
Deterministic Elliptic Curve Primality
Proving for a Special Sequence of

Numbers

Alex Abatzoglou, Alice Silverberg,
Andrew V. Sutherland, Angela Wong

Tenth Algorithmic Number Theory Symposium
University of California, San Diego

July 9, 2012



Recent History of Primality Proving

Agarwal, Kayal, and Saxena (2004) developed the AKS
primality test which runs in deterministic polynomial time.
The algorithm runs in Õ(k6) time.

One can do even better with special sequences of
numbers. Pépin’s test, which tests Fermat numbers, and
the Lucas-Lehmer test, which tests Mersenne numbers,
are both deterministic and run in Õ(k2) time.
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History of EC Primality Proving

Goldwasser-Kilian (1986) gave the first general purpose
primality proving algorithm, using randomly generated
elliptic curves.

Atkin-Morain (1993) improved upon this algorithm by
using elliptic curves with complex multiplication. The
Atkin-Morain algorithm has a heuristic expected running
time of Õ

(
k4
)
.



Prior Work

Our work fits into a general framework given by
D. V. Chudnovsky and G. V. Chudnovsky (1986) who used
elliptic curves with complex multiplication by Q(

√
−D) to

give sufficient conditions for the primality of integers in
certain sequences {sk}, where

sk = NQ(
√
−D)/Q

(
1 + α0α

k
1

)
,

for algebraic integers α0, α1 ∈ Q(
√
−D).



Prior Work

We extend the work done by Gross (2004) and
Denomme-Savin (2008), who used elliptic curves with CM
by Q(i) or Q(

√
−3) to test the primality of Mersenne,

Fermat, and other related numbers.

However, as noted by Pomerance, the families of numbers
they consider are susceptible to N − 1 or N + 1 primality
tests that are more efficient than their tests using elliptic
curves.

(see also Gurevich-Kunyavskiı̆ (2009, 2012), and
Tsumura (2011))
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The Plan

Introduce a sequence of numbers, Jk , to test for
primality.

Present primality test that will tell us if Jk is prime or
composite.

Prove this primality test



Our Work

We give necessary and sufficient conditions for the
primality of integers of the form

Jk = NQ(
√
−7)/Q

(
1 + 2

(
1 +
√
−7

2

)k
)
.

Initial sequence of Jk ’s:
11,11,23,67,151,275,487,963,2039,4211, . . .



Our Work

We use these conditions to give a deterministic algorithm
that very quickly proves the primality or compositeness of
Jk , using an elliptic curve E/Q with complex multiplication
by the ring of integers of Q(

√
−7).

This algorithm runs in quasi-quadratic time: Õ(k2).

Note that the sequence of integers Jk does not succumb
to classical N − 1 or N + 1 primality tests.
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k ’s for which Jk is prime

2 63 467 3779 27140 414349
3 65 489 5537 31324 418033
4 77 494 5759 36397 470053
5 84 543 7069 47294 475757
7 87 643 7189 53849 483244
9 100 684 7540 83578 680337

10 109 725 7729 114730 810653
17 147 1129 9247 132269 857637
18 170 1428 10484 136539 1111930
28 213 2259 15795 147647
38 235 2734 17807 167068
49 287 2828 18445 167950
53 319 3148 19318 257298
60 375 3230 26207 342647



Large Primes We’ve Found

The largest prime we’ve found, J1111930, has 334,725
decimal digits and is more than a million bits. It is
currently the 1311th largest proven prime.

We believe this is currently the second largest known
prime N for which no significant partial factorization of
N − 1 or N + 1 is known and is the largest such prime with
a Pomerance proof.

We’ve checked all k ≤ 106 and found 78 primes in this
range.
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Differences From Chudnovsky-Chudnovsky

Recall Chudnovsky-Chudnovsky only gives sufficient
conditions for primality. Our work gives both necessary
and sufficient conditions, which allows us to construct a
deterministic algorithm.

This is done by selecting explicit elliptic curves E/Q and a
point P ∈ E(Q) such that P reduces to a point of maximal
order 2k+1 mod Jk whenever Jk is prime.



ECPP on Jk

Pomerance (1987) showed that for every prime p > 31,
there exists an elliptic curve E/Fp with a point of order
2r > (p1/4 + 1)2. This can be used to establish the
primality of p in r operations. The algorithm we will be
presenting for our numbers Jk outputs exactly such a
primality proof.



Some Definitions

Let E be an elliptic curve over Q. We take points
P = [x , y , z] ∈ E(Q) such that x , y , z ∈ Z and
gcd(x , y , z) = 1.

Definition
A point P = [x , y , z] ∈ E(Q) is zero mod N when N | z;
otherwise P is nonzero mod N.

Definition
Given a point P = [x , y , z] ∈ E(Q), and N ∈ Z, we say
that P is strongly nonzero mod N if gcd(z,N) = 1.
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Strongly Nonzero

Remark Note the following:
1 If P is strongly nonzero mod N, then P is nonzero

mod p for every prime p|N.
2 If N is prime, then P is strongly nonzero mod N if and

only if P is nonzero mod N.



Notation

Let

K = Q(
√
−7), α =

1 +
√
−7

2
∈ OK ,

jk = 1 + 2αk ∈ OK ,

Jk = NK/Q(jk) = 1 + 2(αk + αk) + 2k+2 ∈ N.

We can define Jk recursively, like so:

Jk+4 = 4Jk+3 − 7Jk+2 + 8Jk+1 − 4Jk ,

with initial values J1 = J2 = 11, J3 = 23, and J4 = 67.
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Sieving the Sequence Jk

When searching for prime Jk over a large range of k , we
can accelerate this search by sieving out values of k for
which we know Jk is composite:

Lemma
1 3 | Jk if and only if k ≡ 0 (mod 8),
2 5 | Jk if and only if k ≡ 6 (mod 24).
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Elliptic Curves

We would like to consider a family of elliptic curves with
complex multiplication by Q(

√
−7).

For a ∈ Q×, define the family of quadratic twists

Ea : y2 = x3 − 35a2x − 98a3.

Ea has complex multiplication by Q(
√
−7).



The Twisting Parameters a and Points Pa

For k > 1 such that k 6≡ 0 (mod 8) and k 6≡ 6 (mod 24),
we can choose a twisting factor a and a point Pa ∈ Ea(Q)

as follows:

k a Pa

k ≡ 0 or 2 (mod 3) −1 (1,8)
k ≡ 4,7,13,22 (mod 24) −5 (15,50)
k ≡ 10 (mod 24) −6 (21,63)
k ≡ 1,19,49,67 (mod 72) −17 (81,440)
k ≡ 25,43 (mod 72) −111 (−633,12384)



Primality Test

Theorem
Fix k > 1 such that k 6≡ 0 (mod 8) and k 6≡ 6 (mod 24).
Based on this k, choose a as in the table above, with the
corresponding Pa ∈ Ea(Q). The following are equivalent:

1 2k+1Pa is zero mod Jk and 2kPa is strongly nonzero
mod Jk ,

2 Jk is prime.



Proof (The “Easy” Direction)

Proposition (Goldwasser-Kilian, Lenstra)
Let E/Q be an elliptic curve, let N be a positive integer
prime to disc(E), let P ∈ E(Q), and let m > (N1/4 + 1)2.
Suppose mP is zero modN and (m/q)P is strongly
nonzero modN for all primes q|m. Then N is prime.

Note that 2k+1 >
(

J1/4
k + 1

)2
for k > 2. Let m = 2k+1 and

m
q = 2k . By this proposition, (1)⇒ (2) of the Theorem.



Proof (The “Harder” Direction)

Recall α = 1+
√
−7

2 and jk = 1 + 2αk .

Define a set of k ’s such that if jk is prime, then
Ea(OK/(jk)) ∼= OK/(2αk).

Define another set of k ’s such that if jk is prime, then
Pa 6∈ α(Ea(OK/(jk))).

Show that for k ’s in the intersection of the two sets for
which jk is prime, 2k+1 annihilates Pa mod Jk , but 2k

doesn’t.



Frobenius Endomorphism

For prime jk ∈ OK , let Ẽa denote the reduction of
Ea mod jk .

Proposition (Stark)
If jk ∈ OK is prime, then the Frobenius endomorphism of
Ẽa is (

a
Jk

)(
jk√
−7

)
jk .



Sa

Let a be a squarefree integer. Define

Sa :=

{
k > 1 :

(
a
Jk

)(
jk√
−7

)
= 1

}
.

By the Stark result,

Lemma
Suppose a is a squarefree integer, k > 1, and jk is prime
in OK .

1 k ∈ Sa if and only if the Frobenius endomorphism of
Ea over the finite field OK/(jk) is jk .

2 If k ∈ Sa, then Ea(OK/(jk)) ∼= OK/(2αk) as
OK -modules.
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TP

Let a be a squarefree integer, and suppose that
P ∈ Ea(K ). Then the field K (α−1(P)) has degree 1 or 2
over K , so it can be written in the form K (

√
δP) with

δP ∈ K . Assuming jk is prime, let

TP :=

{
k > 1 :

(
δP

jk

)
= −1

}
.

For a ∈ {−1,−5,−6,−17,−111}, let Ta = TPa .



TP

Lemma
Suppose that k > 1, jk is prime in OK , and a is a
squarefree integer. Suppose that P ∈ Ea(K ), and let P̃
denote the reduction of P mod jk . Then P̃ 6∈ αẼa(OK/(jk))
if and only if k ∈ TP .



Proof (The “Harder” Direction)

Define a set Sa of k ’s such that if jk is prime, then
Ea(OK/(jk)) ∼= OK/(2αk).

Define another set Ta of k ’s such that if jk is prime,
then Pa 6∈ α(Ea(OK/(jk))).

Show that for k ’s in the intersection of the two sets for
which jk is prime, 2k+1 annihilates Pa mod Jk , but 2k

doesn’t.



The Twisting Parameters a and Points Pa

k a Pa

k ≡ 0 or 2 (mod 3) −1 (1,8)
k ≡ 4,7,13,22 (mod 24) −5 (15,50)
k ≡ 10 (mod 24) −6 (21,63)
k ≡ 1,19,49,67 (mod 72) −17 (81,440)
k ≡ 25,43 (mod 72) −111 (−633,12384)

We considered Sa and Ta for a number of values of a, and
found these five values covered all cases of k that weren’t
sieved out.



Proof

Suppose that k > 1 and Jk is prime. Let a be as in the
table. Then k ∈ Sa ∩ Ta. Let P̃ denote the reduction of Pa

mod jk , and let β be the annihilator of P̃ in OK .

Since k ∈ Sa, we have Ea(OK/(jk)) ∼= OK/(2αk) and
therefore β | 2αk . We also have that
k ∈ Ta ⇒ P̃ 6∈ αẼa(OK/(jk)). Hence, αk+1 | β.

Since 2αk | 2k+1, but αk+1 - 2k , we must have 2k+1P̃ = 0
and 2k P̃ 6= 0.
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Conclusion

We have shown a deterministic algorithm that proves
primality or compositeness of our integers Jk .

This algorithm runs in time Õ(k2).

These Jk do not succumb to classical N ± 1 tests.



Future Work

We are currently working on extending our results to
other elliptic curves with complex multiplication by
imaginary quadratic fields of class number > 1.

Another possibility we are considering is extending
our results to abelian varieties of higher dimension.
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