
SOLVING QUADRATIC EQUATIONS IN DIMENSION 5 OR

MORE WITHOUT FACTORING

PIERRE CASTEL

Abstract. Let Q be a 5 × 5 symmetric matrix with integral entries and
with detQ 6= 0, but neither positive nor negative de�nite. We describe a
probabilistic algorithm which solves the equation txQx = 0 over Z without
factoring detQ. The method can easily be generalized to forms of higher
dimensions by reduction to a suitable subspace.

1. Introduction

Solving quadratic equations in dimension 1 is trivial: since the equation is ax2 =
0, the only solution is x = 0. In dimension 2, the homogeneous equation is ax2 +
bxy+cy2 = 0, and the solution is obtained by computing a square root. In dimension
3, the equation is:

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz = 0 ,

where the coe�cients are integers. Since the polynomial becomes more complicated
as the dimension increases, we use matrix notation instead. We de�ne Q as the
associated quadratic form. If we denote by X = (x, y, z) the row vector containing
the variables, the equation becomes:

tX

 a d e
d b f
e f c

X = 0

If the equation has a solution, several algorithms exist for �nding solutions, for
instance see Simon in [9] or Cremona in [3]. In dimension 3 it is known that �nding
a (nontrivial) isotropic vector is equivalent to factoring the determinant of the form.

The situation is almost the same in dimension 4 when the determinant is a
square: solutions may not exist, and if a solution exists, �nding one is equivalent
to factoring the determinant.

The situation is quite di�erent in dimensions greater than or equal to 5. The
Hasse�Minkovski theorem [7] asserts that in such dimensions a nontrivial solution
always exists. It is easy to see that one just needs the result in dimension 5, since
larger dimensions can handled by restricting the form to a subspace of dimension
5 where the form has a suitable signature. This is why we will focus on quadratic
forms in dimension 5. As in dimensions 3 and 4, there exist algorithms such as
the ones given in [8], but since they are generalisations of algorithms in smaller
dimensions, they still need the factorization of the determinant, which rapidly be-
comes prohibitive. Thus, if we know the factorization of the determinant we can
easily �nd a solution, so the question is whether it is possible to �nd a solution (in
polynomial time) without factorizing the determinant. The goal of this paper is to
show that this is indeed possible, in other words we will give an algorithm which
�nds a (nontrivial) isotropic vector for a 5-dimensional quadratic form which does
not require the factorization of the determinant.

Date: May 16, 2012.

1



2 PIERRE CASTEL

As already mentioned, this algorithm can also be used for forms of higher di-
mensions by restricting the form to a dimension 5 subspace where the restricted
form has a suitable signature. The solution is found over the integers, but since the
equation is homogeneous, this is equivalent to �nding a rational solution.

The �rst part of this paper gives the de�nitions needed to understand the algo-
rithm, the second part explains how the algorithm works, and the last part gives
some ideas of the complexity of the method. The full analysis of its complexity is
not done here, since it requires a number of tools from analytic number theory and
the Cebotarev density theorem [5]. I refer the interested reader to [1].

Basic definitions and notation

To begin, we give de�nitions and basic properties which we need.
We denote the set of integral quadratic forms as follows:

De�nition 1. Let n be a nonzero positive integer. We denote by Sym(n,Z) the
set of n× n symmetric matrices with nonzero determinant and integral entries.

We recall the de�nition of the Smith Normal Form of a matrix; for more details,
see [2].

De�nition 2 (Smith Normal Form). Let A be an n×n matrix with coe�cients in
Z and nonzero determinant. There exists a unique matrix in Smith Normal Form
B such that B = V AU with U and V elements of GLn(Z). If we set di = bi,i, the
di are called the elementary divisors of the matrix A, and we have:

A = U−1


d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dn

V −1

with di+1 | di for 1 ≤ i < n.

De�nition 3. For a matrix M ∈Mn (Z) with nonzero determinant we denote by
d1(M), . . . , dn(M) its elementary divisors (given by its Smith Normal Form). If
there is no possible confusion, they will be denoted d1, . . . , dn.

We can now add a restriction to the set of quadratic forms:

De�nition 4. Let n be a nonzero positive integer. We denote by Sym∗(n,Z) the
set of n×n symmetric matrices with nonzero determinant and integral entries, such
that their coe�cient d2 as de�ned above is equal to 1.

2. The algorithm

2.1. The main idea. The key idea of the method is to increase by 1 the dimension
of the form by adding a row and a column, then to use an e�cient algorithm to
�nd solutions to our new form, and �nally to deduce a solution to the original form
by considering intersections of hyperbolic spaces of suitable dimensions.

Since Simon's algorithm [8] is very e�cient when the factorization of the deter-
minant is known, we are going to build a new quadratic form Q6 starting from
Q, of dimension 6 whose determinant will be equal to 2p where p is an odd prime
number. We will call this the completion step. To do this, we choose an integral
vector X = (x1, . . . , x5) of dimension 5 and an integer z and we complete Q in the
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following way:

Q6 =


x1

Q
...
x5

x1 . . . x5 z

(1)

Lemma 2.1.1. Let Q be a symmetric matrix with integral entries and with detQ 6=
0. If we complete Q to the form Q6 as described in (1) above, we have the following

formula:

detQ6 = z detQ− tX Co(Q)X ,(2)

where Co(Q) is the matrix of cofactors of the matrix Q.

Proof. Simply use the formula involving the cofactors of Q6 for computing its deter-
minant, and expand it along the row and then the column containing the xi's. �

Some special cases may occur: there exist cases where all the values taken by
detQ6 have a common factor. To avoid these cases we will have to do some mini-
mizations of the form Q before completing it. In order to be able to do a complexity
analysis of the algorithm we will need the determinant of Q6 to be odd, so we will
also have to perform a reduction of the even part of the determinant.

2.2. Minimizations. The values taken by the determinant of the form Q6 will
follow from the next result:

Theorem 2.2.1. Let Q ∈ Sym(5,Z) and ∆ = detQ. Then for all X ∈ Z5 and for

all z ∈ Z we have that d2(Q) divides detQ6, where Q6 is de�ned by equation (1).

Proof. Consider the Smith Normal Form of Q: there exists three matrices D, U ,
and V with integer entries such that D is diagonal with the elementary divisors
on the diagonal, U and V have determinant ±1, with D = UQV . Because of the
relation (2), let us consider the values of − tX Co(Q)X (mod ∆). We have:

Co(Q) = Co(V −1) Co(D) Co(U−1)

= det(V ) det(U) tV Co(D) tU

= ± t
(
U tCo(D)V

)
= ± t(U Co(D)V )

Since D is the diagonal matrix of elementary divisors, it follows that Co(D) is also
diagonal and that every coe�cient is divisible by d2(Q). We thus have:

tX Co(Q)X = ± tX t(U Co(D)V )X

≡ 0 (mod d2(Q))

Combining this congruence with the formula (2) proves the result. �

Remark 1. If d1(Q) 6= detQ it will not be possible to have detQ6 equal to a prime
or twice an odd prime number, so we will �rst need to minimize Q so as to obtain
an equivalent form Q′ such that d2(Q′) = 1.

Remark 2. If we perform a change of basis using the matrix V of the previous result
with di(Q) 6= 1 and di+1(Q) = 1, the �rst i columns and rows will be divisible by
di(Q).

We are now going to explain what to do in order to avoid the case d2(Q) 6= 1.
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2.2.1. Case d5 6= 1.

Proposition 2.2.2. Let Q ∈ Sym(5,Z) such that d5(Q) 6= 1. There exist two 5×5
matrices with integral entries G and Qf such that:

d5Qf = tGQG

detQf =
1

d5
5

detQ

The proof is given by the following algorithm:

Algorithm 1 (Minimization 5).
Input: Q ∈ Sym(5,Z) such that d5(Q) 6= 1 and m 6= 1 ∈ Z dividing d5(Q).
Output: Qf : a form equivalent to Q such that detQf = 1

m5 detQ; G : the corre-
sponding change of basis such that d5Qf = tGQG.

Step 1: set G := Id5

Step 2: set Qf := 1
mQ

Step 3: return Qf, G

When the coe�cient d5 of the Smith Normal Form of Q is di�erent from 1, the
whole matrix Q is divisible by d5, so the minimization simply consists in dividing
the matrix by d5 and the corresponding change of basis G is equal to Id5.

2.2.2. Case d4 6= 1 and d5 = 1.

Proposition 2.2.3. Let Q ∈ Sym(5,Z) such that d4(Q) 6= 1 and d5(Q) = 1. There
exist two 5× 5 matrices with integral entries G and Qf such that:

d4Qf = tGQG

detQf =
1

d3
4

detQ

The proof is given by the following algorithm:

Algorithm 2 (Minimization 4).
Input: Q ∈ Sym(5,Z) such that d4(Q) 6= 1 and and d5(Q) = 1, m 6= 1 ∈ Z dividing
d4(Q).
Output: Qf : a form equivalent to Q such that detQf = 1

m3 detQ; G : the corre-
sponding change of basis such that mQf = tGQG.

Step 1: let V be the V matrix given by the SNF of Q
Step 2: let H be the diagonal matrix such that for 1 ≤ i ≤ 4, Hi,i = 1

and H5,5 = m
Step 3: set G := V ×H; Q′ := 1

m
tGQG

Step 4: apply the LLL algorithm for indefinite forms to Q′ (see
[9] for more details). Let Qf be the returned form and

G′ the corresponding change of basis.

Step 5: set G := G×G′
Step 6: return Qf, G

As stated in remark 2, after the change of basis in Step 1, the �rst four columns
and rows are divisible by d4. Thus we apply this change of basis, multiply the last
row and column by d4, and divide the whole matrix by d4.

Remark 3. The notion of equivalence between quadratic forms used here simply
means that both corresponding quadratic equations have the same solutions up to
a change of basis.
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2.2.3. Case d3 6= 1 and d4 = 1.

Proposition 2.2.4. Let Q ∈ Sym(5,Z) such that d3(Q) 6= 1 and d4(Q) = 1. There
exist two 5× 5 matrices with integer entries G and Qf such that:

d3Qf = tGQG

detQf =
1

d3
detQ

The proof is given by the following algorithm:

Algorithm 3 (Minimization 3).
Input: Q ∈ Sym(5,Z) such that d3(Q) 6= 1 and and d4(Q) = 1, m 6= 1 ∈ Z dividing
d3(Q).
Output: Qf : a form equivalent to Q such that detQf = 1

m detQ; G : the corre-
sponding change of basis such that mQf = tGQG.

Step 1: let V be the V matrix given by the SNF of Q
Step 2: let H be the diagonal matrix such that for 1 ≤ i ≤ 3, Hi,i = 1

and H4,4 = H5,5 = m
Step 3: set G := V ×H; Q′ := 1

m
tGQG

Step 4: apply the LLL algorithm to Q′. Let Qf be the returned

form and G′ the corresponding change of basis.

Step 5: set G := G×G′
Step 6: return Qf, G

The minimizing method for this case is essentially the same as for the previous
one.

2.2.4. Case d2 6= 1 and d3 = 1. This case is much more complicated than the
previous ones. If we try to do it in the same way, we will multiply the determinant
by some factor which is of course not what we want. The idea is �rst to perform a
change of basis thanks to the matrix V given by the SNF of Q, and then to work
on the 3 × 3 block that remains which may not be divisible by d2(Q). What we
need to do in order to be able to apply the same method is to be in the case where
the upper�left coe�cient of this block is already divisible by d2(Q). We are thus
going to do a special change of basis in order to succeed. The method is given by
the following result:

Proposition 2.2.5. Let Q ∈ Sym(5,Z) such that d2(Q) 6= 1 and d3 = 1. Let m
be an integer such that m 6= 1 and m | d2(Q). There exist two 5× 5 matrices with

integral entries G and Qf , with G unimodular, and such that:

mQf = tGQG

detQf =
1

m
detQ

Proof. We �rst compute the SNF of Q, so that D = UQV where D, U , V have
integral entries and U and V are unimodular. We apply the change of basis given
by the matrix V . The quadratic form Q′ = tV QV is equivalent to the form Q and
its �rst two rows and columns are divisible bym. Denote by Q3 the restriction of Q′

to the space spanned by the last three columns of the matrix V . This corresponds
to the submatrix (Q3)i,j = (Q′)i,j with 3 ≤ i ≤ 5, 3 ≤ j ≤ 5. We now want to have
Q31,1 ≡ 0 (mod m). We apply a Gram�Schmidt orthogonalization process to the
matrix Q3 modulom. If we �nd a noninvertible element modulom, this means that
we have found a factor of m. In that case we start the process again by replacing m
by its divisor. During the process, if we �nd a vector whose norm is 0 modulom, we
just have to skip this step since this vector is exactly the one we need. Otherwise
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the process ends and gives us a change of basis such that in this new basis, the
form Q3 (mod m) has the shape: a 0

b
0 c

 (mod m)

We must now solve the following quadratic equation:

ax2 + by2 + cz2 ≡ 0 (mod m)(3)

Since we do not want to factor m, we have to use a method which does not use its
factorization. Such a method is described in [6]: if the coe�cient a is not invertible
modulo m we have found a factor of m, so we can continue the process with both
factors, obtain the solution for each of them and combine them using the Chinese
remainder theorem and Hensel lifting if needed. We are thus reduced to the case
where a is invertible modulo m. Solving equation (3) is equivalent to solving the
equation:

x2 + ba−1y2 ≡ −ca−1z2 (mod m)(4)

If we take the arbitrary choice z = 1, we have exactly the type of equation that is
solved in [6]. We thus use this method to obtain a solution S of (3). We complete
the single vector family {S} to a unimodular matrix G, and we extend the matrix
G to a matrix G′ of dimension 5 by taking the identity matrix Id5 and replacing
the 3× 3 lower�right block by G. We now apply G′ to Q′ and obtain Q′′ which has
the form:

tG′Q′G′ = Q′′ =


mM2,2 mM2,3

m∗ ∗ ∗
mM3,2 ∗ ∗ ∗

∗ ∗ ∗


where the ∗ are integers. It is now possible to use the same methods explained in
the previous cases: we multiply the last rows and columns by m and divide the
whole matrix by m. �

Remark 4. The case where we �nd a factor of m practically never happens. The
reason is simply that the forms used to test the algorithm always have a determinant
which is very hard to factor. So �nding a factor in such a way is quite hopeless.

The corresponding algorithm is the following:

Algorithm 4 (Minimization 2).
Input: Q ∈ Sym(5,Z) such that d2(Q) 6= 1 and d3(Q) = 1, m 6= 1 ∈ Z dividing
d2(Q).
Output: Qf : a form equivalent form to Q; G : the corresponding change of basis
such that m′Qf = tGQG with 1 < m′ | m.

Step 1: compute the SNF of Q with the algorithm described in [4]

Step 2: set G := V ; Q := tGQG
Step 3: let Q3 be the 3× 3 bottom�right submatrix of Q
Step 4: apply a modified Gram�Schmidt orthogonalisation process

(see below) to Q3 and m
Step 5: if the Gram�Schmidt process returns a vector, store it

in S and go to 10. If it returns an integer m′, go back

to 4 with m = m′

Step 6: denote by D3 the returned matrix and by G3 the

corresponding change of basis
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Step 7: let d = gcd(D3[1, 1],m). If d 6= 1, go back to 5 with m = d
Step 8: use the Pollard�Schnorr algorithm [6] to solve:

X2 + D3[2,2]
D3[1,1]Y

2 ≡ −D3[3,3]
D3[1,1] (mod m). Let S be a solution.

Step 9: set S := [S, 1]
Step 10: let H be a 3× 3 matrix whose first column is

equal to S and whose columns form a Z3 basis.

This can be done using the Hermite Normal Form algorithm

Step 11: set G3 := G3 ×H
Step 12: let G̃ be the block�diagonal 5× 5 matrix such that the

2× 2 upper�left block is the identity and the 3× 3
bottom�right block is equal to G3

Step 13: set G := G× G̃; Q′ := 1
m

tGQG
Step 14: apply the LLL algorithm to reduce Q′, and denote by Qf the

returned form and by G′ the corresponding change of basis

Step 15: set G := G×G′
Step 16: return Qf, G

2.2.5. The minimization algorithm. We can now give the complete algorithm that
minimizes an integral quadratic form of dimension 5:

Algorithm 5 (Minimization).
Input: Q ∈ Sym(5,Z).
Output: Qt ∈ Sym∗(5,Z) equivalent to Q; B: the corresponding change of basis.

Step 1: set Qt := Q
Step 2: compute D the SNF of Q
Step 3: if d1 = detQ, go to 8

Step 4: if d5 6= 1 i := 5
Step 5: let i ≤ 5 be such that di 6= 1 and di+1 = 1 or di = d5 if d5 6= 1
Step 6: set B := Id5

Step 7: while d1 6= det(Qt):
(a) switch according to i:

case i = 5 : apply algorithm 1 to Qt and di
case i = 4 : apply algorithm 2 to Qt and di
case i = 3 : apply algorithm 3 to Qt and di
case i = 2 : apply algorithm 4 to Qt and di

(b) let Qf and G be the returned matrices

(c) set Qt := Qf; B := B ×G
(d) compute the SNF D of Qt
(e) let di be the diagonal coefficient of the SNF of Qt

such that di 6= 1 with di+1 = 1 and di = d5 if d5 6= 1
Step 8: return Qt, B

Remark 5.

• This algorithm computes the Smith Normal Form at any step. To do this,
it is strongly recommended to use the method described in [4] which is
optimized and also gives the corresponding matrices U and V .

• In this algorithm, we do not use a divisor m of di, but di itself. Using a
divisor would force the algorithm to use factorization.

• Algorithms 2, 3, and 4 include a reduction step using an LLL algorithm
for inde�nite quadratic forms given in [9]. This reduction is done to have
concrete bounds for the size of the coe�cients at the end of the algorithm.

2.3. Reducing the even part of the determinant. After performing the min-

imization step, we get a form whose coe�cient d2 is equal to 1. We now need to
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have an equivalent form whose determinant is odd. This is performed by what we
call the reducing the even part step.

Lemma 2.3.1. Let Q ∈ Sym∗(5,Z) be inde�nite. Let v be the quotient in the

Euclidean division of the 2�adic valuation of detQ by 2. There exist two matrices

Q′ and G such that:

detG =
1

2v

Q′ = tGQG

v2(detQ′) = 0 or 1

Q′ ∈ Sym∗(5,Z)

Proof. If detQ is odd, we simply take G = Id5 and Q′ = Q. Thus assume that
v2(detQ) 6= 0. We compute the SNF of Q and obtain unimodular integer matrices
U , V and a diagonal matrix D such that D = UQV , and d1,1 = |detQ|. Since
d2(Q) = 1 the other diagonal coe�cients of D are all equal to 1. We apply to Q
the change of basis given by the matrix V . The �rst row and the �rst column of
Q′′ = tV QV are divisible by 2v2(detQ). Let v be the quotient in the Euclidean
division of the 2�adic valuation of detQ by 2, F be the diagonal matrix whose
upper-left entry is equal to 1

2v and the others equal to 1. If v2(detQ) is even, the
determinant of tFQ′′F = Q′ is odd. Otherwise the determinant of Q′ is divisible by
2 but not by 4. So we take G = V × F . It remains to show that Q′ ∈ Sym∗(5,Z).
We know that Q ∈ Sym∗(5,Z). Since the change of basis given by the SNF is
unimodular the invariant factors have not changed during the process. The last
operation is done on the �rst column and only with a power of 2 so it also does not
change the invariant factors, so we have Q′ ∈ Sym∗(5,Z). �

The corresponding algorithm is as follows:

Algorithm 6 (Reduction of the even part - 1).
Input: Q ∈ Sym∗(5,Z) inde�nite, of dimension 5, of determinant ∆.
Output: Q′ ∈ Sym∗(5,Z) inde�nite, of determinant 2kn with n odd and k ≡
v2(detQ) (mod 2), Q′ equivalent to Q; G the corresponding change of basis.

Step 1: if ∆ ≡ 1 (mod 2), return Q, Id5

Step 2: set G := Id5

Step 3: let v2 be the 2�adic valuation of ∆
Step 4: let v be the quotient in the Euclidean division

of v2 by 2
Step 5: let U, V and D be the matrices given by the SNF of Q

such that D = UQV
Step 6: set Q′ := tV QV ; G := G× V
Step 7: let H be the diagonal matrix such that H1,1 = 1

2v and

Hi,i = 1 otherwise

Step 8: set Q′ := tHQ′H; G := G×H
Step 9: return Q′, G
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Lemma 2.3.2. Let Q ∈ Sym∗(5,Z) inde�nite and such that detQ = 2k, k ∈ Z,
odd. There exist two matrices Q′ and G such that:

detG =
1

23

Q′ = 2× tGQG

detQ′ ≡ k (mod 2)

Proof. As in proof of the previous lemma, we begin by computing the Smith Normal
Form of Q to obtain integer matrices U , V unimodular and D diagonal such that
D = UQV and d1,1 = |detQ|. We apply to Q the change of basis given by the
matrix V and obtain Q′ which has the following form:

Q′ = tV QV =


2∗ 2∗

2∗
Q1

∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


We are now interested in the form Q1 which is the restriction of the form Q to the
subspace generated by the second and third vectors of the basis. Denote this form

by the following matrix:

[
a b
b c

]
. We are looking for a change of basis such that

the coe�cient a in the new basis will be even. This means that we want a pair (x, y)
such that ax2 + cy2 ≡ 0 (mod 2). We solve this equation, apply the corresponding
change of basis to Q1, and we multiply the whole matrix by 2. The determinant
of the form is now divisible by 26 but not by 27. We rescale the �rst two vectors
by a factor 2. The determinant is now divisible by 22. We then compute the SNF
of this matrix and apply the change of basis according to the matrix V . Since the
determinant is divisible by 4, we have two possibilities: if the kernel modulo 2 has
dimension 1, the �rst row and the �rst column are divisible by 2 and the upper left
coe�cient is divisible by 4. In this case, we rescale the �rst vector by 2. Otherwise,
the kernel has dimension 2. In this case, the �rst two rows and columns are divisible
by 2. Consider the upper�left 2 × 2 block of the matrix. This corresponds to the
the restriction of the form to the subspace generated by the �rst two vectors of the
basis. We are going to apply a change of basis such that the upper�left coe�cient
will be divisible by 4. This corresponds to solving the equation ax2 + cy2 ≡ 0
(mod 2) which can be done as explained above. Once the change of basis is done,
we simply rescale the �rst vector by 2. In such a basis, the determinant of the form
is now odd. It remains to show that this form belongs to Sym∗(5,Z). Indeed, since
the determinants of the changes of basis that we have applied are all equal to a
power of 2 they are invertible modulo the odd primes factors of the determinant
of the form, and it follows that the rank of the form is unchanged, so we have
Q′ ∈ Sym∗(5,Z). �

The corresponding algorithm is as follows:

Algorithm 7 (Reduction of the even part - 2).
Input: Q ∈ Sym∗(n,Z) inde�nite, with detQ = ∆ = 2kn with n odd and k = 0 or
1.
Output: Q′, a form in Sym∗(5,Z) with odd determinant and same solutions as Q
up to a change of basis; G the corresponding change of basis.

Step 1: if ∆ ≡ 1 (mod 2) return Q, Id5

Step 2: set G := Id5
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Step 3: let v be the 2�adic valuation of ∆
Step 4: let U, V and D be the matrices given by the SNF of Q

such that D = UQV
Step 5: Q′ := tV QV ; G := G× V
Step 6: if (q′2,2, q

′
3,3) ≡ (1, 1) (mod 2)

(a) set H := Id5; H[3, 2] := 1
(b) set Q′ := tHQ′H; G := G×H

Step 7: if (q′2,2, q
′
3,3) ≡ (1, 0) (mod 2)

(a) set H :=


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0


(b) set Q′ := tHQ′H; G := G×H

Step 8: set Q′ := 2×Q′
Step 9: set P := Id5; P [2, 2] := 1

2

Step 10: set Q′ := tPQ′P; G := G× P
Step 11: let U ′, V ′ et D′ be the matrices given by the SNF of Q′

such that D = UQ′V
Step 12: set Q′ := tV ′Q′V ′; G := G× V ′
Step 13: if q′1,1 ≡ 0 (mod 4)

(a) set R := Id5; R[1, 1] := 1
2. Q′ := tRQ′R; G := G×R

(b) return Q′,G
Step 14: repeat steps 6 to 7b with (q′1,1, q

′
2,2)

Step 15: set R := Id5; R[1, 1] := 1
2; Q′ := tRQ′R; G := G×R

Step 16: return Q′, G

2.4. Completion. We now explain how to complete the form to a form of di-
mension 6 in the way announced in Section 2.1, and in particular how to choose
the value of z. Controlling this value will allow us to change the signature of the
completed form Q6.

Lemma 2.4.1. Let Q ∈ Sym(5,Z), inde�nite, with signature (r, s) and determinant

∆. Let X be a 5�dimensional column vector with integral entries and β be a coset

representative of the coset of tX Co(Q)X modulo ∆. Let z :=
tX Co(Q)X−β

∆ and

Q6 =

[
Q X
tX z

]
. The signature of Q6 changes according to the value of β in the

following way:

Signature of Q6 β > 0 β < 0
det(Q) > 0 (r, s+ 1) (r + 1, s)
det(Q) < 0 (r + 1, s) (r, s+ 1)

Moreover we have β = −detQ6.

Proof. As seen in Section 2.1, the formula (2) gives us the determinant of the
form Q6: detQ6 = z detQ − tX Co(Q)X. We also have de�ned the quantities :
β = tX Co(Q)X; β a coset representative of the coset of β modulo ∆ which is also
equal to β − z∆ = −detQ6. Since the link between Q and Q6 is the addition of a
row and a column, if we consider the restriction of Q to the subspace generated by
the �rst 5 vectors of the basis, we get back exactly the form Q. Thus if we add a row
and a column, we do not change its signature on this subspace. It follows that we
can deduce the signature of Q6 from the signature of Q by simply considering the
sign of their determinant. Indeed, we know that sgn(detQ) = (−1)s. If detQ > 0,
we have s ≡ 0 (mod 2). We take β > 0 and have detQ6 < 0. We have changed the
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sign of the determinant, so the signature of Q6 is (r, s + 1). The others cases are
done in the same way, and combining them gives the above array. �

In order to be able to compute a solution, we need the signature (u, v) of Q6

to satisfy u ≥ 2 and v ≥ 2. The following algorithm will choose the value of β so
that this is satis�ed. The algorithm for completing the form and controlling the
signature is the following:

Algorithm 8 (Completion).
Input: Q: an inde�nite, nondegenerate dimension 5 integral quadratic form; k ≥ 1
an integer.
Ouput: Q6: an inde�nite, nondegenerate dimension 6 integral quadratic form with

signature (r, s) such that r ≥ 2 and s ≥ 2, of the form:

[
Q X
tX z

]
, and such that

|detQ6| < k |detQ|.
Step 1: compute the signature (r, s) of Q.
Step 2: choose an integer vector X whose coordinates are in the

integral interval [0, |detQ|5 [
Step 3: set β := tX Co(Q)X, β := β (mod detQ) with 0 ≤ β < |detQ|
Step 4: if r = 1

(a) if detQ > 0, set β := β − |detQ|
Step 5: if s = 1, set β := β − detQ

Step 6: set z :=
β − β
detQ

Step 7: add a random multiple of |detQ| to β so that

|detQ6| < k |detQ| while respecting the signature

condition, and update the value of z

Step 8: return Q6 =

[
Q X
tX z

]
Remark 6.

• The bounds on X in Step 2 are chosen in this way since everything is
then reduced modulo detQ. Changing the bounds would not change the
complexity of the whole algorithm.

• At the end of the algorithm, the determinant of Q6 is always equal to β.
This is a consequence of the choice of the value of z.

• We will use this algorithm until we obtain a β of the form 2× p with p an
odd prime number. This choice will be explained in section 2.5.

2.5. Computing a solution. The complete algorithm for �nding a nonzero iso-
tropic vector for a quadratic form dimension 5 without factoring the determinant
is as follows:

Algorithm 9 (Solving).
Input: Q, an integral inde�nite, nondegenerate quadratic form of dimension 5.
Output: X, a nonzero integral isotropic vector for Q.

Step 1: apply the minimization algorithm 5 to Q
Step 2: apply algorithms 6 and 7 to the result of step 1

Step 3: apply the completion algorithm 8 to the result of

step 2 until the determinant of the returned form Q6 is

equal to ±2p where p is an odd prime number

Step 4: solve the equation tXQ6X = 0
Step 5: write Q6 = H ⊕Q4 where H is a hyperbolic plane

Step 6: solve the equation tXQ4X = 0
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Step 7: write Q4 = H ′ ⊕Q2 where H ′ is a hyperbolic plane

Step 8: deduce from the previous steps a solution S to the

equation tXQX = 0
Step 9: return S

Theorem 2.5.1. Let Q be an integral inde�nite, nondegenerate quadratic form of

dimension 5. The algorithm 9 outputs a nonzero integral vector S that is a solution

to the equation tXQX = 0 without factorizing any integer.

Remark 7. The above algorithm is based on the fact that the method developed
by Simon in [9] is very e�cient as soon as the factorization of the determinant of
the form is known. This theorem shows that there exists an e�cient algorithm
even when the factorization is not known or when it is not possible to factor the
determinant in a reasonable amount of time.

Proof. This proof follows the steps of the algorithm. We are going to divide the
proof in the same way as the algorithm is divided :

1: Minimizations
2: Reducing the even part
3: Choice of the signature and completion of Q while imposing the form of

the determinant
4: Computing a solution for Q6

5: Decomposition in a sum with a hyperbolic plane
6: Computing a solution for Q4

7: Decomposition in a sum with a hyperbolic plane
8: Computing a solution for Q

Step 1: we apply algorithm 5 to Q. At the end of this step, we have a form Q(2) ∈
Sym∗(5,Z) equivalent to Q, an invertible matrix G2, and a nonzero rational number
λ(2) such that Q(2) = λ(2) tG2QG2.
Step 2: we successively apply algorithms 6 and 7 to Q(2) in order to have a form with
an odd determinant. At the end of this step, we obtain a form Q(3) ∈ Sym∗(5,Z)
equivalent to Q, an invertible matrix G3, and a nonzero rational number λ(3) such
that Q(3) = λ(3) tG3Q

(2)G3 and the determinant ∆ of Q(3) is odd.
Step 3: we apply algorithm 8 and choose k = 106 (the value of k will be detailed
in a further paper) until the determinant of the returned form is equal to ±2p
with p an odd prime number; the condition 2 × p is necessary because of some
conditions on local solubility at 2. It is possible to show that a vector X verifying
these conditions can always be found e�ciently by using an e�ective version of the
Cebotarev density theorem [5]. At the end of this step, we have a form Q6 whose
restriction to the subspace generated by the �rst 5 vectors of the basis is equal to
Q(3), whose determinant is equal to ±2p with p an odd prime number, and whose
signature (r, s) is such that r ≥ 2 and s ≥ 2.
Step 4: we use the algorithm described in [9], and obtain a nonzero integral vector
T such that tTQ6T = 0. We divide T by the GCD of its coordinates in order to
have T primitive.
Step 5: this step consists in �nding a hyperbolic plane containing the vector T . The
existence of such a plane is given by the result in [7, p.55, Proposition 3.]. We �rst
write the form Q6 in a unimodular basis whose �rst vector is the vector T (the
basis can be found by using the HNF of a primitive vector), we denote by G4 such

a change of basis. We then have Q
(1)
6 = tG4Q6G4 and the upper�left coe�cient

is 0. Let R = (Q
(1)
6 [1, 2], Q

(1)
6 [1, 3], Q

(1)
6 [1, 4], Q

(1)
6 [1, 5], Q

(1)
6 [1, 6]), and let G5 be

a unimodular matrix such that RG5 = (a, 0, 0, 0, 0), where a is the GCD of the
coe�cients of the vector R. Since a divides the �rst row and the �rst column of
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the matrix Q
(1)
6 we have a2 | det(Q

(1)
6 ), but since det(Q

(1)
6 ) = ±2p with p prime,

we must therefore have a = 1. Such a G5 matrix is given by the HNF of the vector

R. We can now set G6 =

[
1 0
0 G5

]
, and we then have:

Q
(2)
6 = tG6Q

(1)
6 G6 =


0 1 0 0 0 0
1 b2 b3 b4 b5 b6
0 b3 ∗ ∗ ∗ ∗
0 b4 ∗ ∗ ∗ ∗
0 b5 ∗ ∗ ∗ ∗
0 b6 ∗ ∗ ∗ ∗


Now let G7 be the following matrix:

G7 =


1
[−b2

2

]
−b3 −b4 −b5 −b6

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


We have det(G7) = 1, and

Q
(3)
6 = tG7Q

(2)
6 G7 =


0 1 0 0 0 0
1 α 0 0 0 0
0 0

Q4
0 0
0 0
0 0


where Q4 ∈ Sym(4,Z). We also have detQ4 = − detQ6. The coe�cient in this
matrix is either 0 or 1 according to the parity of the coe�cient b2, but it will not
change anything in the rest of the algorithm. We regroup all the changes of basis

and set G8 = G4 ×G6 ×G7. We then have Q
(3)
6 = tG8Q6G8. This step ends with

the computation of the matrices Q
(3)
6 and G8.

Step 6: We now work on the quadratic form Q4 de�ned above. Its determinant
is −detQ6, which is still equal to ∓2p with p a prime number. We are going to
show that the equation tXQ4X = 0 has a nontrivial solution: we know that Q4

is inde�nite; indeed, the form Q(3) has been completed in order to have r ≥ 2
and s ≥ 2. We have decomposed this form into the sum of a hyperbolic plane
and a dimension 4 quadratic form Q4, but the signature of a quadratic form on a

hyperbolic plane is (1, 1), and Q
(3)
6 has the same signature as Q6, so the signature

Q4 is (r − 1, s− 1) and we have r − 1 ≥ 1, s− 1 ≥ 1, showing that Q4 is inde�nite
hence that there exists real solutions. We now need to show the existence of a
solution over Q` for every prime number `. If ` is an odd prime number not
dividing detQ4, the consideration of Hilbert symbols shows that solutions always
exist. Two cases remains: ` = 2 and ` | detQ4. We know that detQ4 = ±2p is not
a square neither in Q2 nor in Qp since the valuations are odd and p 6= 2, so there
exist local solutions, and using the Local�Global principle allows us to conclude.
Since solutions exist, we can now use Simon's algorithm to compute such a solution,
and since the determinant is equal to ±2p with p prime, we do not need to use any
factorization. We denote by R a primitive solution.

Step 7: This step is the same as the step 5, but the work is done over the form Q
(1)
4 .

Let B be the corresponding change of basis.
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Step 8: We have to recall the changes of basis done on the matrix Q4. We set:

G9 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0

B
0 0
0 0
0 0


and:

P = G8 ×G9

We thus have a matrix P such that:

tPQ6P =


0 1

0 0
1 α

0
0 1

0
1 β

0 0 Q2


with α, β = 0 or 1. We note that the �rst and the third columns of P are solutions
of the equation tXQ6X = 0. But they also are orthogonal vectors for Q6. It follows
that every linear combination of these vectors still is a solution for Q6. We now
consider a combination such that the last coordinate is 0, denote it by J . We then
have:

J =

 U

0

 with U ∈ Z5

We know that tJQ6J = 0, but we give the computation in detail:

tJQ6J =
[

tU 0
]  Q(3) X

tX z


 U

0


= tUQ(3)U

= 0

Thus U is a nonzero solution to the equation tXQ(3)X = 0. We then set S =
G2G3U , and we have tSQS = 0. And we are �nally done. �

Remark 8. The condition of having the determinant equal to ±2× p with p an odd
prime is necessary due to the condition of local solubility over Q2. The 2 can be
replaced by 22k+1 with k ∈ N, but the analysis is much more complicated in this
case and it practically does not a�ect the running time of the algorithm.

Remark 9. The complexity of the algorithm is not done here, but the number of
vectors X that we need to try in Step 3 until we have a determinant of the desired
shape is O (log |detQ|).

2.6. Generalization to higher dimensions. The algorithm given above is for
quadratic forms of dimension 5. It is easy to generalize it to higher dimensions:
indeed, since the algorithm needs a form of dimension 5 as an input, if the given
form has a larger dimension, we simply need to restrict the form to a subspace of
dimension 5. The only condition required is that the restriction of the form must
have a signature (r, s) that veri�es r ≥ 1 and s ≥ 1 so that the decomposition as
the sum of two hyperbolic planes is possible. When a solution to the restriction
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is found, we simply lift the solution to the original space by setting the remaining
coordinates to 0.

3. Overview of the performances

This algorithm has been implemented in the PARI/GP language, see [10]. Since
the proof of the complexity of this algorithm requires a considerable amount of
additional work it will not be detailed here, but will be explained in a further work.
However, we give an overview of the global performances of the algorithm with the
two following �gures. The comparisons are made with the method given by Simon in
[9] and [8]. These algorithms have also been implemented in the PARI/GP language
and can downloaded from the author's webpage (http://www.math.unicaen.fr/
~simon)
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6 Algorithm 9
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These values have been computed by averaging over 100 random forms for each
point. The forms are the same for each algorithm. We can clearly observe the fact
that the factorization of the determinant makes Simon's algorithm very slow for
determinants with size larger than 50 digits.
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16 PIERRE CASTEL

The same comparison, but this time, the method used for building the forms is
made in such a way that the algorithm often needs to do minimizations. We still
can see the �wall� due to the factorization of the determinant in Simon's method.
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