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Abstract. We describe a method for bounding the rank of an elliptic curve

under the assumptions of the Birch and Swinnerton-Dyer conjecture and the
generalized Riemann hypothesis. As an example, we compute, under these

conjectures, exact upper bounds for curves which are known to have rank at

least as large as 20, 21, 22, 23, and 24. For the known curve of rank at least
28, we get a bound of 30.

1. Introduction

Determining the rank of an elliptic curve is a difficult problem, and there is
currently no known unconditional algorithm for determining the rank of a given
curve. The basic method for rigorously determining the rank of a curve is to find
an upper bound for the rank by computing the size of some Selmer groups and to
find a lower bound for the rank by finding enough independent rational points. In
theory, if one continues this process long enough, and the Shafarevich-Tate group
of the curve is finite, the upper and lower bounds should eventually coincide and
the rank will be determined exactly.

In practice, things are not so simple. Finding points on the curve is sometimes
not too bad, but the upper bounds for the rank are more problematic. Even the
computation of the 2-Selmer rank is difficult, and it becomes prohibitively time
consuming as the coefficients of the elliptic curve grow; it is easy to write down
a curve for which the state of the art program for computing the 2-Selmer group,
John Cremona’s mwrank [5], will effectively take “forever.”

If one is willing to accept the Birch and Swinnerton-Dyer conjecture that the
rank of an elliptic curve is the same as the order of vanishing of its L-function
at the central point, then it is possible to use the L-function to get information
about the rank. In fact, when the order of vanishing is between 0 and 3, it can
be possible to compute the L-function to enough precision and use some extra
information about the curve to determine the analytic rank exactly, as is done in
[3], for example. When the rank is larger than this, though, currently the best one
can do is determine that the first r derivatives of the L-function are very close to
0, and the (r + 1)-st is not, which will provide a very good guess for the rank and
a rigorous upper bound, assuming BSD.

This approach has its own problems, as it is much easier to write down a curve of
large conductor than it is to compute the L-function of such a curve. For example,
the known curve of rank at least 28 [7], which we will write down later, has conductor
N ≈ 3.5 × 10141, and current methods (such as those described in [17]) typically

require summing on the order of
√
N terms to compute the central value of the
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L-function. (It would take a computer about 1053 cpu-years just to add 1 to itself
1070 times.)

We present here a third method which is rather effective at bounding the rank,
especially when the rank is large compared to the conductor, as long as one is
willing to assume both the Birch and Swinnerton-Dyer conjecture and the Riemann
Hypothesis for the L-function of the curve. This method is not completely new. It
is based on Mestre’s method [14] for (conditionally) bounding the rank of an elliptic
curve based only on its conductor, and it was used by Fermigier [9] to study ranks
of elliptic curves in certain families. However, it does not seem to have gained much
traction and does not seem to have been used much, if at all, since.

The idea, in brief, is as follows. Take f(x) to be a function such that f(0) = 1 and
f(x) ≥ 0 for all real x. Then, assuming the Riemann hypothesis, the sum

∑
f(γ),

where 1/2+ iγ runs over the nontrivial zeros of L(s, E) (counted with multiplicity),
will be an upper bound for the analytic rank of E. Moreover, for certain choices
of f(x) this sum may be efficiently evaluated using the explicit formula for the
L-function attached to E.

This method has recently been implemented by the author, and is available as
part of William Stein’s PSAGE [19] add-ons to Sage [20]. As an example of what
it can do, we will examine 6 curves that are known to have rather large rank.
We denote these curves as En, n = 20, 21, 22, 23, 24, 28, where n is a known lower
bound for the rank. We will write down these curves later (they are all taken from
A. Dujella’s website [6], and at the time of discovery each held the record for the
curve with largest number of known independent rational points). The exact rank
is not known for any of these curves. However, conditionally we may claim

Theorem 1.1. Assuming BSD and GRH, En has rank exactly n for n = 20, 21, 22,
23, and 24, while E28 has rank 28 or 30.

Remark 1.2. Around the time that I was writing this paper, Andrew Booker and Jo
Dwyer were able to exactly compute the rank of E28, again assuming the Birch and
Swinnterton-Dyer conjecture and the Riemann Hypothesis for L(s, E28). They use
the method described here, but by using the optimization procedure described in
Section 3 of [1] they are able to select a better test function as input to the explicit
formula, and they get a correspondingly better bound.
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2. Bounding ranks

2.1. The method. Let

L(s, E) =

∞∑
n=1

an
ns

=
∏
p

Lp(s, E)−1

be the L-function of an elliptic curve, normalized so that the completed L-function
Λ(s, E) = εΛ(1− s, E), and let cn be defined by

−L
′(s, E)

L(s, E)
=
∞∑
n=1

cn
ns
.

More explicitly, if we define α(p) and β(p) by

Lp(s, E) = (1− α(p)p−s)(1− β(p)p−s),

(note that α and β are only well defined up to permutation, and that at least one
of them will be 0 when p is a prime of bad reduction), then

(1) cpm =
(
α(p)m + β(p)m

)
log p,

and cn = 0 when n is not a prime power.
Our main tool will be the explicit formula for L(s, E), which we state in a friendly

form in the following lemma.

Lemma 2.1. Suppose that f(z) is an entire function with f(x+ iy)� x−(1+δ) for
|y| < 1 + ε, for some ε > 0, and that the Fourier transform of f

f̂(y) =

∫ ∞
−∞

f(x)e−2πixydx

exists and is such that
∞∑
n=1

cn
n1/2

f̂

(
log n

2π

)
converges absolutely. Then

(2)
∑
γ

f(γ) = f̂(0)
logN

2π
− f̂(0)

log 2π

π
+

1

π
<
{∫ ∞
−∞

Γ′

Γ
(1 + it)f(t)dt

}

− 1

2π

∞∑
n=1

c(n)

n1/2

(
f̂

(
log n

2π

)
+ f̂

(
− log n

2π

))
,

where 1/2+iγ runs over the nontrivial zeros of L(s, E), where E is an elliptic curve
with conductor N .

Proof. A proof of the explicit formula in this form, or in a similar form, can be
found in various sources, e.g. [11, Theorem 5.12], so we give only a brief sketch.
The idea is to integrate the function

F (s)
L′(s, E)

L(s, E)
,
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where F (1/2 + is) = f(s), on a vertical line to the right of the critical strip and,
in the reverse direction, on a vertical line to the left of the critical strip. By the
residue theorem, this integral will be equal to 2π

∑
γ f(γ). One now applies the

functional equation to write the integral in the left half-plane as an integral in the
right half-plane.

The sum over the Fourier coefficients of f arises from shifting contours to the
region of absolute convergence and using the Dirichlet series for L′(s)/L(s), while
the other terms arise from shifting the remaining integrals to the line <(s) = 1/2.

The conditions on f(z) are exactly those needed to make sure that this process
can go through without trouble. Of course, it is also important that L(s, E) is
entire and that it satisfies a functional equation [24, 22, 2]. �

A convenient function to use in an application of the explicit formula is

f(z) = f(z; ∆) =

(
sin(∆πz)

∆πz

)2

,

which has the simple Fourier transform

f̂(x; ∆) =

(
1

∆

)(
1−

∣∣∣ x
∆

∣∣∣) , |x| < ∆.

With this choice of f , equation (2) takes the form

(3)
∑
γ

f(γ; ∆) =
logN

∆2π
− log 2π

∆π
+

1

π
<
{∫ ∞
−∞

Γ′

Γ
(1 + it)f(t; ∆)dt

}

− 1

∆π

∑
p≤exp(2π∆)

log p

b2π∆/ log pc∑
k=1

1

pk/2
(
α(p)k + β(p)k

)(
1− k log p

2π∆

)
.

Since f(γ; ∆) ≥ 0 as long as γ is real, and f(0; ∆) = 1, equation (3) will give
an upper bound for the order of vanishing of L(s, E) at s = 1/2, as long as the
Riemann Hypothesis holds for L(s, E). And if ∆ is not too large, we can quickly
evaluate the right hand side of equation (3) to calculate this upper bound. It is
also worth noting that, assuming RH,

− lim
∆→∞

1

∆π

∑
p≤exp(2π∆)

log p

b2π∆/ log pc∑
k=1

1

pk/2
(
α(p)k + β(p)k

)(
1− k log p

2π∆

)
= ords=1/2L(s, E)

so that, in principle, we should be able to get as good a bound for the rank as we like
through this method. However, as the length of the prime sum grows exponentially
in ∆, this method quickly becomes infeasible once ∆ gets a little larger than 4.

2.2. Some curves. As an example, we examine 6 elliptic curves from Dujella’s
online tables. They are

E20 : y2 + xy = x3 − 431092980766333677958362095891166x

+ 5156283555366643659035652799871176909391533088196,

E21 : y2 + xy + y = x3 + x2 − 215843772422443922015169952702159835x

− 19474361277787151947255961435459054151501792241320535,
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Curve logNE ∆
∑
γ f(γ; ∆) logNE

2π∆

E20 170.09 2.0 21.70 13.54
E21 196.68 2.5 22.68 12.52
E22 182.72 2.0 23.71 14.54
E23 205.06 2.5 24.49 13.05
E24 219.93 2.5 25.57 14.00
E28 325.90 3.2 31.30 16.21

Table 1. Computed upper bounds for the ranks of some curves,
along with a heuristic guess of what these bounds should for a
typical elliptic curve. The sum over the zeros here is rounded up;
other numbers are rounded to nearest.

E22 : y2 + xy + y = x3 − 940299517776391362903023121165864x

+ 10707363070719743033425295515449274534651125011362,

E23 : y2 + xy + y = x3 − 19252966408674012828065964616418441723x

+ 32685500727716376257923347071452044295907443056345614006,

E24 : y2 + xy + y = x3 − 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116,

and

E28 : y2 + xy + y = x3 − x2 −
(

20067762415575526585033208× 1030

+ 209338542750930230312178956502

)
x

+

(
3448161179503055646703298569039072037485594× 1040

+ 4359319180361266008296291939448732243429

)
.

Each En has n known independent rational points of infinite order, so has at
least rank n. (See [15, 16, 10, 12, 13, 7], or [6] for quick reference.) Using the
methods described above, we compute rank bounds for each of these curves. These
are listed in Table 1. The global root number can be computed for each curve. (In
Sage, E.root number(), which uses PARI [23], will finish quickly for E20, E21, and
E22 and within a few hours for E23 and E24. For E28 it is best to see the mailing list
discussion which gives the factorization of the discriminant [8].) In each case the
root number agrees with the parity of the known number of independent points, so
to get a tight upper bound for the rank we only need to get within 2 of the number
of known independent points, and so the computation in Table 1 gives the proof of
Theorem 1.1.

2.3. Curves of small conductor. For further testing, this method was also run
on all elliptic curves up with conductor below 180000 (from Cremona’s tables [4])
using ∆ = 2.0, a computation which ran in under a day on a fast 8 core computer.
In this range there are 790677 isogeny classes of elliptic curves, and for all but 9882

isogeny classes it turns out that
⌊∑

γ f(γ; 2.0)
⌋

= rank(E); in the remaining cases,⌊∑
γ f(γ; 2.0)

⌋
= rank(E) + 1, so consideration of the root number of the curve

gives the exact rank.
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3. Further comments

3.1. Some evidence towards BSD. There is a way in which these computations
can be seen as giving mild evidence in support of the Birch and Swinnerton-Dyer
conjecture. The upper bound computed for a curve E is the value of the sum∑
γ f(γ; ∆), and as f(γ; ∆) decays fairly rapidly as γ grows, one does not expect

this sum to be very large for a typical elliptic curve.
To obtain a crude approximation to what we might expect the value of this sum

to be, consider that the local zero density of a typical L(s, E) near the central
point is approximately 2π

logNE
. Then, if the zeros are spaced uniformly at random

(an assumption that is not really correct, but is close enough to true for our crude
purposes), we might expect that∑

γ

f(γ,∆) ≈ logNE
2π

∫ ∞
−∞

f(t; ∆)dt =
logNE
2π∆

,

possibly with a small adjustment to take into account the parity of the rank. (More
precisely, we might expect that if we average this sum over all elliptic curves of
conductor close to NE , the answer will not be too far from this integral.) Thus,
when this sum is significantly larger than this estimate, it indicates an extreme
concentration of zeros near the central point. (It is also possible to arrive at more
refined version of this heuristic by considering the explicit formula. In such a case,
it is necessary to assume that the family of elliptic curves considered is large enough
that ap(E) averages to zero for each p, and we notice that the integral of the Γ-factor
plays a small role as well.)

As some further small evidence for this heuristic, we note that the average of

4π

logN

∑
γ

f(γ; 2.0)

over all isogeny classes up to 180000 is approximately .9638. The small difference
from 1 should be accounted for by the Γ-factor, which tends to push zeros away
from the central point.

It should also be possible to refine this heuristic somewhat to make a guess as
to what the sum should be for a high rank curve by making the assumption that a
zero of high order at the central point will push other zeros away.

3.2. Correctness tests. The method described here is simple enough that it is
easy to implement, which reduces the likeliness of bugs. It is still important to test
it where possible, however, in order to have more confidence in its correctness.

As described in Section 2.3, this code was run on every isogeny class up to
conductor 180000, and the fact that the computed upper bound for the rank was
never too small gives some confidence that the computation was done correctly. As
a further test, one can also compute many zeros for the L-function of an elliptic
curve of small conductor, compute the sum over zeros directly, and verify that it
agrees with our explicit formula implementation. Table 2 gives lists some example
curves with small conductor for which this was done. The agreement there is
between 10−5 and 10−6, which is roughly the precision to which the integral in the
explicit formula was calculated, and is in line with what should be expected using
what is a fairly small number of zeros.
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∆ = 2.0
E #zeros direct eq. (3) difference

11a 200000 0.00270875 0.00269961 9.17× 10−6

15a 200000 0.00483749 0.00482836 9.13× 10−6

17a 200000 0.00559516 0.00558605 9.11× 10−6

37a 200000 1.00369174 1.00368272 9.01× 10−6

118a 200000 1.00636141 1.00635255 8.86× 10−6

389a 159650 2.00947449 2.00946618 8.30× 10−6

5077a 85520 3.01508240 3.01507647 5.92× 10−6

11197a 70950 3.02102728 3.02102250 4.77× 10−6

∆ = 2.5
E #zeros direct eq. (3) difference

11a 200000 0.00172459 0.00172653 1.94× 10−6

15a 200000 0.00170962 0.00171159 1.96× 10−6

17a 200000 0.00250017 0.00250215 1.97× 10−6

37a 200000 1.00335149 1.00335352 2.03× 10−6

118a 200000 2.00585774 2.00586023 2.49× 10−6

389a 159650 3.00797500 3.00797902 4.02× 10−6

5077a 85520 1.00543612 1.00543825 2.14× 10−6

11197a 70950 3.01798029 3.01798504 4.75× 10−6

Table 2. Sum of f(γ; 2.0) and f(γ; 2.5) computed directly with
many zeros and using our implementation of Equation (3). The
curve lables correspond to isogeny classes in Cremona’s tables [4]
and the zeros were computed using Rubinstein’s lcalc [18].
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