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Motivation

Let C/Fq be a curve. Set N(C) = |C(Fq)|.

Question: How big can N(C) be?

Introduce Nq(g) = max
C/Fq

g(C)=g

N(C).

Upper bounds:
I Hasse-Weil-Serre bound:

|Nq(g)− q − 1| 6 g · b2√qc;

I Oesterlé bound;
I articles of Howe and Lauter (’03, ’12),. . .
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Lower bounds: Find curves with as many points as possible.

Possible methods:
I curves with explicit equations: Hermitian curves, Ree curves, Suzuki

curves,. . .
I curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,. . .
I curves with modular structure: elliptic or Drinfel’d modular curves,. . .
I curves defined by a non-explicit covering: abelian coverings (Class

Field Theory, Drinfel’d modules),. . .

Our approach: Class Field Theory.

Therefore we switch between the language of function fields and curves.
For instance, if K = Fq(C), we set N(K )

def
= #Pl(K , 1) = N(C).
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Why use Class Field Theory?

Remark:
Let L/K be an algebraic extension of algebraic function fields defined over
Fq. Then

N(L) > [L : K ]#SplitFq(L/K ) + #TotRamFq(L/K ).

Class Field Theory describes the abelian extensions of K in terms of data
intrinsic to K and provides a good control on the ramification and
decomposition behavior in the extension.

Problem: One does not know in general the equations of the abelian
coverings of K (problematic for applications, for example to coding
theory).

This Talk: we explain how to find these equations and describe an
algorithm to find good curves (look at www.manypoints.org).
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The Artin Map

Let L/K be an abelian extension. Let P be a place of K and Q be a place
of L over P. Let FP (resp. FQ) be the residue field of K at P (resp. of L
at Q).

When P is unramified the reduction map GalP(L/K )→ Gal(FQ/FP) is an
isomorphism. The pre-image of Frobenius is independent of Q; one
denotes it by (P, L/K ) and call it the Frobenius automorphism at P.

Definition:
The map P 7→ (P, L/K ) ∈ Gal(L/K ) can be extended linearly to the set
of divisors supported outside the ramified places of L/K. The resulting
map is called the Artin map and is denoted (· , L/K ).
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Class Field Theory
Definition:
A modulus on K is an effective divisor.

Let m be a modulus supported on a set S ⊂ PlK , we denote by Divm the
group of divisors which support is disjoint from S. Set

Pm,1 = {div(f ) : f ∈ K× and vP(f − 1) ≥ vP(m) for all P ∈ S}.

Definition:
A congruence subgroup modulo m is a subgroup H < Divm of finite index
such that Pm,1 ⊆ H.

Existence Theorem:
For every modulus m and every congruence subgroup H modulo m, there
exists a unique abelian extension LH of K, called the class field of H, such
that the Artin map provides an isomorphism

Divm/H ∼= Gal(LH/K ).
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Artin Reciprocity Law:
For every abelian extension L/K , there exists an admissible modulus m
and a unique congruence subgroup HL,m modulo m, such that the Artin
map provides an isomorphism

Divm/HL,m
∼= Gal(L/K ).

Definition:
The conductor of L/K, denoted fL/K , is the smallest admissible modulus.
It is supported on exactly the ramified places of L/K.

Main Theorem of Class Field Theory:
Let m be a modulus. There is a 1-1 inclusion reversing correspondence
between congruence subgroups H modulo m and finite abelian extensions
L of K of conductor smaller than m. Furthermore the Artin map provides
an isomorphism

Divm/H ∼= Gal(L/K ).
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Computing Abelian Extensions

Data: Let m be a modulus over K and H be a congruence subgroup
modulo m.

Goal: Compute the class field L of H.

Assumption: Divm/H ∼= Z/`mZ for a prime number ` and an integer
m > 1. Two cases: ` = p def

= char(K ) or ` 6= p.

Strategy: Find an abelian extension M of K containing L for which we
can compute explicitly the Artin map. Then compute L as the subfield of
M fixed by the image of H.
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M

L

??

K
Divm/H

__

OO

Remark:
Let P ∈ PlK . Then (P,M/K )|L = (P, L/K ).

So
(H,M/K ) = {(P,M/K ) : P ∈ H}

= {σ ∈ Gal(M/K ) : σ|L = IdL}
= Gal(M/L).

Galois Theory implies L = M(H,M/K).
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Set n = lm. The two cases are related to the following equations:{
yn = α if ` 6= p (Kummer theory)
℘(~y) = ~α if l = p (Artin-Schreier-Witt theory).

Case ` 6= p:
Set K ′ = K (ζn) and L′ = L(ζn). By Kummer theory one can compute a
set S of places of K ′ such that L′ = K ′( n

√
α) for a S-unit α. Adding the

nth roots of every S-unit to K ′, we obtain an abelian extension
M = K ′( n√US) for which we have an explicit Artin map. Using the data of
the congruence subgroup H, one can compute L′.

The extension L′/K is abelian and one can compute its Artin map. Then
we apply the same recipe to the tower L′/L/K .
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Case ` = p

Problem: Kummer theory does not apply.

Instead: Use Artin-Schreier-Witt theory.

Definition:
The Witt vectors of length m with coefficients in K is the set of m-tuples
~x = (x1, . . . , xm) with xi ∈ K together with (complicated) polynomial
addition and multiplication laws making it a commutative ring Wm(K ).

It comes equipped with the Artin-Schreier-Witt operator
℘ : Wm(K )→Wm(K ) defined by

℘(~x) = (xp
1 , . . . , x

p
m)− (x1, . . . , xm).

Remark:
Let ~x ∈Wm(K ). The equation ℘(~y) = ~x defines an extension

K (℘−1(~x)) def
= K (y1, . . . , ym).
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Main Theorem of ASW theory: There exists an element ~β ∈Wm(K ) such
that L = K (℘−1(~β)).

Notation:
Let ℘i be such that

℘(~x) = (℘1(x1), . . . , ℘i(x1, . . . , xi), . . . , ℘m(x1, . . . , xm)).

Set K0 = K and Ki = Ki−1(℘
−1
i (βi)) for i = 1, . . . ,m.

Strategy to compute L = Km: Compute βi and Ki recursively.

By the Strong Approximation Theorem and the work of H.L. Schmid
(1936) one can find a divisor Di such that βi ∈ L(Di).

Set Mi = K
(
x1, . . . , xi−1, ℘

−1(L(Di))
)
. Then it also provides an explicit

Artin map for the extension Mi/Ki−1, from which one can compute βi and
thus Ki .
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Cyclic Extensions of Prime Degree

Proposition:
Let L/K be a cyclic extension of prime degree ` and of conductor fL/K .
Assume that they are defined over Fq. Then the genus of L verifies:

gL = 1+ `(gK − 1) + 1
2(`− 1) deg(fL/K ).

Remark:
There seems to be no dependence on the ramification type of the
extension (tame or wild), but in fact:

Proposition:
A place P of K is wildly ramified in L if and only if fL/K > 2P (and thus
tamely ramified if and only if vP(fL/K ) = 1).
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The Algorithm
Input: A function field K/Fq, a prime `, an integer G .
Output: The equations of all cyclic extensions L of K of degree ` such

that g(L) 6 G and N(L) improves the best known record.
1. Compute all the moduli of degree less than

B = (2G − 2− `(2g(K )− 2))/(`− 1).
2. for each such modulus m do
3. Compute the ray class group Picm ∼= Divm/Pm,1.
4. Compute the set T of subgroups of Picm of index `.
5. for every H in T do
6. Compute g(L) and n = N(L), where L is the class field of H.
7. if n is greater than the best known record then
8. Update n as the new lower bound on Nq(g(L)).
9. Compute the equation of L.
10. end if
11. end for
12. end for
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New Results over F2

g N = |S|+ |T |+ |R| OB g0 f G
14 16 = 16+ 0+ 0 16 4 2P7 Z/2Z
17 18 = 16+ 2+ 0 18 2 4P1 + 6P1 Z/2Z⊕ Z/2Z
24 23 = 20+ 1+ 2 23 4′ 2P1 + 4P1 + 2P2 Z/2Z⊕ Z/2Z
29 26 = 24+ 2+ 0 27 4 4P1 + 8P1 Z/2Z⊕ Z/2Z
41 34 = 32+ 2+ 0 35 3′ 4P1 + 4P1 Z/2Z⊕ Z/4Z
45 34 = 32+ 2+ 0 37 2 4P1 + 8P1 Z/2Z⊕ Z/4Z
46 35 = 32+ 1+ 2 38 3 3P1 + 8P1 Z/2Z⊕ Z/4Z

g : genus of the covering.
N: number of F2-rational points. OB: Oesterlé bound.

g0: genus of the base curve. f: conductor of the extension.
G : Galois group. S: totally split places.

T : totally ramified places. R: (non-totally) ramified places.
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Example:
Take the genus 2 maximal curve C0 with equation
y2 + (x3 + x + 1)y + x5 + x4 + x3 + x .

Then the new curve of genus 17 with 18 rational points is a fiber product
of Artin-Schreier coverings of C0 with equations z2 + z + (x4 + x2 + x + 1)/x3y + (x6 + x5 + x + 1)/x2;

w2 + w + (x3 + 1)/xy + x + 1.
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1998 World Cup’s 14th Anniversary!!!!!!!!!!!!!!
France 3 = N

(
P1
F2

)
Brazil g

(
P1
F2

)
= 0

V. Ducet and C. Fieker (IML, FMUK) Computing Equations of Curves ANTS X 16 / 16


