point P of order 5, which are
parametrized by two coprime positive integers (u, v). One has to specify which pairs
(u, v) one wants to consider. In step 2 one takes such a database of elliptic curves
Ed, for d = u/v, and goes over all pairs of these curves and determines whether the
order of the Tate-Shafarevich group of the abelian surfaces B = Ed1×Ed2/〈(P1, P2)〉
is a square. For trivial reasons, pairs of the same elliptic curve are omitted and
pairs are considered to be without order.

Step 0: Fix a (large) integer M . For each prime number p ≤ M determine the
prime ideals p of K = Q(ζ5) above p and fix an ordering of them. Then fix for each
prime ideal p a generator tp.
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Step 1: Fix a positive integer N . For each pair of coprime positive integers (u, v),
such that max(u, v) ≤ N , we collect the following data associated to E := Ed, for
d = u/v. (Optional: Filter the pairs (u, v) by other limitations, e.g., considering
only those for which the corresponding elliptic curves have conductor ≤ C.)

• Collect all the primes dividing 5uv(u2 + 11uv − v2) in a set S.
• Collect all the primes dividing uv in a set T .
• Collect all the primes p ≡ 1 mod 5 dividing u2 + 11uv − v2 in a set U .
• If v5(u2 + 11uv − v2) = 3, put also p = 5 into the set U .
• Determine the analytic rank r of E.
• Determine a system of r generators of a sublattice Λ of E(Q), such that

the points of infinite order modulo torsion are not divisible by 5. Take the
image of Λ in Q(S, 5) to determine a basis P of coker η∨Q ⊂ Q(S, 5). The
data for each basis element consists of a pair for each prime in S, where
the first entry is the corresponding element in S and the second entry is
the exponent as an element in Z/5Z.

• Calculate the image of Λ under η in E′(Q) and determine which image
points are divisible by 5 modulo torsion. Divide if possible and determine
the non-trivial 5-torsion points of E′(Q) to get a sublattice Λ′ of E′(Q),
such that the points of infinite order modulo torsion are not divisible by 5.
Use this information to get dim coker ηQ.

• Take the image of Λ′ in K(S, 5) to determine a basis Q for coker ηQ ⊂
K(S, 5). The data for each basis element consists of a pair for each prime
in S and a pair for the units, where the first entry is the corresponding
element in S, respectively 1, and the second entry is a list of elements
in Z/5Z, which contains as many entries as there are prime ideals p in
K over p, respectively two entries, and these entries are the exponents
corresponding to the prime ideals (tp) with the chosen order, respectively
the exponents of the units.

Step 2: To determine whether the order of X(Bd1,d2/Q) is a square, for each
pair of pairs (u1, v1), (u2, v2) from the first step (modulo ordering and equality), do
the following:

• Set L := −#(T1 ∪ T2) + #(U1 ∩ U2).
• Fix an ordering for S := S1 ∪ S2.
• Write out the elements from P1 ∪ P2 into a matrix with respect to S. This

gives a matrix with entries in Z/5Z. Calculate the rank of this matrix,
which equals the dimension of cokerϕ∨Q.

• Write out the elements from Q1 ∪ Q2 into a matrix with respect to the
prime ideals (tp) lying over the primes of S (and with respect to the units).
This gives a matrix with entries in Z/5Z. Calculate the rank of this matrix,
which equals the dimension of cokerψQ.

• Set G := dim cokerϕ∨Q − dim coker η1,Q − dim coker η2,Q + dim cokerψQ.
(Recall that dim cokerϕQ = dim coker η1,Q + dim coker η2,Q − cokerψQ.)

Then the local factor (without the infinite prime) is a non-square if and only if
L is odd, and the global factor (without the kernels) is a non-square if and only if
G is odd. Since the contribution of the infinite prime and the kernels cancel, we
have that X(Bd1,d2/Q) has non-square order if and only if L+G is odd.

The constructed databases and obtained results are given in the next section. To
conclude this section, we make some comments on the implementation. Step 0 in
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the cases considered is not computational demanding. For example, on a desktop
computer it may take some seconds up to a few minutes to compute all generators
for all prime ideals lying over all primes up to 500, 000. Step 2 is also no problem. It
consists only of simple set operations and calculating ranks of small matrices with
coefficients in Z/5Z. Even a few million of pairs of elliptic curves can be considered
in under an hour.

The computational demanding part is step 1. There are two main issues. The
most problematic calculation is determining r generators of a sublattice of the
Mordell-Weil group, where r is the analytic rank. We used the standard Sage
method ’E.point_search(height_limit=18,rank_bound=r)’, and in case this did
not come up with enough points we tried some of the remaining curves with
’E.gens()’. In fact we tried all remaining curves with conductor ≤ 106, but for
12 curves this did not terminate after 48 hours for each single curve on an individ-
ual CPU. The second problematic calculation in the actual code is computing the
image of coker ηQ in K(S, 5). We try to factor ideals of K, which are generated
by elements of possibly very big norm. For example, the curve Ed, for d = 1/94,
has analytic rank 1 and the numerator and denominator of the image of the point
of infinite order in K(S, 5) have about 600 digits and Sage was not able to factor
the corresponding ideal. As we already knew that the image is trivial, since the
dimension of coker ηQ was zero, we could skip this calculation. Considering this
information in the algorithm all curves we tried worked fine. This problem might be
avoidable by trying another strategy working modulo primes. The rest of step 1 is
no problem for moderately chosen d = u/v, since it is mainly prime factorization of
integers and of rational polynomials of degree 25 (to divide points by 5), as well as
calculating isogenies and analytic ranks. On a desktop computer one could produce
in a few hours a database of a few thousand curves, if one skips those which resist
to divulge their data after some seconds.

Remark 6.1. Step 0 and 2 do not use any assumptions, but for step 1 we assume
the Birch and Swinnerton-Syer conjecture in case the elliptic curve is of analytic
rank r ≥ 2, to conclude that the calculated sublattices Λ and Λ′ are of finite index
and that the Tate-Shafarevich groups are finite. Thus, only in case that both elliptic
curves Edi have analytic rank r ≤ 1 the result of the algorithm about #X(Bd1,d2)
modulo squares is completely unconditional.

7. Results

Given the above described algorithm, one can produce in short time millions
of examples of both kinds of abelian surfaces over Q, such that either the order
of the Tate-Shafarevich group is a square or five times a square, respectively. In
case the two elliptic curves were both of analytic rank r ≤ 1 these examples are
completely unconditional. We constructed two databases of elliptic curves using
step 1 of the algorithm. The first database consists of elliptic curves Ed, d = u/v,
with max(u, v) ≤ 50, 000, such that the conductor of Ed is bounded by C = 106.
The second database consists of elliptic curves, such that max(u, v) ≤ 100.

Database 1 consists of 2212 elliptic curves, all of them having analytic rank r ≤ 2.
It is most likely that these curves are a complete list of all (isomorphism classes
of) elliptic curves of conductor ≤ 106 having a rational torsion point of order 5,
since for all such curves we have u ≤ 2, 197 and v ≤ 4, 617 and we checked up to
N = 50, 000. For 12 of these curves, all having analytic rank r = 1, step 1 of the
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algorithm did not succeed. The database is described in more detail in Table 1.
We state for each analytic rank the number of elliptic curves with conductor ≤ 106,
with max(u, v) ≤ N , as well as the number of those curves for which step 1 was
not successful.

Database 2 consists of 6, 087 elliptic curves. All of them have analytic rank r ≤ 3.
See Table 2 for more details. Again the number of curves for which step 1 did not
succeed is given in brackets.

In the following we will present the results of step 2 of the algorithm applied to the
two databases described above. As there are elliptic curves with incomplete data,
we omit them. Thus some percentage of the abelian surfaces cannot be considered.
We will state this amount in the tables. The given percentage of surfaces with
square order Tate-Shafarevich group refers to those abelian surfaces which could
be calculated.

N #{Ed, C = 106} #{r = 0} #{r = 1} #{r = 2}
50,000 2,212 (12) 987 - 1,109 (12) 116 -
4,617 2,212 (12) 987 - 1,109 (12) 116 -
3,375 2,211 (12) 986 - 1,109 (12) 116 -
3,072 2,210 (12) 986 - 1,108 (12) 116 -
2,695 2,209 (11) 986 - 1,107 (11) 116 -
2,000 2,200 (10) 982 - 1,102 (10) 116 -
1,000 2,174 (9) 963 - 1,095 (9) 116 -
900 2,170 (9) 961 - 1,093 (9) 116 -
800 2,159 (8) 956 - 1,088 (8) 115 -
700 2,145 (5) 951 - 1,079 (5) 115 -
600 2,119 (2) 941 - 1,063 (2) 115 -
500 2,088 - 921 - 1,052 - 115 -
400 2,066 - 912 - 1,039 - 115 -
300 1,993 - 872 - 1,009 - 112 -
200 1,818 - 786 - 929 - 103 -
100 1,391 - 616 - 697 - 78 -
50 845 - 394 - 405 - 46 -

Table 1. Database 1: Number of elliptic curves Ed with conduc-
tor ≤ 106 and max(u, v) ≤ N . In brackets is given the number of
those curves, for which step 1 of the algorithm failed so far.

Database 1 yields 2, 445, 366 abelian surfaces B. Of them we could decide in
2, 418, 900 cases, i.e., in 98.92%, whether the order of X(B) is a non-square. It
turns out that 47.00% of these surfaces have a Tate-Shafarevich group of non-
square order. Database 2 leads to 18, 522, 741 abelian surfaces. We computed
17, 155, 153 of them, which is 92.62%. The percentage of the non-square case of the
computable ones is 49.22. The intersection of the two databases consists of 1, 391
curves, hence we considered 966, 745 of the computable surfaces twice. In total
this gives 18, 607, 308 computed surfaces, of which 49.07% have a Tate-Shafarevich
group of non-square order.
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N #{Ed} #{r = 0} #{r = 1} #{r = 2} #{r = 3}
100 6,087 (229) 2,390 - 3,038 (223) 633 (6) 26 -
90 4,959 (141) 1,987 - 2,463 (140) 490 (1) 19 -
80 3,931 (57) 1,597 - 1,940 (57) 380 - 14 -
70 2,987 (7) 1,235 - 1,455 (7) 287 - 10 -
60 2,203 (2) 925 - 1,074 (2) 198 - 6 -
50 1,547 - 660 - 760 - 123 - 4 -
40 979 - 412 - 494 - 70 - 3 -
30 555 - 245 - 277 - 33 - - -
20 255 - 130 - 115 - 10 - - -
10 63 - 40 - 22 - 1 - - -
Table 2. Database 2: Number of elliptic curves Ed, such that
max(u, v) ≤ N . In brackets is given the number of those curves,
for which step 1 of the algorithm failed so far.

We did two different experiments with the two databases. The results of exper-
iment 1 is given in Table 3 for both databases, the results of experiment 2 is given
in Table 4 for database 1 and Table 5 for database 2.

In experiment 1 we investigated how the rank influences the squareness of the
Tate-Shafarevich group. For this we filtered the full databases in three different
ways: For curves of the same rank; for curves of two different ranks and considered
only pairs of different rank; for all curves of analytic rank r ≤ 1. If we consider
abelian surfaces of fixed analytic rank of at least 4, then the density of the surfaces
with square Tate-Shafarevich group seems to be significant larger that 0.5. But the
surfaces with rank larger than 2 inside our family are conjectured to have density
zero, since one expects the elliptic curves with analytic rank r ≤ 1 to have density
1 among all curves. The calculations with curves of rank r ≤ 1 all show that the
non-square case happens about in 50% of all cases.

C = 106, N = 50, 000 N = 100
%X = � % unknown %X = � % unknown

r = 0 54.041 - 48.598 -
r = 1 58.657 2.153 48.893 14.144
r = 2 92.039 - 73.068 1.888
r = 3 98.154 -
r = 0, r = 1 46.645 1.082 51.391 7.340
r = 0, r = 2 52.867 - 50.567 0.948
r = 0, r = 3 49.891 -
r = 1, r = 2 74.361 1.082 53.196 8.219
r = 1, r = 3 61.279 7.340
r = 2, r = 3 84.425 0.948
r ≤ 1 51.630 1.142 50.071 8.049

Table 3. Results of experiment 1 for both databases.

In experiment 2 we looked for the behaviour of the distribution of square and
non-square order Tate-Shafarevich groups for increasing conductor, respectively
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height, of the elliptic curves. Hence we filtered database 1 for different values of
conductor bounds C and database 2 for different values of height bounds N . For
low bounds, the non-square case was less likely. When we increase these bounds
this frequency tends to approximately 50%.

The two ways we ordered the elliptic curves, via conductor or via height, are
natural ways of ordering elliptic curves. It is conjectured that densities obtained
concerning these orderings agree. In both cases the densities seem to exist and are
around 0.5. This is in contrast to the results of Poonen and Stoll, who showed that
for genus 2 curves the density of the non-square Jacobians is about 0.13 and this
density tends to zero, as the genus goes to infinity.

C # Ed %X = � % unknown
1,000,000 2,212 (12) 52.996 1.082
800,000 1,966 (9) 53.224 0.914
600,000 1,683 (6) 53.760 0.712
400,000 1,351 (3) 54.222 0.444
200,000 924 (1) 55.015 0.216
100,000 623 - 57.074 -
80,000 547 - 57.776 -
60,000 470 - 57.990 -
40,000 376 - 59.306 -
20,000 245 - 61.288 -
10,000 152 - 62.182 -
5,000 110 - 59.783 -
1,000 45 - 65.556 -

Table 4. Results of experiment 2 for Database 1.

N # Ed %X = � % unknown
100 6,087 (229) 50.780 7.383
90 4,959 (141) 50.890 5.606
80 3,931 (57) 50.982 2.879
70 2,987 (7) 51.247 0.468
60 2,203 (2) 51.466 0.182
50 1,547 - 52.211 -
40 979 - 52.764 -
30 555 - 54.157 -
20 255 - 56.384 -
10 63 - 67.179 -

Table 5. Results of experiment 2 for Database 2.

We end by giving some heuristics why we expect the density to be 50%. We
expect that for a random pair (d1 = u1/v1, d2 = u2/v2) in Q∗ × Q∗ the global
factor is a square for 50% of the abelian surfaces and that the local factor is a
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square for 50% of them, too. We also expect these distributions to be independent.
Using the 17, 155, 153 pairs obtained from the second database, we get numerical
evidence for the independence, as illustrated in the following table.

global quotient = � global quotient 6= �
local quotient = � 26.1% 25.3%
local quotient 6= � 23.9% 24.7%

Recall that the exponent of the local quotient equals −#(T1 ∪T2) + #(U1 ∩U2),
hence one could prove the expected densities for the local quotient by showing that
the set T1 ∪ T2 has an even number of elements for 50% of the pairs (d1, d2), and
that the set (U1 ∩U2) is empty for a density 1 subset of pairs (d1, d2). Considering
all pairs obtained from the second database the sets T1 ∪ T2 have an even number
of elements for about 48% of the pairs, and the sets (U1 ∩ U2) are empty in more
than 96% of all pairs.

The global quotient is harder to control. The exponent of the torsion quotient
equals 3 on a density 1 subset of the pairs (d1, d2), see [4]. The exponent of the
regulator quotient seems to be strongly influenced by the parity of the rank of the
abelian surface. We now assume that the elliptic curves with rank 0, or with rank
1, have both density 0.5. If both ranks are equal to 0, hence are even, the regulator
quotient equals 1, hence is a square. If one elliptic curve is of rank 0 and the other
is of rank 1, then the regulator quotient is a non-square if and only if coker ηQ is
trivial modulo torsion, where η is the usual isogeny belonging to the elliptic curve
of rank 1. For the rank 1 curves in the two databases it happens in about 90% of
the cases that ηQ is surjective on the free part. In case both ranks are equal to 1,
the regulator quotient is a square in about 80% of the cases. If we consider only
the elliptic curves of rank ≤ 1 of the second database, then we have that for abelian
surfaces of even rank the regulator quotient is a square in about 88% of the cases,
and for abelian surfaces of odd rank the regulator quotient is a non-square in about
91% of the cases.
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