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1 Introduction

For P ∈ C[x] of degree n > 0, define GP to be the Galois group of P (x) − t
over C(t). Since P (x) − t is irreducible, GP is a transitive subgroup of the
symmetric group Sn. Generically1 GP is all of Sn, but it can be as small as
the cyclic or dihedral group for special choices such as P = xn or P = Tn(x)
(Čebyšev polynomial) respectively. If P decomposes as P (x) = P1(P2(x)) with
each deg(Pi) > 1, then GP permutes the proper subsets {x : P2(x) = u} of the
roots with P1(u) = t, and is therefore imprimitive. The converse implication is
shown in [FMcR, Prop. 3.4]. Müller [Mü] determined all GP that can arise for
indecomposable polynomials: they are the symmetric and alternating groups, the
cyclic groups of prime order, the dihedral groups of order twice an odd prime,
and twelve exceptional permutation groups with n = 6, 7, . . . , 23, 31, the last two
for the sporadic Mathieu group M23 and the linear group GL5(Z/2Z).

The proof uses covering-space methods and Riemann’s existence theorem,
and thus does not yield explicit polynomials. But it is still a natural question
to exhibit all P that realize each possible group GP , except for for the cases of
An and Sn, which occur in “many, not reasonably classifiable types” [Mü]. Say
P,Q ∈ C[x] are equivalent if Q(x) = L1(P (L2(x))) for some polynomials L1, L2

both of degree 1; then GP = GQ. Up to this equivalence, the cyclic and dihedral
groups occur only for powers and Čebyšev polynomials respectively. Some of
the exceptional groups were realized in [Mü], or earlier by Matzat [Ma]; most of
the others were realized by Cassou-Noguès and Couveignes [CNC],2 leaving only
M23. Here we find the polynomials P with GP

∼= M23.
The main novelty here is not in the computation of P but in the proof that

GP
∼= M23. The coefficients of P were computed using a known p-adic method

1 In particular, GP = Sn if dP/dx has n − 1 distinct roots at which P takes dis-
tinct values; equivalently, if disct(discx(P (x)− t)) 6= 0. This sufficient (but far from
necessary) condition was already noted by Hilbert ([Hi], see also [Se, §4.4]); the for-
mulation in terms of the discriminant of the discriminant is attributed to Davenport
in [BSD, p.422].

2 Michael Zieve had already obtained but not published polynomials for a few of these
cases, with groups PGL2(Z/7Z) (n = 8), PΓL2(F8) (n = 9, both classes), and M11

(n = 11); he also calculated that there are four M23 polynomials up to equivalence,
but was not able to exhibit such a polynomial.
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for finding polynomial identities by solving the equivalent system of nonlinear
equations in the coefficients, though here the search for the initial approximation
took several CPU days. The difficulty was that these equations cannot distin-
guish between polynomials with Galois group M23 and A23, and there are four
M23 covers but numerous A23 covers with the same cycle structure (with all the
A23 covers probably defined only over number fields of rather high degree). Once
we found P with coefficients in a quartic number field F , we quickly convinced
ourselves that GP must be M23 by factoring P (x)− t0 mod λ for many primes
λ of F and choices of t0 mod λ at which P (x) − t0 has distinct roots: in each
case the degrees of the factors matched one of the 12 cycle structures of elements
of M23, out of the 632 that arise in A23. Moreover, the fraction of t0 values that
yield each cycle structure was quite near to the fraction of elements of M23 with
that cycle structure, as promised by the Čebotarev density theorem for Galois
extensions of function fields. Still this did not amount to a proof that GP

∼= M23.

However, if GP were actually A23 then we would observe a very different
distribution of cycle structures, which would contradict the Čebotarev theorem
once the residue field of λ got large enough. In our function-field setting such
a calculation turns out to be feasible thanks to Weil’s proof of the Riemann
hypothesis for curves over finite fields. We did this for a λ whose residue field is
prime of characteristic l = 108 +7 (the smallest 9-digit prime, which happens to
lie under a degree-1 prime of F ). We showed that the resulting distribution of
cycle structures implies that GP is not 5-transitive, which soon yields GP

∼= M23

as desired.

The factorization of 108 polynomials mod λ was a somewhat extravagant
computation (two days of CPU time in gp [Pa]). This is not the only way to
prove GP

∼= M23; for example, one could do it also by numerically lifting mon-
odromy generators to permutations of 23 preimages, as Granboulan did for the
24 preimages of an M24 cover [Gr]. Still our technique using Čebotarev plus Weil
has some advantages over the monodromy computation: while our computation
took rather long to run, it was very easy to code, whereas the monodromy calcu-
lation would require some careful estimates to guarantee that the precision was
sufficient to obtain the correct permutations; and our technique works also for
Galois groups of extensions in positive characteristic. This approach also raises
the theoretical question of how large a residue field is necessary: perhaps it can
be shown that the counts over a field of size much smaller than 108 would have
sufficed.

In the next section we exhibit F and P ∈ F [x] and give some details on its
calculation. In the following section we report on the results of our computation
mod λ, use them to prove that GP � A23, and deduce that a polynomial P1

satisfies GP1
∼= M23 if and only if P1 is equivalent to the image of our P under

one of the four embeddings of F into C.
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2 Computation of P

Suppose GP
∼= M23. By [Mü], the map P : P1→P1 is branched above only three

points, with orders 23 (at t = ∞), 2, and 4. The group M23 contains only one
conjugacy class of order 2 and one of order 4. The corresponding monodromy
generators γ2 and γ4 must have γ2γ4 of order 23. Up to conjugation in M23,
there are four such pairs (γ2, γ4), two for each of the two conjugacy classes of
elements of order 23 in M23, and in each case γ2 and γ4 generate M23. Since M23

is its own normalizer in S23, we conclude that there are four equivalence classes
of M23 polynomials, each defined over a number field F containing Q(

√
−23)

with degree 1 or 2. We eventually found that F is the dihedral quartic field of
discriminant 3 · 233 generated by a root of g4 + g3 + 9g2− 10g + 8, which indeed
contains the square roots ±(2g3 + 4g2 + 16g − 7)/3 of −23.

The permutations γ2 and γ4 of 23 objects have cycle structures 1728 and
132244. Thus P is equivalent to a monic polynomial with two double and four
quadruple roots. Then, if τ is the value of P at its finite critical points other
than zeros, we can write

P = P 2
2 P3P

4
4 = P7P

2
8 + τ, (1)

where the Pi (i = 2, 3, 4, 7, 8) are pairwise coprime monic polynomials of de-
gree i, and τ is a nonzero constant. It may seem that we have 10 coefficients to
determine: the 2+3+4 non-leading coefficients of P2, P3, P4, together with τ . We
can reduce this to 8 variables using the remaining equivalences (translate x, and
multiply x by some nonzero µ and divide each Pi by µi). One further variable is
eliminated using a familiar3 differentiation trick: dP/dx has leading term 23x22

and is a multiple of P2P
3
4 P8, so must equal 23P2P

3
4 P8; hence

P8 =
1
23

dP/dx

P2P
3
4

=
1
23

(2P ′
2P3P4 + P2P

′
3P4 + 4P2P3P

′
4) . (2)

Still the remaining nonlinear equations are too complicated to solve directly
by techniques such as Gröbner bases, especially since they do not distinguish
between M23 and A23 covers.

Instead we use the following strategy. Suppose the solution is defined over
a number field F with a prime π of small residue field at which the cover P :
P1→P1 has good reduction. We can then find our cover mod π by exhaustive
search. An arbitrary lift to the π-adic numbers is then an approximate solution,
which can be improved by a multivariate Newton iteration. Once we have the
solution to high enough π-adic precision, we can recognize it as an F -rational
point by lattice reduction, and verify that it satisfies the equations exactly.

For a general system of nonlinear equations we could not know in advance
which π satisfy the condition of good reduction. In our setting, we are seeking
a “Belyi map” (a cover of P1 ramified only above three points), so Beckmann’s

3 The earliest published references I know of are [El,Bi], but the trick must have been
known and used long before that.
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theorem [Be] gives a sufficient condition: if the characteristic of the residue field
of π does not divide the order of the Galois group then the cover has good
reduction at π. But we do not know F in advance, and thus do not know which
residue fields arise. We therefore tried small prime fields Z/pZ in the hope that
one would work. But searches over (Z/pZ)7 became ever longer without finding
the desired cover. For example, a search mod 13 (the smallest prime not dividing
|M23|) found only

P2 = x2 − 3x− 6, P3 = x4 − 4x− 4, P4 = x4 + 5x2 − 5x− 1 (3)

with τ = 5; but the resulting P = P 2
2 P3P

4
4 cannot have Galois group M23

because there are t0 6= 0, 5 for which the factorization of P − t0 mod 13 has
degrees not seen in any of the M23 cycle structures — for instance, P − 1 has an
irreducible factor of degree 19. In retrospect we know there is no M23 polynomial
over Z/13Z, because F has no prime of degree 1 above 13 (even though 13 does
split in the quadratic subfield Q(

√
−23)).

To bring larger p within reach, we applied the following refinement. For j ≥ 0
and any Q ∈ C[x], denote by cj(Q) the xj coefficient of Q; for example ci(Pi) = 1
for each i = 2, 3, 4, 7, 8. For any monic P2, P3, P4, let R be the remainder when
P23 is divided by P 2

8 , where P23 and P8 are defined by (1) and (2). Then R
has degree deg P 2

8 − 1 = 15 generically, but must vanish at the desired solution.
We noticed that if we hold all but c0(P4) and c1(P4) fixed then c15(R) and
c14(R) are polynomials of degree only 2 in c0(P4) and of degree 3 in c1(P4);
in fact, c15(R) and c14(R) have degrees 2 and 3 respectively in (c0(P4), c1(P4))
together. We could have solved the simultaneous equations c15(R) = c14(R) = 0
in (c0(P4), c1(P4)), reducing the search from O(p7) to O(p5) but with quite
a large O-constant. Instead we opted for the following strategy, which is still
O(p7) but with a much smaller constant. Having fixed all but c0(P4) and c1(P4),
compute R at the 12 sample points with c0(P4) = 0, 1, 2 and c1(P4) = 0, 1, 2, 3,
and then use the fact that both c15(R) and c14(R) are quadratic in c0(P4) and
cubic in c1(P4) to recursively evaluate them at all other choices of c0(P4) and
c1(P4). If both vanish, test whether deg(R) = 0. This way, instead of computing
p2 polynomial remainders we need on average only 13: twelve sample points, and
one more for the expected number of solutions of c15(R) = c14(R) = 0.

We implemented this search in gp (which we used also for the earlier O(p7)
method), and finally succeeded at p = 29. We assumed that c2(P3) = 0, and that
c0(P3) = c1(P3) if both c0(P3) and c0(P1) are nonzero; every choice of P2, P3, P4

with c0(P3)c1(P3) 6= 0 is equivalent to exactly one satisfying these conditions.
(One can also make a unique choice if c0(P3) = 0 or c1(P3) = 0, but here this
was not necessary.) The search took 46 CPU hours, compressed to less than five
hours by running on 10 heads in parallel, which is an order of magnitude smaller
than the time to compute some 297 polynomial remainders. The resulting list of
solutions contained two for which every P (x)− t0 has a factorization consistent
with GP

∼= M23. One of these was

P2 = x2 − x− 3, P3 = x3 − 3x− 3, P4 = x4 − 3x3 − 11x2 + 13x + 7 (4)
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with τ = 5. Lifting to Z/p128Z (while retaining the conditions c2(P3) = 0 and
c0(P3) = c1(P3)) gave more than enough precision to identify all the coefficients
as elements of the quartic field F = Q[g]/(g4 + g3 + 9g2 − 10g + 8).

These elements of F are quite complicated because of the normalization
c0(P3) = c1(P3). Once we have found one choice of P2, P3, P4 ∈ F [x] that works,
we can find equivalent but simpler ones by removing this normalization and the
spurious bad reduction that it entails. One reasonably simple choice we found
(dropping also the condition that the Pi be monic) is as follows:

P2 = (8g3 + 16g2 − 20g + 20)x2 − (7g3 + 17g2 − 7g + 76)x
− 13g3 + 25g2 − 107g + 596; (5)

P3 = 8(31g3 + 405g2 − 459g + 333)x3 + (941g3 + 1303g2 − 1853g + 1772)x
+ 85g3 − 385g2 + 395g − 220; (6)

P4 = 32(4g3 − 69g2 + 74g − 49)x4 + 32(21g3 + 53g2 − 68g + 58)x3

− 8(97g3 + 95g2 − 145g + 148)x2 + 8(41g3 − 89g2 − g + 140)x
− 123g3 + 391g2 − 93g + 3228. (7)

With this choice,

τ =
238317

233
(47323g3 − 1084897g2 + 7751g − 711002), (8)

the last factor having norm 227323510.

3 Proof of Gal(P (x) − t) ∼= M23

We chose the degree-1 prime λ of F above the rational prime l = 108 + 7 at
which g ≡ 36436770 mod l. We reduced P mod λ to obtain a polynomial P with
coefficients in Fλ = Z/lZ, and factored P − t0 for each of the l − 2 values of
t0 mod l for which P − t0 has no repeated roots. In each case the degrees of the
irreducible factors, and thus the cycle structure of the action of Frobenius at
t = t0, agreed with the cycle structure of one or two of the conjugacy classes
of M23. Table 1 lists, for each class or pair of classes c ⊂ M23: its ATLAS
label [C&, p.71], the cycle structure, the fraction |c|/|M23|, the integer nearest
to (|c|/|M23|)(l − 2) (which is the expected number of occurrences of this cycle
structure), the actual number of times it appeared, and the difference between
the actual and expected counts.

1A 2A 3A 4A 5A 6A 7A, 7B

123 1728 1536 132244 1354 1 223262 1273

1/|M23| 1/2688 1/180 1/32 1/15 1/12 2/14
10 37202 555556 3125000 6666667 8333334 14285715
9 37235 556547 3123317 6665816 8329354 14290600
−1 33 991 −1683 −851 −3980 4885

Table 1
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8A 11A, 11B 14A, 14B 15A, 15B 23A, 23B

1 2 4 82 1 112 2 7 14 3 5 15 23
1/8 2/11 2/14 2/15 2/23

12500001 18181819 14285715 13333334 8695653
12493007 18185450 14289505 13331689 8697476
−6994 3631 3790 −1645 1823

Table 1, continued

The agreement is quite close: the discrepancy never exceeds twice the square
root of the expected value.

In particular, because each of the M23 cycle structures occurs (and GP ⊆ A23

because discx(P (x) − t) is a square) we know that GP is a transitive sub-
group of A23 containing elements of order p for each of the prime factors p =
2, 3, 5, 7, 11, 23 of |M23| = 27 32 5 · 7 · 11 · 23 = 10200960. This shows that GP is
either M23 or A23.

One could try various strategies for deducing GP � A23 from the counts in
Table 1. The following approach was the one that worked most easily. We shall
take C0 and C1 to be the projective t- and x-lines in the following general set-up.

Suppose C1/C0 is a degree-n covering of curves over some finite field Fλ.
Let C̃ be the Galois closure, with Galois group G ⊆ Sn. Assume that G is
k-transitive. Let Gk be the stabilizer of a k-element set, so the action of Gk on
that set gives a surjective homomorphism Gk→Sk whose kernel is the k-point
stabilizer; write Ck = C̃/Gk, so Ck/C0 is a cover of degree

(
n
k

)
. If the cover C1/C0

is given by a polynomial Q of degree n, then with finitely many exceptions a
point of Ck corresponds to a degree-k factor of a specialization of Q.

Let Nk be the number of Fλ-rational points of Ck. For an unramified Fλ-
rational point t0 on C0, let Nk(t0) be the number of Fλ-rational points of Ck

lying over t0. We next express Nk(t0) in terms of the Galois structure of the
preimage of t0 in C1. Let φ be the Frobenius permutation of the preimage of t0
in C1.

Lemma. Let c1, c2, . . . , cm (with
∑m

i=1 cm = n) be the cycle lengths of φ.
Then Nk(t0) is the Xk coefficient of the polynomial

∏m
i=1(1 + Xci).

Proof : A k-element subset of the preimage of t0 yields a rational point of Ck

if and only if it is taken to itself by φ; equivalently, if and only if it is the union of
orbits of φ. Since these orbits have sizes ci, the expansion of

∏m
i=1(1+Xci) yields

a sum of 2m monomials, with each monomial Xk corresponding to a k-element
subset, Q.E.D.

We now take C0 and C1 to be the t- and x-lines. Then G = GP by Beckmann’s
criterion [Be] (since l is too large to be a factor of |G| even if G = A23). Using
the entries in Table 1, we find for each k = 1, 2, . . . , 22 the sum of

∏m
i=1(1+Xci)

over the l − 2 unramified points t0. The sum is invariant under k ↔ n − k, so
we need only tabulate up to k = 11. In each case we write

∑
t0

Nk(t0) = Al−B
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with A ∈ Z minimizing |B|:

k 1 2 3 4 5 6
A 1 1 1 1 2 3
B 10 6592 19784 2326 10892 60120

k 7 8 9 10 11
A 4 5 5 5 7
B 109978 243430 487620 742744 883854

Table 2

In each case Al−B is a lower bound for Nk, with the difference coming from
the counts above the three ramified points. If G acts k-transitively then Ck is
an irreducible curve, and then the Weil bound gives |Nk − (l + 1)| ≤ 2l1/2g(Ck).
Table 2 suggests that this might happen for k ≤ 4 but not for k = 5 (and
indeed C5 has two components, one for each of the orbits of the action of M23

on 5-element subsets). We next prove that G is not 5-transitive by bounding
g(C5). If GP = A23 then Ck has genus at most

1 +
1
2

(
1− 1

2
− 1

4
− 1

23

)
[Ck : C0] = 1 +

1
2

19
92

(
23
k

)
by the Riemann-Hurwitz formula. For k = 5 this gives 27805/8, so g(C5) < 3476.
Therefore

|N5 − (l + 1)| < 2l1/2 · 3476 < 7 · 107. (9)

But the k = 5 column of Table 2 gives

N5 − (l + 1) ≥ l − 10893 > 9 · 107, (10)

even without including the preimages of the ramified points. The conflict between
(9) and (10) refutes the hypothesis that GP = A23 and completes the proof that
GP

∼= M23.
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