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@ Introduction



Quadratic equations. . .

We consider homogenous quadratic equations with integral
coefficients and search for a nontrivial and integral solution.
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Quadratic equations. . .

We consider homogenous quadratic equations with integral
coefficients and search for a nontrivial and integral solution.
Dimension 1:

Equation

ax> =0 x=0

Dimension 2:

: C te A=h2—4
© sempute -

Q If A is a square, solutions

are:
ax®> + bxy + oy’ =0
b+ VA
a

X
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Minimisation and Reduction

We use the matrix notation: @ is the n—dimensional symmetric
matrix containing the coefficients of the equation.
The equation is now:

XQX =0

with X € Z".
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Minimisation and Reduction

We use the matrix notation: @ is the n—dimensional symmetric
matrix containing the coefficients of the equation.
The equation is now:
XQX =0
with X € Z".
Let @ be a quadratic form with determinant A.

» Minimising Q: finding transformations for @ in order to get
another quadratic form Q' with same dimension as Q such
that:

e Q' and @ have the same solutions (up to a basis change),
o det(Q’) divides A.
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Minimisation and Reduction

We use the matrix notation: @ is the n—dimensional symmetric
matrix containing the coefficients of the equation.
The equation is now:

XQX =0

with X € Z".
Let @ be a quadratic form with determinant A.

» Minimising Q: finding transformations for @ in order to get
another quadratic form Q' with same dimension as Q such
that:

e Q' and @ have the same solutions (up to a basis change),
o det(Q’) divides A.

» Reducing the form Q: it's finding a basis change B such that:
° det(B) = +1,

o the coefficients of @' = BQB are smaller than the ones of Q.
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Quadratic equations in dimensions 3, 4 and more: Simon's
algorithm

@ Factor the determinant of Q,
@ Minimise Q relatively to each prime factor of det(Q),
© Reduce Q using the LLL algorithm,

@ Use number theory tools in order to end the minimisation of
Q,

© Considering intersections of some isotropic spaces of good
dimension, deduce a solution for the form of the beginning.
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Quadratic equations in dimensions 3, 4 and more: Simon's
algorithm

@ Factor the determinant of Q,
@ Minimise Q relatively to each prime factor of det(Q),
© Reduce Q using the LLL algorithm,

@ Use number theory tools in order to end the minimisation of
Q,

© Considering intersections of some isotropic spaces of good
dimension, deduce a solution for the form of the beginning.

This algorithm:

> creates a link between factoring and solving quadratic
equations

> can be generalised to forms of higher dimension
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The problem:

Pro:

As soon as the factorisation of
the determinant is known,
Simon'’s algorithm is very
efficient.
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The problem:

Pro:

As soon as the factorisation of But as soon as the size of the
the determinant is known, determinant reaches ~ 50
Simon's algorithm is very digits, the factorisation
efficient. becomes prohibitively slow.

Pierre Castel 6 /28



The problem:

Pro:

As soon as the factorisation of But as soon as the size of the
the determinant is known, determinant reaches ~ 50
Simon's algorithm is very digits, the factorisation
efficient. becomes prohibitively slow.

So, we are given the following problem:

Problem:

Let Q be a dimension 5 quadratic form. We assume that det(Q)
cannot be factored (in a reasonable amount of time). Find a non
zero vector X € Z° such that:

XX =0
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What's next: The algorithm

© The algorithm
@ Principle
@ Completion
@ Computing a solution
@ Minimisations



Principle

Simon's algorithm is very efficient as soon as the factorization of
det(Q) is known.
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Principle

Simon's algorithm is very efficient as soon as the factorization of
det(Q) is known.

Idea:

1
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Principle

Simon's algorithm is very efficient as soon as the factorization of
det(Q) is known.
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How to build Qg?

If Q designs the matrix of the quadratic form @, we build Qg in
the following way:

Where X € Z?® is randomly chosen and z € Z.
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How to build Qg?

If Q designs the matrix of the quadratic form @, we build Qg in
the following way:

Where X € Z?® is randomly chosen and z € Z.
So we have:

det(Qp) = det(Q)z — X Co(Q)X

And we choose z such that:

det(Qp) = — X Co(Q)X (mod det(Q)).
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The way to the solution. ..

As the value of det(Qg) is known in advance, we try some vector X
until we have det(Qg) prime.

Principle:

det(Qs) being prime, it is possible to use Simon's algorithm in
order to find a vector T € Z° such that:

TQeT =0
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The vector T is isotropic for Qs. So, in a basis whose first vector
is T, Qg has the form:

Qs =

*¥ X X X *x O
* K K X X K
* X K X X ¥
L I SR I
* X X X X X
* K X X X K
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Decomposition Qg = H @ Q4

The vector T is a solution for Qg so there exists an hyperbolic
plane which contains it. With linear algebra (GCD), we get a
“correct” basis. In such a basis, Qg has the shape:

Qs =

Where a € {0,1} and Qa is a dimension 4 quadratic form, with
determinant — det(Qg). So it's prime again. ..

Pierre Castel
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Decomposition Qg = H & H @ @,

...so we do it again : Simon's algorithm and linear algebra with
Q4. In the new basis, Qs has the following shape:

0 0'0 1
Q=19 o

where a, 5 € {0,1} and Q: is a dimension 2 quadratic form.

Pierre Castel
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If we denote by e; and e3 the following basis vectors:

13 /28
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If we denote by e; and e3 the following basis vectors:

€1 €3
01100100
(1 2.00,00
00:01:00
“T | ooi1sioon
0 010 O
00,00 @

Then e; and es3 are both isotropics and orthogonals.
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If we denote by e; and e3 the following basis vectors:

€1 €3
01100100
(1 2.00,00
00:01:00
“T | ooi1sioon
0 010 O
00,00 @

Then e; and es3 are both isotropics and orthogonals.

The solution:

consider a linear combinaison whose last coordinate is zero.
Example:

S = e3(6) X e1 — 61(6) X €3
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So S has the shape:

S= 5 with S € Z°
5

Assuming that all of the basis changes have been applied, we have:

SQS=] S 0]

= SQS
=0

S is a solution to our problem.
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The algorithm:

Complete Q in Qg in such a way that det(Qs) is prime,

@ Use Simon's algorithm for Q,

@ Using linear algebra, decompose Qs in Qs = H® Q4 (H
hyperbolic plane),

@Q Do step 2 for Q4,

@ Using linear algebra, decompose Qs in Qg = H® H' & Qx> (H,
H' hyperbolic planes),

@ Deduce a solution for Q.
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Smith Normal Form:

SNF Decomposition

If we denote by d; = d;, the d; are the elementary divisors of the
matrix A, and we have :

h 0 ... 0
vav=| ° @

o

0 0 d

with d,'_|_1 ‘ diforl1 <i<k
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The problem:

In the algorithm, we are looking for X € Z° such that det(Qg) is
prime. However :

Lemma

Let @ be a dimension 5 quadratic form with determinant A. Then
for all X € Z5 and z € Z, d»(Q) divides det(Qs).
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The problem:

In the algorithm, we are looking for X € Z° such that det(Qg) is
prime. However :

Lemma

Let @ be a dimension 5 quadratic form with determinant A. Then
for all X € Z5 and z € Z, d»(Q) divides det(Qs).

If da(Q) # 1, det(Qg) will never be a prime !

Pierre Castel 17 /28



The solution:

Do minimisations on @ to be in the case where dx(Q) = 1.
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The solution:

Do minimisations on @ to be in the case where dx(Q) = 1.

We have the different cases:
O Case d5(Q) #

(
@ Case di(Q) # 1 and d5(Q)
@ Case d3(Q) # 1 and dy(Q)
Q Case db(Q) # 1 and d3(Q)

1
1v
1
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Cases 1, 2 and 3

We apply the basis change given by the matrix V of the SNF of Q:

> if ds(Q) # 1:

e we just have to divide the matrix by ds,

o we have divided det(Q) by (ds)°.
» if di(Q) #1 and d5(Q) = 1:

e we multiply the last row and column by dj,

o we divide the matrix by dj,

o we have multiplied det(Q) by (ds)? and divided by (djs)°.
» if d3(Q) # 1 and da(Q) = 1:

e we multiply the two last rows and columns by ds,

o we divide the matrix by ds,
o we have multiplied det(Q) by (d3)* and divided by (d5)°.
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Case db(Q) # 1 and d5(Q) =1

We first apply the basis change given by the matrix V' of the SNF
of Q. In such a base, @ has the form :

dox  dok | dok dox  dpx
d2>l< d2*‘d2>|< d2>|< d2>l<

|
dox  dox 1 % * *
|
dox x|, x * *
dox dox ! % * *
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Case db(Q) # 1 and d5(Q) =1

We first apply the basis change given by the matrix V' of the SNF
of Q. In such a base, @ has the form :

d2>l< d2>k ; d2>k d2>|< d2>)<
dg* d2* : dz* d2>|< d2>l<
dox dpx 1 * *
dox  dox : * * *
dhx dox ! % * *

» We would like to multiply the 3 lasts rows and columns by d»
and divide the matrix by d».
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Case db(Q) # 1 and d5(Q) =1

We first apply the basis change given by the matrix V' of the SNF
of Q. In such a base, @ has the form :

d2>l< d2>k ; d2>k d2>|< d2>)<
dQ* d2* : d2>l< d2>|< d2>l<
dox dpx 1 * *
dox  dox : * * *
dhx dox ! % * *

» We would like to multiply the 3 lasts rows and columns by d»
and divide the matrix by d».

» But if we do this, we multiply the determinant by d$ and we
divide it by d5. ..
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Case db(Q) # 1 and d5(Q) =1

We first apply the basis change given by the matrix V' of the SNF
of Q. In such a base, @ has the form :

dhk ok | dox dox  dox

dhx dox 1 % * *
|

dox  dhx | x * *

dhx dox ! % * *

» We would like to multiply the 3 lasts rows and columns by d»
and divide the matrix by d».

» But if we do this, we multiply the determinant by d$ and we
divide it by d5. ..

Solve a quadratic equation modulo d> such that:
Q373 = 0 (mod d2)
and do the desired operation on the two lasts rows and columns.
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How to get Q33 =0 (mod db)?

We begin by a Gram—Schmidt orthogonalisation on the 3 x 3 block
modulo dy. In that basis, the block Q3 has the form:

a 0
b (mod ds)
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How to get Q33 =0 (mod db)?

We begin by a Gram—Schmidt orthogonalisation on the 3 x 3 block
modulo dy. In that basis, the block Q3 has the form:

a 0
b (mod ds)
0 c

It remains to solve the equation:

ax®> + by? +cz2=0 (mod d)
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How to get Q33 =0 (mod db)?

We begin by a Gram—Schmidt orthogonalisation on the 3 x 3 block
modulo dy. In that basis, the block Q3 has the form:

a 0
b (mod ds)
0 c

It remains to solve the equation:
ax> + by’ +cz2=0 (mod ds)

How?
© Simon'’s algorithm?
@ CRT?
© Pollard-Schnorr's algorithm.
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Pollard—Schnorr’s algorithm (1987)

Solves equations of type:

x*> 4 ky> =m (mod n)
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Pollard—Schnorr’s algorithm (1987)

Solves equations of type:

x*> 4 ky> =m (mod n)

Without factoring n

Principle:
» Based on the property of multiplicativity of the norm in
quadratic extensions:
(O + k)03 + ky3) = X2 + kY?
» Variables changes to decrease the size of the coefficients
» To be in the case where:

(k> m) € {(17 1)7 (_17 1)a (_1a _1)}

Pierre Castel
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Using Pollard—Schnorr

We'd like to solve:

ax®> + by’ +cz2=0 (mod d)
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Using Pollard—Schnorr

We'd like to solve:
ax> + by’ + ¢z =0 (mod dy)
We are going to use Pollard—Schnorr to solve:

b

X2+ -y = — (mod d»)
a a

Taking z = 1 gives us a vector as we wish. ie in the basis
containing the founded vector, @ has exactly the form:

[ d2* d2* ; d2>l< d2* d2>k -|
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Finishing the minimisation

Now that @ has the right form, we are able to minimise:

Pierre Castel

dox
d2>l<
d2>|<
d2>l<
d2>k

do*
d2>|<
d2>k
d2>k
d2>k

do*
d2>k
d2>k

do*
d2*

do*
d2>|<
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Finishing the minimisation

Now that @ has the right form, we are able to minimise:

dr*
d2>k
d2>k
d3x
d22>|<

@ We multiply the two lasts rows and columns by db

Pierre Castel

do*
d2>|<
d2>k
d22*
d22>k

do*
d2>k
d2>k
d2>!<
d2>l<

d22>k
d22>|<
d2>k
d22>|<
d22>k

d22>|<
d22>c<
d2>1<
d22>c<
d22>|<
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Finishing the minimisation

Now that @ has the right form, we are able to minimise:

d2>k
d2>k

d2>l<
d2>k

* X X Xk X

dox
d2>l<

*
d2>|<
d2>|<

@ We multiply the two lasts rows and columns by db

@ We divide the matrix by d,

Pierre Castel
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Finishing the minimisation

Now that @ has the right form, we are able to minimise:

* * % dox  dhx
* % % dox dhx
* * % * *
d2 * d2>k * d2 * d2>l<
d2 * d2>l< * d2 * d2>k

@ We multiply the two lasts rows and columns by db
@ We divide the matrix by d,

We have multiplied det(Q) by d5 and divided it by d,
=- we have gained a factor d».
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What's next: Complexity

© Complexity



Complexity

We write g = O (f) if there exists & € R, a > 0 such that
g = O(f log(f)").

] Complexity ‘
Minimisation steps: 5<Iog (|A5|)7)
Completion step: 5<Iog(|A5\)5)

End of the algorithm: O (P (log (|As))))

P: non explicit polynomial given by the complexity of Simon'’s
algorithm in dimensions 6 and 4.

Global complexity:

Probabilistic under GHR in O (log (|As|)’ + P (log (|As])))
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Comparison

6 1 - C.

—— Simon

Time in secs

40 60 80 100 120 140
Size of the determinant in digits

(Average over 1000 random matrices)
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What's next: Example

Q@ Example



A “ small " example:

o~
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A “ small " example:

0=

det(Q) = —11867840459046067337070056060552749739799119
612329906860272443106184215243620398241227088686
567163766883478844593814634595440693436234949087
491127359642479616640449784173297408619004481068
892088901946331771235813312305187060960723053316
362644916580516538177629348730016210305936885561
563614993869248 (~ 300 digits)

Pierre Castel
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Thanks for your attention.

Pierre Castel

pierre.castel@unicaen.fr
http://www.math.unicaen.fr/~caste
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