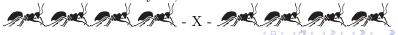
Imaginary Quadratic Fields With Isomorphic Abelian Galois Groups

A. Angelakis[‡], P. Stevenhagen[‡]

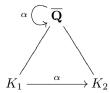
Universiteit Leiden[‡], Université Bordeaux 1[‡]

July 12, 2012 - UCSD



Let K be a number field and $G_K = \operatorname{Gal}(\overline{K}/K)$ the absolute Galois group.

- Question: Does G_K determine K?
 - meaning, if $G_{K_1} \cong G_{K_2}$ then $K_1 \cong K_2$?
- Answer: Yes!
 - Neukirch, Ikeda, Iwasawa & Uchida (around 1969 75)
 - $\exists ! \ \alpha \in \operatorname{Aut}(\overline{\mathbf{Q}}) : \ \alpha[K_1] = K_2 \text{ inducing } G_{K_1} \cong G_{K_2}$



Let K be a number field and $G_K^{\text{solv}} = \text{Gal}(K^{\text{solv}}/K)$ the maximal prosolvable quotient of G_K .

- Question: Does G_K^{solv} determine K?
 - meaning, if $G_{K_1}^{\text{solv}} \cong G_{K_2}^{\text{solv}}$ then $K_1 \cong K_2$?
- Answer: Yes!
 - Neukirch, Ikeda, Iwasawa & Uchida (around 1969 75)

Let K be a number field and $A_K = G_K/\overline{[G_K, G_K]}$ the maximal abelian quotient of G_K .

- Question: Does A_K determine K?
 - meaning, if $A_{K_1} \cong A_{K_2}$ then $K_1 \cong K_2$?
- Answer: No!!!
 - First examples found by Onabe (1976)
 - Uses Kubota's (1957) description of the character group of G_K in terms of Ulm invariants
 - A_K is not explicitly given but characterized by the number of Ulm invariants

• K^{ab} is not "explicit", but A_K is explicit (class field theory)

Theorem

Many imaginary quadratic fields K have the same minimal absolute abelian Galois group

$$A_K \cong M = \widehat{\mathbf{Z}}^2 \times \prod_{n \ge 1} \mathbf{Z}/n\mathbf{Z}$$

- here $\hat{\mathbf{Z}} = \varprojlim \mathbf{Z}/n\mathbf{Z}$, the profinite completion of \mathbf{Z}
- 2291 out of 2348, meaning, more than 97.5% of K of prime class number < 100 have this minimal group
- Conjecture: there are infinitely many such K

- The topological group A_K is a module over $\hat{\mathbf{Z}}$:
- \bullet The exponentiation of elements of this group with ordinary integers extends to exponentiation with elements of $\widehat{\mathbf{Z}}$
- For any $\sigma \in A_K$, we have

$$\lim_{n\to\infty}\sigma^{n!}=\mathrm{id}\in A_K$$

 \bullet Describe infinite abelian Galois groups as modules over $\widehat{\mathbf{Z}}$

- Toy example: $K = \mathbf{Q}$ By Kronecker-Weber theorem $\mathbf{Q}^{ab} = \bigcup_{n=1}^{\infty} \mathbf{Q}(\zeta_n)$ is the maximal cyclotomic extension of \mathbf{Q}
- This yields the well-known isomorphism $A_{\mathbf{Q}} = \underline{\lim}(\mathbf{Z}/n\mathbf{Z})^* = \widehat{\mathbf{Z}}^*$
- $\hat{\mathbf{Z}}^* = \prod_p \mathbf{Z}_p^*$, (Chinese Remainder Theorem)

$$\mathbf{Z}_p^* \cong \mathbf{Z}/(p-1)\mathbf{Z} \times (1+p\mathbf{Z}_p)$$

 $\cong \mathbf{Z}/(p-1)\mathbf{Z} \times \mathbf{Z}_p, \quad (p \neq 2)$

- $T_{\mathbf{Q}} \cong \prod_{p} (\mathbf{Z}/(p-1)\mathbf{Z}) \cong \prod_{n \geq 1} \mathbf{Z}/n\mathbf{Z}$
- This is "the" countable product of finite cyclic groups having infinitely many cyclic components of prime power order for every prime

• Taking the product over all p, we obtain

$$\begin{array}{rcl} A_{\mathbf{Q}} & \cong & \widehat{\mathbf{Z}} \times \prod_{n \geq 1} \mathbf{Z}/n\mathbf{Z} \\ \\ & \cong & \widehat{\mathbf{Z}} \times T_{\mathbf{Q}} \end{array}$$

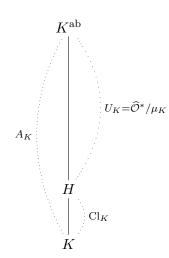
- $T_{\mathbf{Q}}$ is the *closure* of the torsion subgroup of $A_{\mathbf{Q}}$
- It is not a torsion group itself
- $A_{\mathbf{Q}}/T_{\mathbf{Q}}$ is a free $\widehat{\mathbf{Z}}$ -module of rank 1
- The subfield of \mathbf{Q}^{ab} left invariant by the subgroup $T_{\mathbf{Q}} \subset A_{\mathbf{Q}} = \operatorname{Gal}(\mathbf{Q}^{ab}/\mathbf{Q})$ is the unique $\widehat{\mathbf{Z}}$ -extension of \mathbf{Q}

- K^{ab} "unknown" for arbitrary K
- Class field theory: A_K for arbitrary K

$$A_K = [(\prod_{\mathfrak{p} \le \infty}' K_{\mathfrak{p}}^*)/K^*]/(\text{conn. comp. of unit element})$$

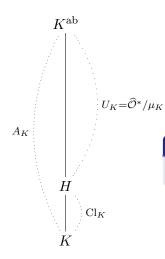
• From now on we take K to be imaginary quadratic. Then,

$$A_K = (\prod_{\mathfrak{p} < \infty}' K_{\mathfrak{p}}^*) / K^*$$



- H is the Hilbert class field
- Cl_K is the class group of K
- μ_K is the group of roots of unity in K (of order ≤ 6)
- $\widehat{\mathcal{O}}^* = \prod_{\mathfrak{p}} \mathcal{O}^*_{\mathfrak{p}}$ unit group of the profinite completion of the ring of integers $\mathcal{O} = \mathcal{O}_K$

$$\begin{array}{rcl} A_K & = & (\prod_{\mathfrak{p}<\infty}^{'} K_{\mathfrak{p}}^*)/K^* \\ & \cup \\ U_K & = & (\prod \mathcal{O}_{\mathfrak{p}}^*)/\mathcal{O}^* = \widehat{\mathcal{O}}^*/\mu_K \end{array}$$



- $K_{\mathfrak{p}}^* \supset \mu_{\mathfrak{p}}$ local roots of unity
- $\widehat{\mathcal{O}}^* = \prod_{\mathfrak{p}} \mathcal{O}^*_{\mathfrak{p}} \supset \prod_{\mathfrak{p}} \mu_{\mathfrak{p}} = T_K$
- T_K is the closure of the torsion subgroup of $\widehat{\mathcal{O}}^*$

Lemma (1)

$$\widehat{\mathcal{O}}^* \cong \widehat{\mathbf{Z}}^{[K:\mathbf{Q}]} \times T_K$$

$$\widehat{\mathcal{O}}^* \cong \widehat{\mathbf{Z}}^2 \times T_K$$

Lemma (2)

Let w_K be the number of roots of unity in K. Then we have a non-canonical isomorphism of profinite groups

$$T_K \cong \prod_{n>1} \mathbf{Z}/nw_K \mathbf{Z}$$

• If w_K is squarefree, then $T_K \cong T_{\mathbf{Q}}$

Lemma (3)

We have a non-canonical isomorphism

$$T_K/\mu_K \cong \prod_{n\geq 1} \mathbf{Z}/nw_K \mathbf{Z}$$

Theorem

$$U_K = \widehat{\mathcal{O}}^* / \mu_K \cong \widehat{\mathbf{Z}}^2 \times T_K / \mu_K \cong \begin{cases} \widehat{\mathbf{Z}}^2 \times \prod_{n=1}^{\infty} \mathbf{Z} / n\mathbf{Z}, & K \neq \mathbf{Q}(i) \\ \widehat{\mathbf{Z}}^2 \times \prod_{n=1}^{\infty} \mathbf{Z} / 4n\mathbf{Z}, & K = \mathbf{Q}(i) \end{cases}$$

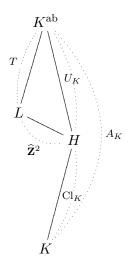
(isomorphisms of profinite groups)

Corollary

All imaginary quadratic $K \neq \mathbf{Q}(i)$ of class number 1 have

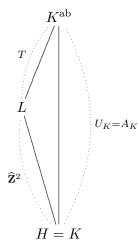
$$A_K \cong \widehat{\mathbf{Z}}^2 imes \prod_{n=1}^{\infty} \mathbf{Z}/n\mathbf{Z}$$

• This implies Onabe's observation: there are 8 such K!



The invariant field L of the closure T of the torsion subgroup of U_K is an extension of H with group $\widehat{\mathbf{Z}}^2$

class number 1:



The invariant field L of the closure T of the torsion subgroup of U_K is an extension of K with group $\widehat{\mathbf{Z}}^2$

• $K \neq \mathbf{Q}(i)$ imaginary quadratic

$$1 \to U_K \longrightarrow A_K \longrightarrow \operatorname{Cl}_K \to 1$$
 (1)

- $U_K \cong \widehat{\mathbf{Z}}^2 \times T$
- \bullet Does not depend on K
- It is isomorphic to the "minimal" Galois group

$$M = \widehat{\mathbf{Z}}^2 \times \prod_{n=1}^{\infty} \mathbf{Z}/n\mathbf{Z}$$

- Question: Can A_K be isomorphic to M for $h_K > 1$?
 - If (1) splits, then A_K is isomorphic to M

Theorem

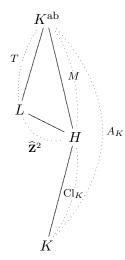
For every imaginary quadratic field K, the sequence

$$1 \to U_K \longrightarrow A_K \xrightarrow{\psi} \operatorname{Cl}_K \to 1$$

is totally non-split, i.e., there is no non-trivial subgroup $C \subset \operatorname{Cl}_K$ for which the associated subextension

$$1 \to U_K \to \psi^{-1}[C] \to C \to 1$$

is split



• We will show: even though

$$1 \to M \longrightarrow A_K \longrightarrow \operatorname{Cl}_K \to 1$$

is non-split, we may still have

$$A_K \cong M$$

$$1 \to U_K \longrightarrow A_K \longrightarrow \operatorname{Cl}_K \to 1$$
$$|| \wr M = \widehat{\mathbf{Z}}^2 \times T$$

is totally non-split, but the "quotient sequence"

$$1 \to U_K/T \longrightarrow A_K/T \longrightarrow \operatorname{Cl}_K \to 1$$

$$||\wr$$

$$\widehat{\mathbf{Z}}^2$$

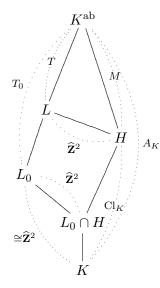
can be split or non-split.

• If it is totally non-split, we have

$$A_K/T \cong \widehat{\mathbf{Z}}^2$$

and

$$A_K \cong \widehat{\mathbf{Z}}^2 \times T = M!$$



Translation under Galois theory:

- $A_K/T = \operatorname{Gal}(L/K)$
- $L_0 =$ "maximal $\hat{\mathbf{Z}}$ -extension of K"
- the sequence

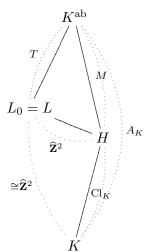
$$1 \to U_K/T \longrightarrow A_K/T \longrightarrow \operatorname{Cl}_K \to 1$$

is totally non-split if and only if

$$L = L_0$$

$$\updownarrow$$

$$A_K \cong M$$



Totally non-split case:

$$H \subset L_0$$

- Question: How can we decide numerically whether this is the case?
- Answer: ...
 - do not use fields!
 - Class field theory suffices!

Lemma

Suppose $Cl_K = \langle [\mathfrak{a}] \rangle$ is cyclic of prime order p. Then the above sequence is split iff every $\alpha \in K^*$ generating \mathfrak{a}^p is locally everywhere "a pth power up to roots of unity"

• This means: for all primes p we have

$$\alpha = \zeta_{\mathfrak{p}} \cdot x_{\mathfrak{p}}^p$$

with $\zeta_{\mathfrak{p}} \in \mu_{\mathfrak{p}}$ and $x_{\mathfrak{p}} \in K_{\mathfrak{p}}^*$

- This condition is trivially satisfied at $\mathfrak{p} \nmid p$
- It is a local computation at $\mathfrak{p} \mid p$

Algorithm: to decide whether $A_K = M$

- Input: K imaginary quadratic
- Checks: for each prime $p \mid h_K$ whether

$$\phi_p : \mathrm{Cl}_K[p] \longrightarrow (\prod_{\mathfrak{p}|p} \mathcal{O}_{\mathfrak{p}}^*/\mu_{\mathfrak{p}})/(p^{\mathrm{th}} \text{ powers})$$

$$\mathfrak{a} \longmapsto \overline{\alpha}, \quad (\text{if } \mathfrak{a}^p = \alpha \mathcal{O})$$

is injective

- Output: Yes, if for every prime $p \mid h_K$ the map ϕ_p is injective
 - Involves class group computation
 - local computation at $\mathfrak{p} \mid p$
 - ullet and becomes linear algebra over ${f F}_p$
- **Remark:** For p = 2 we have a theorem, so no computation is necessary

Prime $h_K = p < 100$. $A_K = M$ for more than 97.5% of all K

p	$\#K: h_K = p$	non-split	split
2	18	8	$\mathbb{Q}(\sqrt{-35}), \mathbb{Q}(\sqrt{-51}), \mathbb{Q}(\sqrt{-91}),$
			$\mathbb{Q}(\sqrt{-115}), \mathbb{Q}(\sqrt{-123}), \mathbb{Q}(\sqrt{-187}),$
			$\mathbb{Q}(\sqrt{-235}), \mathbb{Q}(\sqrt{-267}), \mathbb{Q}(\sqrt{-403}),$
			$\mathbb{Q}(\sqrt{-427})$
3	16	13	$\mathbb{Q}(\sqrt{-643}), \mathbb{Q}(\sqrt{-331}), \mathbb{Q}(\sqrt{-107})$
5	25	19	$\mathbb{Q}(\sqrt{-1723}), \mathbb{Q}(\sqrt{-1123}), \mathbb{Q}(\sqrt{-1051}),$
			$\mathbb{Q}(\sqrt{-739}), \mathbb{Q}(\sqrt{-443}), \mathbb{Q}(\sqrt{-347})$
7	31	27	$\mathbb{Q}(\sqrt{-5107}), \mathbb{Q}(\sqrt{-2707}), \mathbb{Q}(\sqrt{-1163}),$
İ			$\mathbb{Q}(\sqrt{-859})$
11	41	36	$\mathbb{Q}(\sqrt{-9403}), \mathbb{Q}(\sqrt{-5179}), \mathbb{Q}(\sqrt{-2027}),$
İ			$\mathbb{Q}(\sqrt{-10987}), \mathbb{Q}(\sqrt{-13267})$
13	37	34	$\mathbb{Q}(\sqrt{-11923}), \mathbb{Q}(\sqrt{-2963}), \mathbb{Q}(\sqrt{-1667})$
17	45	41	$\mathbb{Q}(\sqrt{-25243}), \mathbb{Q}(\sqrt{-16699}), \mathbb{Q}(\sqrt{-8539}),$
İ			$\mathbb{Q}(\sqrt{-383})$
19	47	43	$\mathbb{Q}(\sqrt{-17683}), \mathbb{Q}(\sqrt{-17539}), \mathbb{Q}(\sqrt{-17299}),$
İ			$\mathbb{Q}(\sqrt{-4327})$
23	68	65	$\mathbb{Q}(\sqrt{-21163}), \mathbb{Q}(\sqrt{-9587}), \mathbb{Q}(\sqrt{-2411})$
29	83	80	$\mathbb{Q}(\sqrt{-110947}), \mathbb{Q}(\sqrt{-74827}), \mathbb{Q}(\sqrt{-47563})$
31	73	70	$\mathbb{Q}(\sqrt{-46867}), \mathbb{Q}(\sqrt{-12923}), \mathbb{Q}(\sqrt{-9203})$
37	85	83	$\mathbb{Q}(\sqrt{-28283}), \mathbb{Q}(\sqrt{-20011})$
41	109	106	$\mathbb{Q}(\sqrt{-96763}), \mathbb{Q}(\sqrt{-21487}), \mathbb{Q}(\sqrt{-14887})$
43	106	105	$\mathbb{Q}(\sqrt{-42683})$
47	107	107	Ø
53	114	114	Ø
59	128	126	$\mathbb{Q}(\sqrt{-166363}), \mathbb{Q}(\sqrt{-125731})$
61	132	131	$\mathbb{Q}(\sqrt{-101483})$
67	120	119	$\mathbb{Q}(\sqrt{-652723})$
71	150	150	Ø
73	119	117	$\mathbb{Q}(\sqrt{-597403}), \mathbb{Q}(\sqrt{-358747})$
79	175	174	$\mathbb{Q}(\sqrt{-64303})$
83	150	150	Ø
89	192	189	$\mathbb{Q}(\sqrt{-348883}), \mathbb{Q}(\sqrt{-165587}), \mathbb{Q}(\sqrt{-48779})$
97	185	184	$\mathbb{Q}(\sqrt{-130051})$

• Numerical observation: for $h_K = p$, we have $A_K = M$ for a fraction 1 - 1/p of fields

Conjecture

There are infinitely many imaginary quadratic fields K for which the absolute abelian Galois group is isomorphic to

$$M = \widehat{\mathbf{Z}}^2 \times \prod_{n \ge 1} \mathbf{Z}/n\mathbf{Z}$$

- The numerical evidence may be strong, but we do not even have a **theorem** that there are infinitely many prime numbers that occur as the class number of an imaginary quadratic field
- And even if we had, we have no **theorem** telling us what the distribution between split and non-split will be

We checked numerically:

- For $p \parallel h_K$, splitting at p occurs with frequency 1/p
- Splitting at different primes $p, q \parallel h_K$ is "independent"
- No influence of the splitting over the three kinds of local behavior in K of the prime p
- Splitting at p, where $p^2 \parallel h_K$ and $\operatorname{Cl}_K \cong C_p \times C_p \times C_m$, $p \nmid m$, occurs with frequency $1/p^2$

Future work:

- Cohen-Lenstra should yield asymptotic number of K with $A_K = M$
- Extend the theory to Real quadratic fields!
- Go further ... to any number field!!

Thank You

