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Abstract. Number fields and global function fields have many similar prop-
erties. Both have many applications to cryptography and coding theory, and

the main computational problems for number fields, such as computing the

ring of integers and computing the class group and the unit group, have ana-
logues over function fields. The complexity of the number field problems has

been studied extensively and these problems have been the source of some

exponential speedups by quantum computation. In this paper we study the
analogous problems in function fields. We show that there are efficient quan-

tum algorithms for computing the unit group, the class group and for solving

the principal ideal problem in function fields of arbitrary degree. We show
that compact representations exist, which allows us to show that the principal

ideal problem is in NP. Unlike the number field case, we are also able to show

that these compact representations can be computed efficiently.

1. Introduction

Algebraic number theory is concerned with studying finite extensions L of Q
which are called number fields, and investigating properties of the ring of algebraic
integers OL, which is the integral closure of Z in L. Similarly, we can consider finite
algebraic extensions K of Fq(t), where Fq(t) is the quotient field of the polynomial
ring Fq[t]. These fields are called function fields over finite fields or global function
fields. It was noticed early on that the integers have many properties in common
with Fq[t], and similarly, that number fields and global function fields have many
similar properties. Often, a problem that is posed for number fields admits an anal-
ogous problem for global function fields, and the other way around. For example,
the Riemann hypothesis for the classical Riemann zeta function ζ(s) is still open,
while the analogue of this problem for function fields was solved by Weil.

The main computational problems for number fields include computing the ring
of integers, the class group, the unit group and solving the principal ideal problem.
These problems have been studied extensively and there are a large number of
classical algorithms for computing with number fields. Applications include the
Number Field Sieve, which is the fastest classical algorithm for factoring [LL93],
and the Buchmann-Williams key-exchange system, which is based on the hardness
of the principal ideal problem [BW89]. The recent push to make lattice-based
cryptography more efficient has been using special lattices that come from number
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fields [PR07, LPR10]. Error correcting codes have also been constructed using
them [Gur03]. These computational problems for number fields are also a source
of many of the known exponential speedups by quantum algorithms. There are
efficient quantum algorithms for computing the unit group, class group, and solving
the principal ideal problem in constant degree number fields [Hal05, SV05]. Some
field extensions have also been computed using quantum algorithms [EH10]. This
paper studies these computational problems over function fields.

Function fields have many applications in cryptography and coding theory. There
are many cryptographic applications that use elliptic curves or Jacobians of curves
of small genus defined over finite fields [CFA+06]. These are based on the as-
sumption that the discrete log problem is difficult to solve in the underlying group
associated with these curves. Another way to state this is that the discrete log
problem is assumed to be hard in the divisor class group of the function field of the
curve. Error correcting codes have also been based on function fields [Gop88]. In a
recent paper, Guruswami [Gur09] constructed codes where everything was efficient
except computing the basis for the Riemann-Roch space of a certain divisor.

For number fields the problems listed above have been studied extensively and
they appear to be computationally hard. For example, computing the ring of
integers requires square-free factorization of integers. The best known classical al-
gorithms for computing the unit group, the class group and solving the principal
ideal problem are exponentially slower than factoring. On the other hand, com-
puting the class group and unit group is in NP∩coNP for arbitrary degree number
fields [Thi95], while the quantum algorithms are only efficient for constant degree
number fields. One apparent obstacle is that the only way known to compute with
ideals of number fields requires a shortest vector problem in ideal lattices to be
solved during computations in order to keep representation sizes small.

In this paper we examine these computational problems over function fields of
arbitrary degree. For function fields, computing the ring of integers is computa-
tionally equivalent to factoring polynomials over a finite field, which can be done
in (classical) polynomial time, so one might hope that much more can be done.
In fact, even the analogue of the shortest vector problem has an efficient classical
algorithm. But problems such as computing the divisor class group should be hard
classically since they include as a special case the discrete log problem on an elliptic
curve (a curve of genus one whose function field has degree two). For certain special
classes of function fields (where the degree is two and the genus is large) there are
subexponential algorithms for computing the class group, which make them less
secure for cryptographic purposes: in [ADH94] the authors give a subexponential
algorithm for computing the class group of a hyperelliptic curve of large genus, and
[MST99] gives a subexponential probabilistic algorithm for computing the class
group of a real quadratic congruence function field of large genus. In [Sch00] it is
shown that various decision problems for quadratic congruence function fields of
large genus are in NP∩coNP. There are also some exponential algorithms known
for more general function fields. Another important computational problem that
only exists in the function field case is that of computing Riemann-Roch spaces.

In this paper we show that the principal ideal problem over function fields of ar-
bitrary degree is in NP. To do this we show that compact multiplicative representa-
tions exist for elements in function fields. This answers a question of Smart [Sma98]
and generalizes [Sch96], which showed the existence of compact representations for
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real quadratic congruence function fields (which have degree 2). Our work adapts
work of Thiel who used compact representations in number fields and showed that
the principal ideal problem, computing the class number, and computing compact
representations of units are in NP∩coNP for number fields [Thi95]. Unlike the
number field case, we also show that compact representations can be computed in
(classical) polynomial-time for arbitrary degree function fields. The standard repre-
sentation of an element, e.g. a unit, may take exponentially many bits to represent.
Compact representations give a certain factored form of the element which only
requires polynomial representation size.

Given this setup, we also show that there are efficient quantum algorithms for
computing the unit group, class group, and solving the principal ideal problem in
arbitrary degree function fields. This is in contrast to the number field case where
currently only the constant degree case has quantum algorithms. These problems
are solved by setting up abelian hidden subgroup problems.

One open question related to our work is whether the problems treated by Thiel
are also in NP∩coNP for function fields. Compact representations played a key role
in the number field case. One issue in the function field case is that it is not known
how to deterministically compute generators for the class group efficiently.

Another open question is finding an efficient quantum algorithm for computing
class field towers of function fields. Certain towers of function fields called Hilbert
class field towers have applications to coding theory. When the tower is infinite one
can construct asymptotically good sequences of codes [GS95, p. 212] from the fields
in such towers. Infinite towers are known to exist [Sch92], but for applications of
such codes in practice, an explicit construction of the fields in the tower is required.
Class groups of certain subrings of the function fields in the tower appear as the
Galois groups of the field extensions in the tower. Therefore, computing the class
groups (and compact representations), as we do in this paper, is required to compute
such towers, as it is in the number field case [EH10].

In order to set up our algorithms we need efficient algorithms for doing computa-
tions in the infrastructure of a function field. Fontein recently provided these and we
prove that his algorithms in [Fon09, Fon11] are polynomial-time. To compute with
the infrastructure it is necessary to efficiently compute the Riemann-Roch space
of a divisor D. For this we use Hess’s algorithm [Hes02] which is a relatively sim-
ple, self-contained algorithm. In the appendix we include a complexity analysis of
his algorithm. For other references that analyze Hess’s algorithm see also [Fon09]
(under some additional assumptions) and [Die08]. We also give an algorithm to
compute the infinite ideal B from the input divisor D and analyze its complexity.
The algorithms above have been implemented, for example in MAGMA. The focus
of this paper, however, is on the complexity analysis. Analyzing the Riemann-Roch
algorithm addresses the missing piece for the codes in [Gur09] to be efficient.

One technical challenge in our work is adapting the algorithm to compute com-
pact representations from the number field case [Thi95]. This requires showing
that we can compute them without searching for minima in a region of exponential
size, which is necessary in the number field case. We also analyze the Riemann-
Roch space computation. This involves showing that we can efficiently compute
the prime ideals of O∞ which we use to compute the infinite ideal from the given
representation of the divisor D. To do this we factor the ideal (1/x)O∞ inside O∞
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by computing the radical of (1/x)O∞ and analyze its complexity. This generalizes
the ideal factorization algorithm for number fields [EH10].

There have been other approaches to study some of these problems over function
fields. In [HI94] Huang and Ierardi gave a construction of the Riemann-Roch space
that is polynomial time, assuming that all the singular points of the plane curve
defining the function field are ordinary and defined over the base field. For another
construction that used the Brill-Noether method see Volcheck [Vol94]. Recently,
the authors learned that the (unpublished) Habilitation thesis by Diem [Die08] also
studied Hess’s algorithm. Kedlaya [Ked06] showed how to compute zeta functions
of curves with a quantum algorithm. Part of this required computing the size of the
divisor class group Pic0(K), and he showed how to compute in the group efficiently.
Our work, by contrast, requires the different representation using the infrastructure
of Fontein [Fon11] in order to compute in the unit group and the class group, rather
than only in the divisor class group Pic0(K). The infrastructure also allows us to
show the existence of compact representations.

Infrastructures have also been studied in [SW, FW], which give quantum al-
gorithms for computing one-dimensional infrastructures and the period lattice of
infrastructures of fixed dimension.

2. Background on algebraic function fields and divisors

Algebraic function fields over finite fields Let k be a finite field with
q = pm elements for some prime p > 0. An algebraic function field K/k is an
extension field K ⊇ k such that K is a finite algebraic extension of k(x) for some
x ∈ K which is transcendental over K. After replacing k with a finite extension
we may assume that k is the constant field of K, i.e. that k is algebraically closed
in K. By [Sti08, p. 144] such an algebraic function field is separably generated, i.e.
there exist x, y ∈ K such that K = k(x, y). The function field K is then specified
by a finite field k, an indeterminate x and the minimal polynomial f ∈ k(x)[T ] of y
over k(x). Throughout the paper, we assume that K is given to us as K = k(x, y)
with x, y as above and let d := [K : k(x)].

A valuation ring of the function field K/k is a ring Õ ⊆ K, such that k $ Õ $ K,

and for every z ∈ K we have z ∈ Õ or z−1 ∈ Õ. A valuation ring is a local ring,
i.e. it has a unique maximal ideal [Sti08, p. 2]. A place of a function field K/k is
defined to be the maximal ideal of some valuation ring of K/k. To each place p of
K, there is an associated discrete valuation vp : K∗ → Z, and there is a one-to-one
correspondence between places of K/k and discrete valuations of K/k [Sti08, pp.
5f.]. Denote by PK the set of all places of K. If p is a place of K with corresponding
valuation ring Op, we define the degree of p to be the degree of the field extension
of Op/p over k, deg p = [Op/p : k]. If F/K is an extension of algebraic function
fields we say that a place P ∈ PF lies above a place p ∈ PK if p ⊆ P.

For the rational function field k(x), the places are completely understood: the
places of k(x) correspond to the irreducible polynomials of k[x], together with a
“place at infinity”, ∞.

Let v∞ be the discrete valuation corresponding to the infinite place ∞ of the
rational function field k(x). Then v∞ is defined via v∞(f/g) = deg g − deg f , for
f, g ∈ k[x]. Let o∞ := {a ∈ k(x) : v∞(a) ≥ 0}. Then o∞ is the valuation ring
associated to v∞ and the unique maximal ideal of o∞ is generated by 1/x. Let S
denote the set of places of K above ∞. Let O∞ := {a ∈ K : vp(a) ≥ 0 for all p ∈



COMPUTING THE UNIT GROUP, CLASS GROUP AND COMPACT REPRESENTATIONS 5

S}. Then O∞ is the integral closure of o∞ in K, and O∞ is a free o∞-module of
rank d. The ring O∞ is a principal ideal domain whose prime ideals correspond to
the elements in S.

Divisors on algebraic function fields A divisor on K is a formal sum

D =
∑

p∈PK

npp,

in which np = 0 for all but finitely many p. Let Div(K) denote the group of
divisors on K. For a divisor D which is given as D =

∑
p∈PK

npp, we define the

degree of D to be degD =
∑

p∈PK
np deg p. The divisors of degree zero form a

subgroup of Div(K), denoted by Div0(K). For f ∈ K∗, the divisor div(f) of f is
defined to be div(f) =

∑
p∈PK

vp(f)p. The set of all divisors of the form div(f)

form the group Prin(K) of principal divisors on K. Note that if D is a principal
divisor then degD = 0. We define the divisor class group Pic0(K) to be the
quotient of the group of divisors of degree zero by the group of principal divisors,
Pic0(K) = Div0(K)/Prin(K). It is a finite group.

A divisor D =
∑

p npp is effective if np ≥ 0 for all p; we write D1 ≥ D2 to mean
that D1−D2 is effective. Every divisor D can be written uniquely as D = D+−D−
with D+, D− effective divisors with disjoint support. We define the height ht(D)
of a divisor D as ht(D) := max{deg(D+),deg(D−)}. For a divisor D ∈ Div(K) we
define the Riemann-Roch space of D to be the set

L(D) := {f ∈ K : div(f) +D ≥ 0} ∪ {0}.

The set L(D) is a vector space over k, and we denote by `(D) its dimension.

Fractional ideals Let O be the integral closure of k[x] in K. Then O is a free
k[x]-module of rank d. By [Chi89], Theorem 1, a k[x]-basis for O can be computed
in time polynomial in d and log q. If S = {p1, . . . , pn+1} is the set of places above
the infinite place ∞ of k(x), then we also have O = {a ∈ K : vp(a) ≥ 0 ∀p /∈ S}.
Note that for any finite, non-empty set S of places of K one can find an x ∈ K
such that S is the set of infinite places above x. Throughout the paper we assume
that deg pn+1 = 1. This can always be achieved by passing to a finite extension of
the constant field k.

A fractional ideal of O is a finitely generated O-submodule of K. Since O is a
Dedekind domain, the non-zero fractional ideals Id(O) of O form a (free) abelian
group under multiplication. There is a natural homomorphism φ : Div(K)→ Id(O)
defined by

∑
npp 7→

∏
p/∈S(p ∩ O)−np . This map has a right inverse, namely

div : Id(O) → Div(K) which sends a fractional ideal B =
∏

p/∈S(p ∩ O)np to

div(B) := −
∑

p/∈S npp. Hence each divisor can be represented by a pair (A,
∑
tipi)

where A is a fractional ideal of O and {p1, . . . , pn+1} are the places in S, i.e. the
primes above ∞. This is how we will represent divisors throughout the paper.

The class group Cl(O) of O is defined to be the group of fractional ideals of O
modulo the principal fractional ideals of O. The group Cl(O) is a finite abelian
group, and the map φ : Div(K)→ Id(O) extends to a homomorphism

φ : Pic0(K)→ Cl(O),
[∑

npp
]
7→

∏
p/∈S

(p ∩ O)−np

 .
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When deg pn+1 = 1 this map fits into an exact sequence

0 −→ Ker −→ Pic0(K)
φ−→ Cl(O) −→ 1.

Here Ker is the subgroup of Pic0(K) which is generated by all degree zero divisors
with support in S, so the first map Ker→ Pic0(K) is just the inclusion map. Since
k is a finite field, Ker is finite by [Ros02, p. 243, Proposition 14.2].

3. Computing efficiently in the unit group

In this section we show how to compute efficiently classically in the unit group
of O. Recall that S = {p1, . . . , pn+1} are the places of K above ∞ and that
O = {a ∈ K : vp(a) ≥ 0 ∀p /∈ S}. Also, we assume that pn+1 is a place of degree 1.

To compute in the unit group consider the map val∞ : K∗ → Zn, given by
val∞(a) = (−vp1

(a), . . . ,−vpn
(a)). The image of O∗ under val∞ is a lattice Λ in

Zn. By an analogue of Dirichlet’s Unit Theorem for function fields, the unit rank,
i.e. the rank of Λ, equals n = #S − 1. Since units can have exponentially many
bits in the standard representation, computing the unit group means to compute a
basis of that lattice, or to compute compact representations for a fundamental set of
units as in Definition 4.3. In Lemma 4.5 we show that the compact representation
of an element can be computed from its valuation vector, so it follows that these
two problems are polynomial time equivalent in function fields.

Fontein [Fon11] showed that it is possible to compute in a finite abelian group

which he denotes Repf∗(O) and which is isomorphic to Zn/Λ. We discuss his
approach in the next section. We then show that these computations are efficient.
From the group structure of Zn/Λ we can obtain the basis for the lattice Λ.

3.1. Minima and reduced ideals in function fields. We now give the defi-
nitions of minima and reduced ideals and define Repf∗(O) (see Fon11). In the
following, by an ideal of O we will always mean a fractional ideal of O.

For each of the places p1, . . . , pn+1 ∈ S and their associated discrete valuations
vp1

, . . . , vpn+1
there is a corresponding absolute value |α|i which is defined as |α|i :=

q−vpi
(α) deg pi , 1 ≤ i ≤ n+ 1. For an ideal A and integers t1, . . . , tn+1 ∈ Z define

B(A, (t1, . . . , tn+1)) := {α ∈ A : |α|i ≤ qti deg pi , for all i, 1 ≤ i ≤ n+ 1}.

This is a Riemann-Roch space, B(A, (t1, . . . , tn+1)) = L
(

div(A) +
∑n+1
i=1 tipi

)
.

For an ideal A and α ∈ K∗, let B(A,α) := B(A, (−vp1(α), . . . ,−vpn+1(α))).

Definition 3.1. (Minima and reduced ideals)

(1) Let A be an ideal of O and µ ∈ A non-zero. The element µ is a minimum
of A if for every α ∈ B(A,µ) either α = 0 or |α|i = |µ|i for 1 ≤ i ≤ n+ 1.

(2) An ideal A is reduced if 1 is a minimum of A.

Denote by Red(A) the set of reduced ideals of O which are in the same ideal
class as A in Cl(O). There is a close connection between the set of minima of an
ideal A and the set of reduced ideals equivalent to A. First, if µ is a minimum of
A and ε ∈ O∗, then εµ is also a minimum of A. This action of O∗ on the set of
minima gives rise to a bijection

{minima of A}/O∗ → Red(A), µO∗ 7→ 1

µ
A.



COMPUTING THE UNIT GROUP, CLASS GROUP AND COMPACT REPRESENTATIONS 7

So every element of Red(A) is of the form 1
µA with µ a minimum of A. Next

define a map from the set of reduced ideals equivalent to A to Zn/Λ by defining

d : Red(A)→ Zn/Λ,
1

µ
A 7→ val∞(µ) + Λ.

This map is well defined since deg pn+1 = 1 (see [Fon11, Corollary 5.3]) and injective

[Fon11, Proposition 5.5]. Now we can define the group Repf∗(O) that is isomorphic
to Zn/Λ.

Definition 3.2. Let A be an ideal of O. An f∗-representation is a tuple

(I, (t1, . . . , tn)) ∈ Red(A)× Zn

such that B(I, (t1, . . . , tn, 0)) = k. Denote the set of all f∗-representations in

Red(A)× Zn by Repf∗(A).

When A and B are two ideals that are in the same ideal class in Cl(O), then clearly

Repf∗(A) = Repf∗(B). Let

ΦA : Repf∗(A)→ Zn/Λ
be defined by

ΦA

(
1

µ
A, t

)
= val∞(µ) + t+ Λ.

Here t = (t1, . . . , tn) ∈ Zn. In [Fon11, Theorem 6.8] it is proved that this map is a

bijection. In particular, Repf∗(O) is isomorphic to Zn/Λ. So to each element (I, t)

of Repf∗(A), there is an associated point in Zn/Λ, and if I = 1
µA, we say that (I, t)

represents val∞(µ) + t+ Λ ∈ Zn/Λ. Let [A] be the set of ideals equivalent to A in
the class group. It is possible to extend ΦA to a well defined (no longer injective)
map ΦA : [A]× Zn → Zn/Λ by letting ΦA

(
1
αA, f

)
= val∞(α) + f + Λ.

In [Fon11, Proposition 8.1] the following is shown:

Proposition 3.3. Let (A, (t1, . . . , tn)) ∈ Repf∗(B) for some ideal B. Then div(A) ≥
0 and ti ≥ 0 for 1 ≤ i ≤ n. Moreover,

0 ≤ deg div(A) +

n∑
i=1

ti deg pi ≤ g.

Here g denotes the genus of the function field.

We want to compute a basis for the n-dimensional lattice Λ. Since Zn/Λ is

isomorphic to Repf∗(O), it is enough to obtain generators and relations for the

finite group Repf∗(O).

3.2. Reduction and obtaining generators for Repf∗(O).

Let Φ := ΦO : Repf∗(O) → Zn/Λ and its extension to [O] × Zn → Zn/Λ be the
maps defined above. The group Zn/Λ is generated by the standard basis vectors ei
(1 ≤ i ≤ n), so in order to find generators for Repf∗(O) we need to find elements
( 1
µi
O, fi) such that Φ( 1

µi
O, fi) = ei + Λ. To obtain such elements we consider the

elements (O, ei), 1 ≤ i ≤ n. These elements are not in Repf∗(O), but they do have

the property that Φ(O, ei) = ei + Λ. So to obtain the right elements in Repf∗(O)

we reduce the elements (O, ei) to elements ( 1
µO, fi) ∈ Repf∗(O) with Algorithm 1

and use the fact that under Φ, the element (O, ei) and its reduction have the same
image (see Remark 3.5 below).
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The general reduction algorithm that we are describing next works for Repf∗(I)
for any ideal I of O.

Algorithm 1. Reduce
Input: Ideal A, vector t = (t1, . . . , tn) ∈ Zn.
Output: Minimum µ of A, reduced ideal 1

µA, vector t − val∞(µ) where ( 1
µA, t −

val∞(µ)) ∈ Repf∗(A).

(1) Find the minimum ` in [−deg div(A) −
∑n
i=1 ti deg pi, g − deg div(A) −∑n

i=1 ti deg pi] such that dimB(A, (t1, . . . , tn, `)) > 0.
(2) Set u1, . . . , un = 0. For each 1 ≤ i ≤ n, increase ui to find the largest value

ui with dimB(A, (t1 − u1, . . . , tn − un, `)) > 0.
(3) Let µ be a nonzero element of B(A, (t1 − u1, . . . , tn − un, `)). Output

(µ, 1
µA, (u1, . . . , un)).

Proposition 3.4. Algorithm 1 is correct and returns (µ, 1
µA, (u1, . . . , un)) in time

polynomial in d, log q, ht(div(A)) and ||t||∞.

Proof. Let ` be minimal such that dimB(A, (t1, . . . , tn, `)) > 0. By [Fon09, Theo-
rem 4.4.3], ` ∈ [−deg div(A)−

∑n
i=1 ti deg pi, g−deg div(A)−

∑n
i=1 ti deg pi], so the

first step of the algorithm requires at most g Riemann-Roch computations. Each
of these computations B(A, (t1, . . . , tn, `)) = L(div(A) +

∑n
i=1 ti · pi + ` · pn+1) can

be performed in time polynomial in d, log q, ht(div(A)) and ||t||∞ by Theorem B.7
because ` is at most a polynomial in g, div(A) and ||t||∞, and g is a polynomial in
d.

The second step computes the valuation that µ has in the third step. For coor-
dinate i, there are at most ti Riemann-Roch computations, so in total there are at
most nmax |ti|, which is polynomial in d and ||t||∞ since n ≤ d. The correctness of
steps 2 and 3 follows from the correctness proof of Algorithm 5.4.2 in [Fon09]. �

Remark 3.5. Let A be an ideal of O, and let t = (t1, . . . , tn) ∈ Zn. Then
(A, (t1, . . . , tn)) represents the same point in Zn/Λ as its reduction ( 1

µA, t−val∞(µ))

∈ Repf∗(A), since ΦA(A, t) = t+ Λ = val∞(µ) + (t− val∞(µ)) + Λ = ΦA( 1
µA, t−

val∞(µ)).

Denote by Reduce(A, e) the element of Repf∗(A) that is computed by Algo-
rithm 1. By the above discussion we have ΦA(Reduce(A, e)) = e+Λ, and if e′ = e+v

with v ∈ Λ, then ΦA(Reduce(A, e′)) = e′+Λ = e+Λ. Since ΦA : Repf∗(A)→ Zn/Λ
is injective this implies that Reduce(A, e) = Reduce(A, e′) whenever e− e′ ∈ Λ.

Definition 3.6. When α ∈ K, the norm of α can be expressed uniquely as N(α) =
f/h, with f, h ∈ k[x], coprime, h monic. We define dg(N(α)) to be dg(N(α)) =
max{deg f, deg h}.

Remark 3.7. When A = αO then being polynomial in ht(div(A)) is the same as
being polynomial in dgN(α) (see [Fon11, p. 28]).

3.3. Composition and computing inverses in Repf∗(O) and bounding the
representation size of elements. By [Fon11, Proposition 8.2], elements in

Repf∗(O) can be represented by O(d2g log q) bits. Here g denotes the genus of
the function field, which is of size polynomial in d.

Composition of two elements (A, f), (A′, f ′) of Repf∗(O) is done by multiplying
the ideals, adding the two vectors, and then applying Algorithm 1 to (AA′, f + f ′).
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To compute the inverse of (A, f1, . . . , fn), compute the inverse A−1, find ` min-
imal such that dimB(A−1, (−f1, . . . ,−fn, `)) > 0 and then reduce using Algo-
rithm 1 [Fon09, Proposition 4.3.4]. The ideal arithmetic in O is polynomial in log q,
d and ht(div(A)),ht(div(A′)) [Die08, Proposition 2.66, and Proposition 2.69(b)]

and ht(div(A)) is of size polynomial in d and log q when (A, f) ∈ Repf∗(O). Hence
Proposition 3.4 implies that composition of two elements and computing inverses
in Repf∗(O) are both polynomial in log q and d.

4. Compact representations in global function fields

In this section we show how to efficiently compute compact representations of
elements α ∈ K classically. This allows us to show that the principal ideal problem
is in NP and to compute compact representations of units. We adapt the definitions
and approach for number fields given in [Thi95, page 82] to the function field case.
The sizes are adapted to match the parameters that are appropriate for number
fields and that come from our algorithms. In the function field case we show that
exponential search for minima is no longer necessary.

Definition 4.1. For α ∈ K and s ∈ Qn we say that α is close to s if

|| val∞(α)− s||1 ≤ n+ g.

Definition 4.2. A multiplicative representation of an element α ∈ K is a pair

M = ((β1, . . . , β`), (e1, . . . , e`)),

where βi ∈ K, ei ∈ Z, ` ∈ N, and such that α =
∏`
i=1 β

ei
i .

A binary multiplicative representation (BMR) of an element α ∈ K is a multi-
plicative representation where ((β1, . . . , βi), (e1, . . . , ei)) is a minimum of O for all
1 ≤ i ≤ ` and ei = 2`−i for all 1 ≤ i ≤ `. Since the exponents are determined, a
BMR can be represented as (β1, . . . , βk).

Definition 4.3. A compact representation of α ∈ K is a pair B = (γ, (β1, . . . , β`))
where γ ∈ K such that α = γ

β where β is a minimum of O represented by the BMR

(β1, . . . , β`), and
` ≤ log(|| val∞(α)||∞ + g),

size(γ) ≤ poly(log q, d, dgN(α)), and

size(βi) ≤ poly(log q, d).

Here size denotes the number of bits to represent the element.

The bound on ` is chosen to handle the length of the generator after reducing
αO, which is val∞(γ/α). The factor γ comes from ideal reduction, so γ has size
polynomial in d, log q, and dgN(α).

Claim 4.4. Given a BMR (β1, . . . , β`) of a minimum β of O, the ideal 1
βO can be

efficiently computed.

Proof. At the first step, 1
β1
O, which is a reduced ideal by the definition of BMR, can

be efficiently computed. In general, let β′i =
∏i
j=1 β

2i−j

j . By the definition of BMR,

β′i is a minimum of O for all i. Given the reduced ideal 1
β′i
O, the reduced ideal

1
β′i+1
O = 1

βi+1(β′i)
2O can be efficiently computed by squaring 1

β′i
O and multiplying

by 1/βi+1. �
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Algorithm 2. Compact Representation
Input: val∞(α), A = αO.
Output: A compact representation of α.

(1) Call Reduce(A, 0) to get a reduced ideal 1
γA and element γ ∈ K.

(2) Let (β1, . . . , β`)=Close(O, val∞( γα )).
(3) Output (γ, (β1, . . . , β`)).

Lemma 4.5. Compact Representation (Algorithm 2) returns a compact represen-
tation of α ∈ K in time polynomial in log q, d,dgN(α) and log(|| val∞(α)||∞).

Proof. By Proposition 3.4 the element γ in Step 1 can be computed with Algo-
rithm 1 in time at most polynomial in d, log q, and dgN(α) by Proposition 3.4
and Remark 3.7. Therefore the size is bounded by the same amount. Also γ is
a minimum of A = αO, so β := γ/α is a minimum of O. By Corollary 4.9,
Close(O, val∞( γα )) returns the BMR (β1, . . . , β`) of the minimum β = γ/α of O
(not just the BMR of a minimum close to γ/α). Hence the algorithm computes the
compact representation (γ, (β1, . . . , β`)) of α = γ/β. In Step 2 of the algorithm,
Algorithm Close is called, which executes ` = log(|| val∞(γ/α)||∞) + 1 calls of Al-
gorithm Double. Each call of Double calls Reduce once on (B, bue) where B is the
square of a reduced ideal and hence small, and ||bue||1 ≤ 5n/2 + 2g, where n/2 is
from rounding, and we double ||t− val∞(µ)||1 ≤ n+ g to get u. By Proposition 3.4
this is polynomial time. By the bound on `, Algorithm 1 is polynomial in time d,
log q, dgN(α) and log(|| val∞(α)||∞). �

Algorithm 3. Close
Input: reduced ideal A, vector s ∈ Qn
Output: BMR (β1, . . . , β`) of a minimum β ∈ A which is close to s where ` =
log(||s||∞) + 1

(1) Let β0 = 1, ` = log(||s||∞) + 1 and t = s/2`.
(2) For k from 1 to `

(a) (β1, . . . , βk) := Double(A, t, (β0, β1, . . . , βk−1))
(b) t := 2t

(3) Return (β1, . . . , β`).

Proposition 4.6. Close (Algorithm 3) is correct.

Proof. This follows from the fact that in Step 1 of the algorithm β0 = 1 is a
minimum of A which is close to t = s/2` and Proposition 4.7. �

Algorithm 4. Double
Input: reduced ideal A, t ∈ Qn, BMR (β1, . . . , βk−1) of a minimum β of A which
is close to t.
Output: BMR (β1, . . . , βk−1, βk) of a minimum of A which is close to 2t with βk a
minimum of 1

β2A and βk has size polynomial in d, log q, ht(divA).

(1) Let B := 1
β2A and u := 2t− val∞(β2).

(2) Reduce (B, bue) to get a minimum βk of B that is close to u.
(3) Return (β1, . . . , βk−1, βk). (This is the BMR of β2 · βk.)

Proposition 4.7. Double (Algorithm 4) is correct.

Proof. First we show that there exists a minimum βk of B such that val∞(βk)− u
has `1 norm ≤ n/2+g. When we reduce the pair (B, bue) we get a pair ( 1

βk
B, bue−
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val∞(βk)) ∈ Repf∗(B). Let t = (t1, . . . , tn) = bue − val∞(βk). By Proposition 3.3,
we have

∑n
i=1 ti deg pi ≤ g, where g is the genus of the function field K. Rounding

moved u by at most n/2 from the target point, so val∞(βk)−u has `1-norm bounded
by n/2+g. So there exists a minimum βk of B that is close to u = 2t−val∞(β2), and
this minimum is computed in Step 3 of Double. Moreover, by Proposition 3.4, the
minimum βk has size polynomial in d, log q, ht(div(B)), and ||u||∞. Then, since βk
is close to 2t−val∞(β2), we have that β2βk is close to 2t, since ||2t−val∞(β2βk)||1 =
||(2t− (val∞(β2))− val∞(βk)||1. �

In the next proposition we will show that if there is a minimum µ of A whose
valuation vector equals 2t, then Double returns the BMR of this minimum µ.

Proposition 4.8. Let A be a reduced ideal. Suppose there is a minimum µ of A
such that val∞(µ) = 2t. Then Double(A, t, β = (β, . . . , βk−1)) returns the BMR
(β1, . . . , βk) of this minimum, i.e. µ = β2 · βk.

Proof. In Step 3 of Double the algorithm reduces the pair (A/(β2), 2t− val∞(β2)),
where β is the given minimum of A which is close to t. Since 2t = val∞(µ), 2t has
integer coordinates and it is not necessary to round u = 2t− val∞(β2).

After reducing (A/(β2), 2t−v(β2)) we obtain an element (A/(βkβ
2), 2t−val∞(β2)−

val∞(βk)) of Repf∗(O), where βk is a minimum of A/(β2). Since reduction pro-

duces a unique element in Repf∗(O) and elements of Repf∗(O) have unique repre-
sentatives, this implies that βk is uniquely determined (up to multiplication by an

element of F∗q). Now since µ is a minimum of A, we have (1/µ · A, 0) ∈ Repf∗(O).

We also have that ν := µ/(β2) is a minimum of A/(β2). Then(
1

ν
A/(β2), 2t− val∞(β2)− val∞(ν)

)
= (1/µ ·A, 0) ∈ Repf∗(O).

Hence we must have βk = µ/(β2), i.e. Double returns the BMR of µ = βkβ
2. �

Corollary 4.9. If the input in Close (Algorithm 3) is a reduced ideal A and a
vector s ∈ Qn such that s = val∞(µ) for a minimum µ of A then Close outputs the
BMR of this minimum µ of A.

Proof. At the last step of the for-loop in Step 2 of Close, we have the BMR of a
minimum β of A that is close to s/2 and the last call of Double produces the BMR
of a minimum β′ of A that is close to s. By Proposition 4.8, Double outputs the
BMR of µ, so Algorithm Close returns the BMR of µ with s = val∞(µ). �

Corollary 4.10. The principal ideal problem is in NP.

Proof. Given a function field and an ideal I of O represented in HNF, if the ideal
is principal, then the proof is a compact representation B = (γ, (β1, ..., β`)) for α,
where I = αO. By Definition 4.3, the compact representation B has size bounded
by log(|| val∞(α)||∞+g) and poly(log q, d,dgN(α)). The field parameters are log q,
d, and g. By Remark 3.7, being polynomial in dg(N(α)) is the same as being
polynomial in ht(div(A)), which is the size of the ideal A = αO. We have that
|| log val∞(α)||∞ is bounded by Proposition 3.3 and Proposition 3.4.

The verifier must efficiently test whether A = γ
βO, where β =

∏
β2n−i

i . The

verifier can efficiently compute the ideal as follows. By Claim 4.4, 1
βO can be

efficiently computed. Multiplication by γ is efficient. Finally, comparing the HNF
of A and γ

βO is efficient since the representation of an ideal is unique. �
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5. Quantum algorithms for the unit group, principal ideal problem
and the class group

In this section we give efficient quantum algorithms for computing the unit group,
solving the principal ideal problem and computing the class group. Recall from
Section 3 that for the unit group and the principal ideal problem this means the
objects are computed in the val∞ embedding, and that compact representations
can then be computed.

The basic approach is to show that these problems reduce to abelian hidden sub-
group problems (HSP) which are known to have efficient quantum algorithms [CM01].
The class group case is slightly more general since the HSP instances will take values
that are quantum states.

Theorem 5.1. There is a polynomial-time quantum algorithm for computing the
unit group of a function field.

Proof. A hidden subgroup problem for the unit group can be defined by the function
g : Zn → Repf∗(O) defined as g(e) = Reduce(O, e). Here Reduce(O, e) is the

element of Repf∗(O) which is computed by Algorithm 1 and it is polynomial-time
computable by Proposition 3.4. By Remark 3.5, Reduce(O, e) = Reduce(O, e +
v) for any v ∈ Λ, so the function g is constant on cosets. Therefore g is also

defined on Zn/Λ, and it gives a bijection between Zn/Λ and Repf∗(O), so it is also
distinct on different cosets. Using the HSP instance g, a quantum algorithm can
compute a basis for Λ efficiently. Compact representations can then be computed
if desired. �

In the decision version of the principal ideal problem an ideal I of O is given
in HNF and the problem is to decide if it is principal. If it is principal, then the
search version of the problem is to compute a generator, i.e. compute an α such that
I = αO. Since generators may take an exponential number of bits to represent in
general, we only require computing val∞(α). Knowing val∞(α) and αO determines
α up to a nonzero multiple in the finite field k. So given an arbitrary ideal I that
is given to us in HNF, the strategy is to solve the search problem and compute a
candidate value for val∞(α), and then to test whether I = αO to see if the ideal
is principal or not. A compact representation of α can then be computed from
val∞(α) and I using Algorithm 2.

Theorem 5.2. There is a polynomial-time quantum algorithm for the principal
ideal problem in a function field.

Proof. Recall that for a vector v ∈ Zn, calling Algorithm 1 on (O, v) results in a

pair (Iv, fv) ∈ Repf∗(O). Here Iv is a reduced ideal and fv is a vector such that fv
has positive coordinates. If 1

µO = Iv then val∞( 1
µ ) + fv = v by Remark 3.5.

To solve the principal ideal problem we do the following. Given any ideal I we
first call Algorithm 1 on (I, 0) to get a reduced ideal Iv. The reduction algorithm
also computes γ such that 1

γ I = Iv. Hence it suffices to solve the principal ideal

problem for reduced ideals. If Iv = 1
µO is reduced, then Iv represents the point

v + Λ ∈ Zn/Λ with v = val∞(µ). By the above discussion, solving the principal
ideal problem means computing v. First, by Theorem 5.1, a basis B of the unit
group (under the embedding val∞) can be computed efficiently with a quantum
algorithm. A hidden subgroup problem can be set up as follows. By abuse of
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notation we denote by Zn/B the quotient of Zn by the lattice generated by the
elements in B. Let G = ZM × Zn/B, where M = |Zn/B|. Define h : G →
Repf∗(K) =

⋃
A Repf∗(A) by defining h to be the following algorithm. On input

(a, b), it uses the composition operation in Section 3.3 and repeated doubling to
compute a times the group element (this does reductions along the way, giving

an element in Repf∗(K)), then composing the result with (O,−b) and reducing.
When the ideal I is principal, then h(a, b) = (Iav−b, fav−b). The hidden subgroup
in this case is H = 〈(1, v)〉, and h(H) = (O, 0). A set of coset representatives for
H is {(0, w) : w ∈ Zn/B}. Then h((0, w) + n(1, v)) = h(n,w + nv) = (I−w, f−w),

and so the different values of w correspond to the set of elements in Repf∗(O).
So it is constant on cosets and distinct on different cosets. The function h can be
computed efficiently using a small modification to Close (Algorithm 3). Therefore
there is an efficient quantum algorithm for finding generators for H. Given an
element (n, nv) ∈ ZM × Zn/B of H, it is easy to compute v. �

Theorem 5.3. There is a polynomial-time quantum algorithm for computing the
ideal class group of a function field.

Proof. To compute the class group we also reduce to an abelian hidden subgroup
problem where the function takes quantum states as values. Since it is not known
how to compute unique representatives in the class group we instead create quantum
states to represent each element, as a superposition over all elements of Repf∗(J)
for the ideal class of J . Let g1, . . . , gm be a set of generators for Cl(O), which
can be computed by Appendix A. For an ideal J , let |φJ〉 =

∑
(I,v)∈Repf∗(J) |I, v〉.

Define f : Zm → C|Pic0(K)| by f(e1, . . . , em) = |φJ〉, where J is the ideal resulting
from Reduce(ge11 · · · gemm , 0). The function f can be efficiently evaluated using the
algorithm for the principal ideal problem as follows. Given |e1, . . . , em〉, compute
|e1, . . . , em, J〉, where J is the ideal resulting from Reduce(ge11 · · · gemm , 0). The ideal
in the last register, call it J , is now used to create the superposition over reduced
ideals. Create

∑
v∈Zn/B |J, v〉, then

∑
v∈Zn/B |J, v, (Jv, fv)〉 where (Jv, fv) is the

result of calling Reduce(J, v). Next use the principal ideal algorithm on J · J−1v ,
which answers v, to create

∑
v∈Zn/B |J, v, (Jv, fv), v〉. Next uncompute v in the

second register using the fourth, then uncompute the fourth register by running the
principal ideal algorithm backwards. Finally, uncompute J using e1, . . . , em. �

Appendix A. Computing generators for Cl(O)

As usual, let K be an algebraic function field over a finite field of constants
k = Fq. As discussed in Section 2, when S = {p1, . . . , pn+1} is the set of places at
infinity and deg pn+1 = 1, we have a short exact sequence

0 −→ Ker −→ Pic0(K) −→ Cl(O)→ 1

where the map from Pic0(K)→ Cl(O) is given as∑
p∈PK

npp 7→
∏

p∈PK−S
(p ∩ O)−np .

Given a function field K as above, there is a smooth projective geometrically
irreducible curve C whose function field is K. Let g denote the genus of this curve.

In [Ked06] Kedlaya proves that for q with q1/2 > 16g there exists a randomized
algorithm that produces a generating set for Pic0(K) in time polynomial in g and
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log q. The genus of the curve C does not change if we increase the size of the base
field k. Hence by making the constant field larger, if necessary, we can achieve
that q1/2 > 16g. From the above exact sequence it follows that the image of the
generating set for Pic0(K) under the map described above gives a generating set of
Cl(O).

Appendix B. Computing Riemann-Roch spaces

In this section we analyze the complexity of computing the Riemann-Roch space
L(D) := {f ∈ K : div(f) + D ≥ 0} ∪ {0}. The input to the problem is a function

field K and a divisor D = (A,
∑n+1
i=1 tipi) of K. The fractional ideal A of O is given

in HNF relative to an O basis. The second part of D is given by a set of integers
{ti : 1 ≤ i ≤ n + 1} that determine the multiplicity of the infinite places, i.e. the
places of S = {p1, . . . , pn+1}, in D.

We follow Hess’s [Hes02] algorithm to compute the Riemann-Roch space. In
[Hes02] Hess does not include any proofs for the complexity of his algorithm, so in
this section we show that the Riemann-Roch space L(D) can be computed in time
polynomial in d, log q and ht(D). (For the definition of ht(D) see Section 2.) Hess’s
algorithm is a relatively simple, self-contained algorithm. We also investigate more
closely the complexity of computing o∞-bases of the ideals we are working with.

The main idea in [Hes02] is that the Riemann-Roch space can be computed as
the intersection of two ideals that come from the divisor D, where the two ideals
are in the rings O and O∞.

First we show that we can compute an o∞-basis for O∞ in polynomial time.

Proposition B.1 ([Eis95], Proposition 4.13). Let R ⊂ S, and let U be a multi-
plicatively closed subset of R. If S′ is the integral closure of R in S, then S′[U−1]
is the integral closure of R[U−1] in S[U−1].

Lemma B.2. An o∞-basis for O∞ can be computed in time poly in d and log q.

Proof. By Chistov ([Chi89]), Theorem 1, applied to k[1/x], we can compute a
basis β1, . . . , βd of the integral closure of k[1/x] in K. By Proposition B.1, taking
integral closures commutes with localization, so when we apply the proposition
with R = k[1/x], S = K and U the complement of the prime ideal (1/x) of R,
we have o∞ = k[1/x][U−1]. Let S′ be the integral closure of k[1/x] in K. Then
O∞ = S′[U−1], which implies that β1, . . . , βd is an o∞-basis for O∞. �

Lemma B.3. Let A be a fractional ideal of O given by a k[x]-basis, and let B be a
fractional ideal of O∞ given by an o∞-basis. There exist bases a1, . . . , ad of A and
b1, . . . , bd of B and uniquely determined integers λi such that x−λibi = ai.

Proof. Let a′1, . . . , a
′
d ∈ K be a k[x]-basis of A and b′1, . . . , b

′
d ∈ K a o∞-basis of B.

Both of these are bases for the vector space K/k(x). Let M ∈ k(x)d×d be such that

(a′1, . . . , a
′
d) = (b′1, . . . , b

′
d)M.

By [Hes02, Corollary 4.3] there exists unimodular T1 ∈ od×d∞ ⊂ k[[x−1]]d×d and
unimodular T2 ∈ k[x]d×d such that T1MT2 = (x−λjδij)ij .

Let (a1, . . . , ad) = (a′1, . . . , a
′
d)T2 and (b1, . . . , bd) = (b′1, . . . , b

′
d)T
−1
1 . Then

(b1, . . . , bn)T1MT2 = (b′1, . . . , b
′
d)MT2 = (a′1, . . . , a

′
d)T2 = (a1, . . . , ad).

�
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Lemma B.4. If a1, . . . , ad and b1, . . . , bd are bases as in Lemma B.3, then A ∩ B
has k-basis {xjai : 1 ≤ i ≤ d, 0 ≤ j ≤ λj}.

Proof. Assume λ ≥ 0. The elements xjai ∈ A for j ≥ 0 since x ∈ O so we only
have to show xjai ∈ B iff 0 ≤ j ≤ λ. We have ai = x−λibi ∈ B since 1

x ∈ o∞, B

is an o∞-module and λi ≥ 0. Similarly, xjai = xj−λibi ∈ B iff j − λi ≤ 0, i.e. for
j ≤ λi. But xjai ∈ A iff j ≥ 0, so xjai ∈ A ∩B for 0 ≤ j ≤ λi.

To see that this set forms a k-basis note that A ∩ B =
⋃d
i=1(A ∩ B ∩ k(x)ai),

and a k-basis for A ∩B is the union of the k-bases for A ∩B ∩ k(x)ai.
But A ∩ B ∩ k(x)ai (for i with λi ≥ 0) equals A ∩ B ∩ aik[x], so it suffices to

determine which monomials (xj)ai are in this intersection. By the above argument
the only monomials in this intersection are ai, xai, . . . , x

λiai, and these elements
are clearly linearly independent over k, so they form a k-basis for A ∩ B ∩ k(x)ai
(for i with λi ≥ 0) . �

Lemma B.5. The elements a1, . . . , ad and the integers λ1, . . . , λd above can be
computed in polynomial time.

Proof. We will first show that the matrices M and T2 above can be computed
in polynomial-time. The lemma then follows from the fact that (a1, . . . , ad) =
(a′1, . . . , a

′
d)T2, and that the maximum degree of elements of the j-th column of

MT2 is equal to −λj([Fon09, p. 15], [Hes02, Corollary 4.3]). When elements in
K are specified as polynomials in y, i.e., as

∑n
i=0 aiy

i for coefficients ai ∈ k(x),
then writing a element α ∈ K in terms of a basis ω1, . . . , ωn is a vector space
transformation, with vector space generators 1, y, y2, . . . , yn−1. The columns of the
matrix A ∈ k(x)n×n contain the coefficients of the polynomials ω1, . . . , ωn. Then
solving the equation Az = b over k(x) for z gives the coefficients of b in terms of
the basis. For M , this can be done for each column.

The matrix T2 is computed using Paulus’s polynomial-time algorithm [Pau98]
by keeping track of the operations during the basis reduction. �

Algorithm 5. Ideal intersection for ideals in two different rings
Input: Function field K, x ∈ K; k[x]-basis ω1, . . . , ωd of O, k[x]-basis a′1, . . . , a

′
d of

the fractional ideal A of O, o∞-basis v1, . . . , vd of O∞, o∞-basis b′1, . . . , b
′
d of the

fractional ideal B of O∞.
Output: (a1, . . . , ad;λ1, . . . , λd) such that {xjai : 1 ≤ i ≤ d, 0 ≤ j ≤ λi} is k-basis
of the k-vector space A ∩B.

(1) Compute a matrix M such that (b′1, . . . , b
′
d)M = (a′1, . . . , a

′
d).

(2) Do a basis reduction on M . Keep track of the operations and let T2 ∈
Gld(k[x]) be the transformation. Let −λi be the maximum degree in the ith
column of the reduced matrix MT2.

(3) Let (a1, . . . , ad) = (a′1, . . . , a
′
d)T2.

(4) Return (a1, . . . , ad;λ1, . . . , λd).

Proposition B.6. Algorithm 5 computes (a1, . . . , ad;λ1, . . . , λd) such that {xjai :
1 ≤ i ≤ d, 0 ≤ j ≤ λi} is a k-basis of the k-vector space A ∩B in polynomial time.

Proof. The matrix M computed in Step 1 of the algorithm is exactly the matrix
from Lemma B.3 that leads to the special basis for A: (a1, . . . , ad) = (a′1, . . . , a

′
d)T2.

By Lemma B.4 and its proof, {xjai : 1 ≤ i ≤ d, 0 ≤ j ≤ λi} where −λj is the
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maximum column degree in the j-th column of MT2 is a k-basis for the intersection
A ∩B. By Lemma B.5, the ai’s and the λi’s can be computed in poly time. �

Algorithm 6. Riemann-Roch Space
Input: Function field K, k[x]-basis ω1, . . . , ωd of O, a divisor D = (A,

∑n+1
i=1 tipi)

where A is a fractional ideal of O given in a k[x]-basis.
Output: a1, . . . , ad ∈ K, λ1, . . . , λd ∈ Z such that {xjai : 1 ≤ i ≤ d, 0 ≤ j ≤ λi} is
a basis of the Riemann-Roch space L(D).

(1) Compute a k[x]-basis of A−1.
(2) Compute an o∞-basis of B := Πn+1

i=1 (pi ∩ O∞)ti ⊆ O∞.
(3) Compute an o∞-basis of B−1.
(4) Use Algorithm 5 to compute A−1 ∩B−1.
(5) Return the (a1, . . . , ad;λ1, . . . , λd) computed by Algorithm 3.

Theorem B.7. The above algorithm computes the Riemann-Roch space L(D) in
time polynomial in d, log q, ht(D).

Proof. Computing the inverse of a fractional ideal A of O can be done in time
polynomial in log q, d and ht(div(A)) [Die08, Proposition 2.69(b)]. The ideals pi ∩
O∞ in Step 2 are the prime ideals of O∞ corresponding to the places in S. These
can be computed in polynomial time with an algorithm similar to the one given
for number fields in [EH10]. Hence we can compute an o∞-basis for the ideal B in
Step 2 in polynomial time. The inverse of an ideal B in this ring can be computed
efficiently as well. Finally, by Proposition B.6 above, a basis for the k-vector space
A−1 ∩B−1 can be computed in polynomial time. �
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