ITERATED COLEMAN INTEGRATION
FOR HYPERELLIPTIC CURVES

JENNIFER S. BALAKRISHNAN

ABSTRACT. The Coleman integral is a p-adic line integral. Double Coleman
integrals on elliptic curves appear in Kim’s nonabelian Chabauty method, the
first numerical examples of which were given by the author, Kedlaya, and Kim
[3]. This paper describes the algorithms used to produce those examples, as
well as techniques to compute higher iterated integrals on hyperelliptic curves,
building on previous joint work with Bradshaw and Kedlaya [2].

1. INTRODUCTION

In a series of papers in the 1980s, Coleman gave a p-adic theory of integration on
the projective line [6], then on curves and abelian varieties [7, 8]. This integration
theory relies on locally defined antiderivatives that are extended analytically by the
principle of Frobenius equivariance. In joint work with Bradshaw and Kedlaya [2],
we made this construction explicit and gave algorithms to compute single Coleman
integrals for hyperelliptic curves.

Having algorithms to compute Coleman integrals allows one to compute p-adic
regulators in K-theory [6, 8], carry out the method of Chabauty-Coleman for finding
rational points on higher genus curves [11], and utilize Kim’s nonabelian analogue
of the Chabauty method [10].

Kim’s method, in the case of rank 1 elliptic curves, allows one to find integral
points via the computation of double Coleman integrals. Indeed, Coleman’s theory
of integration is not limited to single integrals; it gives rise to an entire class of
locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define iterated p-adic integrals [4, 6]

/Pan"'gl

which behave formally like iterated path integrals

/ol / / Fulta) -+ Fi(tr) dty - dty.

Let us fix some notation. Let C' be a genus g hyperelliptic curve over an unram-
ified extension K of Q, having good reduction. Let k = IF, denote its residue field,
where ¢ = p™. We will assume that C is given by a model of the form y? = f(z),
where f is a monic separable polynomial with deg f = 2¢g + 1.

Our methods for computing iterated integrals are similar in spirit to those de-
tailed in [2]. We begin with algorithms for tiny iterated integrals, use Frobenius
equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration to
correct endpoints. We begin with some basic properties of iterated path integrals.
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2. ITERATED PATH INTEGRALS

We follow the convention of Kim [10] and define our integrals as follows:

/pQ%“fn—lfn = /P e [ er /R"an_lmn_l) /ngm

P P P
for a collection of dummy parameters R,..., R,_1 and 1-forms &;,...,&,.
We begin by recalling some key formal properties satisfied by iterated path in-
tegrals [5].

Proposition 2.1. Let &,...,&, be 1-forms, holomorphic at points P,Q on C.
Then the following are true:

(1) fﬁﬁlfz“'fn =0,
(2) Xan permutations o fg We (i) Wo (ip) *** Wo(in) = H?:l ff Wi,
(3) f,?wil coewy, = (1) fgwin Ceewgy

As an easy corollary of Proposition 2.1(2), we have

Corollary 2.2. For a 1-form w; and points P,Q as before,

Q 1 ( Q \"
/ Wiy« + - Wi = — / Wi
P n! P

When possible, we will use this to write an iterated integral in terms of a single
integral.

3. p-ADIC COHOMOLOGY

We briefly recall some p-adic cohomology from [9], necessary for formulating the
integration algorithms.

Let C’ be the affine curve obtained by deleting the Weierstrass points from C,
and let A = K[z,y,2]/(y*> — f(z),yz — 1) be the coordinate ring of C’. Let Af
denote the Monsky-Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form

{ io: Bi(?), Bi(z) € Kz],deg B; < 29}7

y’L

1=—0C
further subject to the condition that v,(B;(x)) grows faster than a linear function
of i as i — d00. We make a ring out of these using the relation y? = f(z).
These functions are holomorphic on the space over which we integrate, so we
consider odd 1-forms written as

w= g(x,y)%, g(z,y) € AT,
Any such differential can be written as
(3.1) w=df + cowo + - -+ + Cag—1W2g—1,
with f € Af,¢; € K, and
wi:xi;l—z (i=0,...,2g—1).

Namely, the set of differentials {wi}?igl forms a basis of the odd part of the de
Rham cohomology of Af, which we denote as H},(C")~.
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To compute the p-power Frobenius action ¢* on Hi-(C’)~, one does the follow-
ing:
o Let ¢x denote the unique automorphism lifting Frobenius from I, to K.
Extend ¢x to AT by setting

o(x) = 2P
2P — F()P\ /2

ot = (14 2P

_ e (12) @D E) — f@)P)

Y ;( i > Yy ’
and
e use the relations
y> = f(x)

dz
2y
to reduce large powers of = and large (in absolute value) powers of y to
write ¢*(w) in the form (3.1).
This reduction process is known as Kedlaya’s algorithm [9], and we will repeatedly
use this algorithm to reduce iterated integrals involving w € AT% to iterated

d(z'y?) = (i "yt + jat f(2)y’ )

integrals in terms of basis elements w;.

4. INTEGRALS: LEMMAS

Recall that we use Kedlaya’s algorithm to compute single Coleman integrals as
follows:

Algorithm 4.1 (Coleman integration in non-Weierstrass disks [2]).
Input: The basis differentials (wz)fi 81, points P,Q € C(C,) in non-Weierstrass

residue disks, and a positive integer m such that the residue fields of P, Q are
contained in [Fpm.

Q 2g—1
Output: The integrals (fP wi)

=0
(1) Calculate the action of the m-th power of Frobenius on each basis element
(see Remark 4.2):

2g—1
((bm)*w,' =dh; + Z Mijw]‘.

=0

(2) By change of variables, we obtain

(4.1) 2gi(M— 1) /Q w; = hi(P) — hi(Q) — /qﬁm(P) w; — /j wi

=0 P P ™ (Q)

(the fundamental linear system). Since the eigenvalues of the matrix M
are algebraic integers of C-norm p™/2 # 1 (see [9, §2]), the matrix M — I

is invertible, and we may solve (4.1) to obtain the integrals || g wj.



4 JENNIFER S. BALAKRISHNAN

Remark 4.2. To compute the action of ¢™, first carry out Kedlaya’s algorithm to
write
2g—1

¢*w; = dg; + Z Bijw;.

Jj=0

If we view h, g as column vectors and M, B as matrices, induction on m shows that

h=¢""1(g) + B¢" 2(g) + -+ Box(B) - o5 *(B)g
M = Boég(B)--- o7 (D).

Note, however, that when points P,Q € C(C,) are in the same residue disk, the
“tiny” Coleman integral between them can be computed using a local parametriza-
tion, just as in the case of a real-valued line integral. This is also true when the
integrals are iterated (see Section 5).

However, to compute general iterated integrals, we will need to employ the ana-
logue of “additivity in endpoints” to link integrals between different residue disks.
First, let us consider the case where we are breaking up the path by one point.

Lemma 4.3. Let P,P’,Q be points on C such that a path is to be taken from P
to Q via P'. Let &,...,&, be a collection of 1-forms holomorphic at the points
P, P’',Q. Then the following statement holds:

/ & / i

Proof. We proceed by induction. The case n = 1 is clear. Let us suppose the
statement holds for n = k. Then we have that

/PQ§1“'§k+1=</ SEE > / rt1
(Z /Cf & / it1 - ) / Eh1
(4.2) </ & ) / k1
(4.3) +</5§1> </PP/52"'&<> (R)/PR&H
(4.4) +( 551...5,6_1/:/50 (Jas)/jgk+1

Q R
(4.5) + ( . 51"'§k> (R)/P Ehr1-

Observe that this last iterated integral (4.5) can be rewritten as

Q P’ R
< . 51"'§k> (R) </P §k+1+/P/ §k+1>,



ITERATED COLEMAN INTEGRATION FOR HYPERELLIPTIC CURVES 5

and that further, the terms from (4.2) through (4.4) give us

If/;a---&/Plfw--ng,

Thus we have

Q k-1 .Q !
/Pgl...gkﬂziz_% p/&.“&/p Civ1 Enm

Q P’ Q
+< . 51"'§k> </P 5k+1> +/Pl &1 €kt

k+1 Q P’

= 10+ & Siv1 Ehyt,

as desired. 0

Applying Lemma 4.3 twice, we obtain the following, which will be used to link
integrals between different residue disks:

Lemma 4.4 (Link lemma). Let points P, P',Q’,Q be on C such that a path is to be
taken from P to P’ to Q' to Q. Let &y, ...,&, be a collection of 1-forms holomorphic
at the points P, P', Q,Q". Then we have

/}D‘zl...gni/@?&...& i/}f'&“...gj/})’”%...gn

Below we record aspecific case of the link lemma, which we shall use throughout
this paper.

Example 4.5 (Link lemma for double integrals). Suppose we have two differentials
&o,&1. Then we have

/PQfofl/:/foflJr jlfofﬂr ijoflJr/Pplfl/?foJr/?/fl ;50.

5. TINY ITERATED INTEGRALS

We begin with an algorithm to compute tiny iterated integrals.

Algorithm 5.1 (Tiny iterated integrals).
Input: Points P,Q € C(C,) in the same residue disk (neither equal to the point
at infinity) and differentials &4, ..., &, without poles in the disk of P.

Output: The integral fg &1&y - En.

(1) Compute a parametrization (z(t),y(t)) at P in terms of a local coordinate
t.

(2) For each k, write &k (x,y) in terms of ¢: &k (t) := & (x(t), y(t)).

(3) Let L,41(¢) :=1.
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(4) Compute, for k =n,...,2, in descending order,

Rp_1
Ii(t) = / Erdrt1

P

t(Rr—1)
= /o Ek(u) Iry1(u),

with Rj_1 in the disc of P.
(5) Upon computing I5(t), we arrive at the desired integral:

Q t(Q)
[ ags=n0=[ " awnw.
P 0
We show how we carry out Algorithm 5.1 for double integrals on an elliptic curve.

Example 5.2 (A tiny double integral). Let C' be the elliptic curve y? = x(x —
1)(x +9), let p = 7, and consider the points P = (9,36),Q = ¢(P), and R =
(a+z(P),\/f(a+ z(P))) so that R is in the same disk as P and Q. Furthermore,

let wy = ‘21—;”,
First compute the local coordinates at P:
z(t) =9+t + O(t*)

21 119

w1 = %. We compute the double integral fg Wow1 -

65 2219 7
t) =36+ —t t? — t3 4 - 5+ O(9).
y(t) + 4 + 1152 55296 95551488 509607936 +0()
Then setting I := [ x%’ and making it a definite integral, we have
R
d
P 2y
“ dz(t
_ / () (t)
0 y(t)
1 5 5 n 91 3 1121 4 22129 5
=—-a— a a® — a a
8 2304 995328 191102976 45864714240
LSOOI o STl L
7925422620672 7988826001637376 ’

from which we arrive at

2(Q)—=(P)
0 2y(R(a))
=4- TP 4+5- 7427 4+4-7 427+ O(7%).

6. ITERATED INTEGRALS: LINEAR SYSTEM

As in the case of computing single integrals, to compute general iterated Coleman
integrals, we use Kedlaya’s algorithm to calculate the action of Frobenius on de
Rham cohomology. This gives us a linear system that allows us to solve for all
(2g)™ n-fold iterated integrals on basis differentials.

Theorem 6.1. Let P,Q € C(C,) be non-Weierstrass points such that the residue
fields of P,Q are contained in Fpm. Let M be the matriz of the action of the m-th

.....
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computable in terms of (n — 1)-fold iterated integrals and n-fold tiny iterated inte-

grals, the n-fold iterated Coleman integrals on basis differentials between P, Q) can
be computed via a linear system of the form

[wip-win | = Tagnxegn — (MY cigi, s

Proof. By the Link lemma (Lemma 4.4), we can reduce to the case where both P
and @ are Teichmiiller points (points fixed by some power of ¢). Then we have

Q ¢™(Q)
/ Wi; Wi, = / Wi; * " Wi,
P ¢™(P)

= /Q(cﬁm)*(wn cewiy,)

P
Q
(6.1) = [y ) @y )
Recall that given wy, ... ,ws,—1 a basis for H},(C"), we have
2g—1

(™) wi, = dfi, + Y, Mijw;.
7=0

Substituting this expression in for each factor of (6.1) and expanding yields the
linear system. [

To illustrate our methods, in the next section, we present a more explicit version
of this theorem, accompanied by algorithms, in the case of double integrals. We
show how these are used in Kim’s nonabelian Chabauty method in Section 8.

7. EXPLICIT DOUBLE INTEGRALS

7.1. The linear system for double integrals between Teichmiiller points.
In this subsection, we make explicit one aspect of Theorem 6.1: we give an algorithm
to compute double integrals between Teichmiiller points.

Algorithm 7.1 (Double Coleman integration between Teichmiller points).
Input: The basis differentials (wl)fi 61, Teichmiiller points P,Q € C(C,) in non-
Weierstrass residue disks, and a positive integer m such that the residue fields of
P, Q are contained in Fym.

2g—1

Output: The double integrals (fPQ wiwj). L
1,]=

(1) Calculate the action of the m-th power of Frobenius on each basis element:
(gbm)*% = dfl -+ Z?igl Mijwj.

(2) Use Algorithm 4.1 to compute the single Coleman integrals |, g w; on all
basis differentials.

(3) Use Step 2 and linearity to recover the other single Coleman integrals:

j}? dfifk,ff Z?i_ol M;;w; fi, for each i, k.



8 JENNIFER S. BALAKRISHNAN

(4) Use the results of the above two steps to write down, for each i, k, the
constant

2g—1

Q Q
o = /P A (R)(fe(R)) — Fi(P)(F:(Q) — [:(P)) + /P jz:;MiijR)(fk(R)—fk(P))

2g—1

Q29-1 Q
+ fi(Q) ; ; Mkjwj—/P fi(R)(jg0 Myjw;i(R)).

(5) Recover the double integrals (see Remark 7.2 below) via the linear system

Q
f]gg Wowo Coo
fP Wow1 Co1

= (Iygoxagz — (MH)®*) !
fg Wag—1Wag—1 C2g—1,29—1

Remark 7.2. We obtain the linear system in the following manner. Since P, () are
Teichmiiller, we have

Q " (Q) Q
(7.1) / WiWk z/ WiWk :/ (™) (wiwg)-
P (z)'m(P) P

We begin by expanding the right side of (7.1).
Recall that given wy, ...,wzy—1 & basis for H},(C"), we have

2g—1

(@™ wi =dfi + Y Myw,.
§=0
Thus we have
Q Q
/ (™) (wrn) = / (™) (w)(6™)" ()
P P

Q 2g—1 2g—1
:/ (dfi + D Miyw;)(dfx + Y Myjw))
3=0 3=0

P

2g—1 2g—1 2g—1 2g—1

Mijw;)dfy +dfi(Y | Mije;) + (> Myw;) (D Myjw;)
0 =0 =0 =0

j= j=

Q
_ / dfdfi + (
P

We expand the first three quantities separately. First, we have

/ ? s / “ i) / "

Q
_ / dfi(R)(f1(R) — fu(P))

P

Q Q
= [ ) - ) [ )

P P

Q
- / af:(R) (1 (R)) — Fe(P)(f(Q) — fi(P).

P
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Next, we have

Q 29-1 Q 29—1 R
/ Z MZJWJ dfk —/ Z MZJWJ(R)A dfk
QZQ 1
— [ 3 My (R - AP
=0

The third term (via integration by parts) is

2g—1

/PQ dfi(jz::o Myjw;) = /PQ dfi(R) /PR(TX__; Myjw;)

R 29—1 Q 2g—1
— ) /P (Y My, | 1528 - /P LR Migw; (R
2 2

2g 1 2g—1

= / ZMk]wj /fz jz::OMkjwj(R))

Denote the sum of these terms by c;x; in other words,

Q Q20-1
e = /P df:(R)(fx(R)) — Fu(P)(£:(Q) / ;Mimm(fk(m—fk(z?))

2g—1

Q291 Q
F1@ [T Moy~ [ REICY Mg (R)
P 5 P s
Then rearranging terms, our linear system reads

flg Wowo Coo
Wow1 Co1
fP — (1492><4g2 o (Mt)®2)—1

Q
fP W2g—1W24—1 C2g—1,2g—1

7.2. Linking double integrals. Let P’ and @’ be in the disks of P and Q, re-
spectively. Using the Link lemma for double integrals (Example 4.5), we may link
double integrals between different residue disks:

(7.2)

Q P’ Q' Q P’ Q Q' Q
/ Wik =/ wiwk+/ wiwk"’/ wiwk+/ wk/ wH—/ wk/ Wi+
P P Pl Ql P ’ ! ’

Algorithm 7.3 (Double Coleman integration using intermediary Teichmiiller points).

Input: The basis differentials (wl)fi 61, points P,Q € C(C,) in non-Weierstrass
residue disks.

2g—1
Output: The double integrals (fP w w])

730

(1) Compute Teichmiiller points P’, Q' in the disks of P, Q, respectively.
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(2) Use Algorithm 4.1 to compute the single integrals fg wi, f}f, wi, fg/ w; for
all 4.
(3) Use Algorithm 5.1 to compute the tiny double integrals fFI,D, Wik, fg, WiWg-

(4) Use Algorithm 7.1 to compute the double integrals { [ E,/ W;iw; }i"é;é.
(5) Correct endpoints using

Q P’ Q' Q P’ Q Q' Q
/ WiWi :/ Wiwk+/ wiwk+/ wiwk+/ wk/ wi+/ wk/ Wi«
P P Pl Ql P ! ! !’

7.3. Without Teichmiiller points. Alternatively, instead of finding Teichmiiller
points and correcting endpoints, we can directly compute double integrals using a
slightly different linear system. Indeed, using the Link lemma for double integrals,
we take ¢(P) and ¢(Q) to be the points in the disks of P and @, respectively, which
gives

(7.3)
Q #(P) #(Q) Q #(P) Q #(Q) Q

/ wiwy = / wiwg + wiwg + WiWg +/ Wk/ wi + Wk/ wi
P P 6(P) 6(Q) P o(P) 6(P) 6(Q)

To write down a linear system without Teichmiiller points, we begin as before,
with

*(Q) Q Q %—:l %—:1
(7.4) / WiWg = / ¢* (wiwk) = Cijk + / Aijwj Akjwj
&(P) P P\ = =
Putting together (7.3) and (7.4), we get
(7.5)
: P . Q P
Cite — [ py Wik — (f w) (f wk)
fg WiWg = (]492X492_<Mt>®2)—1 i d(P) " p Wi #(P)

= (1619 ) (Jit5 o) + [ i

This gives us the following alternative to Algorithm 7.1:

Algorithm 7.4 (Double Coleman integration).
Input: The basis differentials (wz)fi 81, points P,Q € C(Q,p) in non-Weierstrass
residue disks or in Weierstrass disks in the region of convergence.

2g—1
Output: The double integrals (fg wiwj) .
i,j=0

(1) Use Algorithm 4.1 to compute the single integrals [ g wi, f((PQ)) w; for all 7.

(2) Use Algorithm 5.1 to compute fdiP) Wik, f(ng) wiwy, for all 4, k
(3) As in Step 4 of Algorithm 7.1, compute the constants ¢; for all i, k.
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(4) Recover the double integrals using the linear system

: ¢ ffp wWiW f(wi)(fP w)
Q = Ly wage—(MH®2)=1 | 78 7 Jopy BER T S ) Uo(p)
IP WiWg = L4g2x4g _( ¢(Q)w_) ( ¢(Q)w ) +fQ Wi
; Q i) \Jo(p) “k B(Q) Wik

Example 7.5. Let C be the genus 2 curve y? = 2° — 2% + 23 + 22 — 22 + 1 and
let P =(1,-1),Q = (—1,-1) and p = 7. We compute double integrals on basis
differentials:

Q
wowo =27+ 73+ 4.7+ O(7°)

S

wowr = T2 +5-74+3-7 4+ 0(7°)

T

wowz =4-745- 7>+ 7% 4+ O(7)

2

wows =T+5-7+3- 7'+ 0(7°)

2

wiwo =T>+6-7+5-7 + O(7°)

SIS

wiwy =4-7+3-7+0(7°)

2

Wiws =5-T+6-T2+2-7 +4-7 4+ 0(7°)

T3

wiws =2+3- T+ 7 4+4-7+0(7)

SIS

Wowqy = 72 +4- 73 + 0(74)

2

Wowy =4-T+6-T+4-7+5-7 4+ 0(7°)

T

wowy =2+45-T+3- 7+ 0(7°)

2

Wowz =5+2-7T+3-724+0(7°)

2

Wawp =3-T+2-7+5-7+5-7 4+ 0(7)

SIS

Wwawy =5+5-T+T7°+6-7+0(7h)

2

wawe =6+ T7+5-7> 4+ O(7%)

2

waws =2+6-7+5-7°4+0(7%)

SIS
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Example 7.6. Using the previous example, we verify the Fubini identity
Q Q Q Q
/ iji +/ wiwj = / w; / wj .
P P P P
Q

Wo=5-T4+2-T+5-T+7 +4.-74+0(7%

We have

S—

P
Q
Wi =6-T+6-7+2.-7+4.74+3.7° 4 0(79)

.

Q
Wo=5+5-T+6-7"4+2-7+0(7%

S

Q
/ Wy =5+3-T+4-7?4+3-746-7"4+2-7+0(7°.
P

We see, for example,

Q Q Q Q
/ wowl—i—/ wlwo:2-72+4-73+2~74+O(75): / wo / w1
P P P P

Q Q Q Q
/ UJ2w3+/ wW3wo :4+4-7+72+O(73) = / wo / ws | .

P P P P

7.4. Weierstrass points. Suppose one of P or @) is a finite Weierstrass point.
Then directly using the linear system as above fails, since the f; have essential
singularities at finite Weierstrass points. We remedy this as follows:

Proposition 7.7. Let Q be a non-Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P, mear the boundary. Then the integral
from P to Q can be computed as a sum of integrals:

Q S Q S Q
/ Wi Wi :/ wiwk—i—/ wiwk—i—/ wk/ Wi .
P P S P S

Proof. This follows from Lemma 4.3 in the case of n = 2, where P’ = S. g

To compute tiny iterated integrals in a Weierstrass disk, we slightly modify
Algorithm 5.1:

Algorithm 7.8 (Tiny iterated integral in a Weierstrass disk).

Input: P a Weierstrass point, d the degree of totally ramified extension, w;,w;
basis differentials

Output: The integral

S S R t=1 u=t
/ Wiw; = / wz(R) / wj = / (093 (R) / wj.
P P P t=0 u=0

(1) Compute local coordinates (z(u),u) at P.

(2) Let a = p'/9. Rescale coordinates so that y := au, z := z(au).
(3) Compute Iz(u) = ij% as a power series in u.

(4) Compute the appropriate definite integral using the step above:

s ¢
/ xjd—m = / x(au)@ = I(t)
rR 2y 0 u
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(where R = (z(t),t)). Call this definite integral (now a power series in t)
Is.
(5) Now since R = (z(t),t), we have fg wiw; = fol x(t)ilgdZ—(tt).

Suppose P is a finite Weierstrass point. While one could compute the integral
/ g w;wj directly using Algorithm 7.4 for all of the tiny double integrals (and Algo-
rithm 7.8 for the other double integrals), in practice, that approach is expensive,
as it requires the computation of several intermediate integrals with Frobenius of
points that are defined over ramified extensions. This, in turn, makes the requisite
degree d extension for convergence quite large.

Instead, the key idea is to compute a local parametrization at the finite Weier-
strass point P and to use this to compute the indefinite integral |’ ; wi. Then to
compute integrals involving “boundary points,” one can simply evaluate this indef-
inite integral at the appropriate points, instead of directly computing parametriza-
tions, and thus integrals, over a totally ramified extension of Q,. This idea is also
used to evaluate double integrals involving boundary points.

Algorithm 7.9 (Intermediary integrals for double integrals with a Weierstrass
endpoint).

Input: P finite Weierstrass point, () non-Weierstrass point, d the degree of totally
ramified extension, n the precision of Q,, basis differentials w;, w;.

Output: Necessary things for the eventual computation of | g wWiw;.

(1) Compute (x(t),t) local coordinates at P to precision nd.
(2) Let S = (2(a),a), where a = p*/?.

(3) Compute as a power series in t, I5(t) = f:c(t)id;((tt)).

(4)
()

Compute the definite integral f}f w; = Iz(a).

For all i < j, compute the definite integral fg wiw; via Algorithm 5.1. Keep

the intermediary indefinite integral.

(6) For all i = j, use the fact that fﬁ wiw; = 1 (flf wi)Q to compute the double
integral in terms of the single integral.

(7) For all ¢ > j, use the fact that flfwiwj = —fﬁiji + fgwi fﬁwj to
compute | 5 w;w; (instead of directly computing it as a double integral).

(8) Compute ;(S) w; = }f(s) w;

Use this to deduce f;(s) wiwj for i = j.

— f 5 w; by the indefinite integral in Step 3.

9) Use the indefinite integral in Step 5 to get 9(5) wiw; for i < j.
s j
(10) Repeat the trick in Step 7 to get fg)(s) wiw; for i > j.
(11) Compute fS(Q) w; and use it to deduce fS(Q) wiwj for i = j.
12) Compute $(Q) wiw; for ¢ < j.
Q j
(13) Repeat the trick in Step 7 to get fg(Q) ww; for i < j.
s
(14) Use fSQwZ = fgwi — [p wi to get fSQwZ

Algorithm 7.10 (Double integrals from a Weierstrass endpoint).

Input: P finite Weierstrass point, () non-Weierstrass point, w;,w; basis differen-
tials.

Output: The double integrals fg Wil;.
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(1) Compute all of the integrals as in Algorithm 7.9.

(2) Compute double integrals |, ;’2 wjw; using the terms in Step 1 as appropriate
in Algorithm 7.4. (See Remark 7.11 for an additional improvement to this

step)
(3) Use additivity to recover the double integrals fg Wi = f}f Wi, +f§ wiw;+
S Q
Jpwi[s wj-
Remark 7.11. Note that in the case of g = 1, the linear system only yields one
double integral not obtainable through single integrals. Indeed, for 0 < ¢,j < 1,

2
we have f?wiwi = %(fssz> and fgwiwj = ffSijwi +fSQwifSij. So it

suffices to compute |, SQ wowi. Thus, rather than computing all of the constants

€005 Co1, €10, ¢11 and their correction factors (see (7.5)), if we pre-compute the two

double integrals that are expressible in terms of single integrals, as well as the

product of single integrals that relates f SQ wiwp to f SQ wow1, it suffices to compute

co1 (and its correction factor) to solve for the other three constants and | SQ Wow1 -
In other words, the linear system in Algorithm 7.4 tells us that

e = [y = (18) (Jlimy )
- (IS(Q) “’) ( oe) ‘“’f) + oty i

Uiea — (M) | (200, | =

which we write as

100 Zoo
Vo1 _ | o
501 — Vo1 T10 |’
111 11
where the vector on the left consists of integrals (with igp = fSQ Wowp, 111 =

fb? WiWt, So1 = fSQ wo fSQ wi all computed), and the vector on the right consists
of constants (with f5; computed). So we solve for xgg, 10,211, Vo1, Since knowing

Vo1 = f SQ wowi gives us the complete set of double integrals on basis differentials:

oo ]. O O —(a01 — a01) ioo 0
I10 o 0 0 0 —(a11 — alg) A 0 . 601
T11 B 0 1 0 —(a21 — a22) Co1 0 ’
Vo1 O O 1 —(&31 — a32) 7:11 O

where A = (a;;). While this only gives a constant speed-up in terms of complexity,
in practice, this helps when S is defined over a highly ramified extension of Q,.

As numerical checks, one may use the following corollaries of Proposition 7.7.
Corollary 7.12. For P,Q Weierstrass points and S a third point, we have addi-

tivity in endpoints: fg wiw; + fS wiw; = f}f wiw; .

Corollary 7.13. For P,Q Weierstrass points, we have fg wiw; + fg wjw; = 0.
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It is worth noting that in general, unlike in the case of a single Coleman integral,
for P and @ both Weierstrass points, unless ¢ = k, the double Coleman integral
I} ;;2 w;wy is not necessarily 0. However, in the case of i = k, the integral can be

QL —1(9u) =
computed as [p wiw; = 5 ([p wi) =0.

Example 7.14. Consider the curve y?> = x(x — 1)(x + 9), over Q7, and the points
P, =(1,0), P, =(0,0), and Q = (—1,4). We have

S5, wowo 2.7245.7% 4 4.74 1375+ O(7%)
Jowowr | | 6-7+5-724+4-7346-74+0O(7°)
fgmwo | zmes T o)

19 wrn 145-7T+5-T34+4-7 447+ O(7%)

and

Q

Jp, wowo 2. 72457 +4-74+3-7° + O(79)

Jp wowr | 2- T4+ 46-T+5-7+0(7%)

IS wwo | 6-7T+5-T2+6-T°+3-T+3-7+0(7% |’

. .73 .74 .75 6
19 wion 14+5-7T+5- T +4-7 +4-7 4+ 0(79)

from which we see that f}% wowi # 0 and likewise f;,? wiwg # 0.

8. KIM’S NONABELIAN CHABAUTY METHOD

We now present the motivation for all of the algorithms thus far. Let C/Z be the
minimal regular model of an elliptic curve C'/Q of analytic rank 1 with Tamagawa

numbers all 1. Let X = C — {oco} and wy = g—z,wl = %. Taking a tangential

basepoint b at co (or letting b be an integral 2-torsion poin't)7 we have the analytic

functions
logwo(z):/ wo, Dg(z):/ Wow1 .«
b b

With this setup, we have

Theorem 8.1 ([3, 10]). Suppose P is a point of infinite order in C(Z). Then
X(Z) C C(Zy) is in the zero set of

f(2) = (log,, (P))* Da(2) — (log,, (2))*Da(P).
Corollary 8.2 ([3, 10]). The expression

D (P)
(log,,, (P))?

is independent of the point P of infinite order in C(Z).

(8.1)

Example 8.3. We revisit Example 1 in [3]. Let E be the rank 1 elliptic curve y? =
2% — 13232 + 3942, with minimal model £ having Cremona label ‘65a1’. Consider
the following points on F which are integral on &: b = (3,0), P = (39,108),Q =
(—33,—-108), R = (147,1728). Using Algorithm 7.10, we compute the following



16 JENNIFER S. BALAKRISHNAN
integrals:

P
/wowl:4-11+4-112+7~113+9-114+5-116+O(117)
b
P
/wo:4-11+7-112+9-113+3-114+5-115+7-116—|—O(117)
b
Q
/wowl:4-11+4-112+7~113+9-114+5-116+O(117)
b
Q
/wo:7-11+3-112+113+7~114+5-115+3-116+O(117)
b
R
/wowl=5-11+6-112+7~113+5-114+3-115+9~116+O(117)
b

R
/ wo=3-11+7-1124+2-113+3-11* + 7-11° 4+ 0(117),
b

and we see that the ratio in Corollary 8.2 is constant on integral points:

(1052(53)))2 = (1052((%)))2 = (1052((]2))2 = 3117 46+2:11+10-112+3-11° 45114 +0(11°).

However, for S = (103,980), which is not integral on £, we see that

S
/ wowy =3-11+10-112+4-11° +10- 11* + 7-11° +10 - 11° + O(117)
b
S
/ wo=11+7-11°+5-11° + O(117)
b

_Da5) =3- 117" +104+6-114+9-112 +8 113 + 6 - 11* + O(11°).

(log,,, (5))?
Example 8.4. We give a variation on Example 4 in [3]. Let E be the rank 1
elliptic curve y? = 23 — 162 + 16, with minimal model £ having Cremona label
‘37al’. Letting P, @ be two fixed integral points on E, we can use the Link lemma
to rewrite Theorem 8.1 so that the relevant double integral is no longer from a
tangential basepoint. Indeed, integral points z occur in the zero set of

2 P
z 2 P fg Wow1 +f[612 wo fb w1 z z P
wo | — wo a Py wow1 + wo w1
b b (fb wo) —(fb wo) P P b
Slightly modifying Algorithm 7.4 to take as endpoint a parameter z (see [1, §7.2.2]
for more details), we can recover the integral points

{(0,44), (4, £4), (—4, £4), (8, £20), (24, +116)}.
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