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Extended Abstract

The discrete logarithm problem on elliptic curves defined over a field K is: given an E be an
elliptic curve over K, a point S ∈ E(K), and a point T ∈ 〈S〉, find the integer d ∈ Z such that
T = [d]S. In the case where K = Fq is a finite field with q elements, there are a number of ways of
approaching the solution to this problem (see [1]). On the other hand, the solution to this problem
in the case where K = Q is the field of rational numbers is not well known. The purpose of this
study is to give an algorithm for the discrete logarithm problem on elliptic curves defined over Q.
Let E be an elliptic curve over Q. Fix a point S ∈ E(Q). Assume that the order of S is of infinite.
The subset {[d]S | d ∈ Z≥0} of the group 〈S〉 is denoted by 〈S〉+. Given a point T ∈ 〈S〉+. Our
main idea to find the positive integer d such that T = [d]S is based on the method solving the
discrete logarithm problem for an anomalous elliptic curve over a prime field (see [2]).

Let p be a prime number where E has good reduction. Denote Ẽ the reduction of E modulo p
and let π : E(Qp)→ Ẽ(Fp) be the reduction map (see [3]). For n ≥ 1, define a subgroup of E(Qp)
by

En(Qp) = {P ∈ E(Qp) | v(x(P )) ≤ −2n} ∪ {O},

where v is the normalized p-adic valuation. We have the exact sequence of abelian groups

0→ E1(Qp)→ E(Qp)
π→ Ẽ(Fp)→ 0

(see [3]). The group E1(Qp) is isomorphic to the group of pZp-valued points of the one-parameter
formal group E associated to E (see [3]). For n ≥ 1, the subgroup En(Qp) of E1(Qp) corresponds
to the subgroup E(pnZp) of E(pZp) under the isomorphism E1(Qp) ' E(pZp). Moreover, for n ≥ 1
there is the isomorphisms of groups

En(Qp)/En+1(Qp) ' E(pnZp)/E(pn+1Zp) ' pnZp/pn+1Zp ' Z/pZ (1)

(see [3]). Let N be the order of the group Ẽ(Fp). Let hp be a composition of the following maps

hp : E(Q) ι−→ E(Qp)
[N ]−→ E1(Qp) ' E(pZp), (2)

where ι is the inclusion map and [N ] is multiplication by N . For a point Q ∈ E(Q), we can compute
hp(Q) ∈ E(pZp) as follows:

hp(Q) = −x

y
(where [N ]Q = (x, y) ∈ E1(Qp)).

Combining the map (2) with the isomorphisms (1), we give the following algorithm for finding the
positive integer d such that T = [d]S:
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Input: E : elliptic curve over Q, S : rational point of E of infinite order, T ∈ 〈S〉+.
Output: d ∈ Z≥0 s.t. T = [d]S.
1. a← 0.
2. While a = 0 do:

2.1. Choose a prime p at which E has good reduction.
2.2. Compute the order of Ẽ(Fp) and N ← ]Ẽ(Fp).
2.3. Compute [N ]S = (x, y) and z ← −x/y.
2.4. a← z/p (mod p).

3. n← 0 and `← 1.
4. While T 6= 0 do:

4.1. Compute [N ]T = (x, y) and w ← −x/y.
4.2. b← w/p`.
4.3. d̄n ← b/a (mod p) and dn ← lift(d̄n).
4.4. T ← T − [dn]S and S ← [p]S.
4.5. n← n + 1 and `← ` + 1.

5. d← d0 + d1p + d2p
2 + · · ·+ dn−1p

n−1.
6. Return(d).

For example, let E be the elliptic curve over Q given by the Weierstrass equation

E : y2 + y = x3 − x.

The Mordell-Weil group E(Q) has rank 1 and a point S = (0, 0) is a generator for E(Q). Moreover,
the elliptic curve E has good reduction outside 37. Let T = [d]S = (x(T ), y(T )) ∈ 〈S〉+ be as
follows:

x(T ) = −3148929681285740316
2846153597907293521

, y(T ) = −2181616293371330311419201915
4801616835579099275862827431

.

The above algorithm is dependent on the choice of the prime p where E has good reduction. At
first, set p = 3. Then the above algorithm gives d0 = 2, d1 = 0, d2 = 0, d3 = 1 and

d = 2 + 0 · p + 0 · p2 + 1 · p3 = 29.

Secondly, set p = 5. Then the above algorithm gives d0 = 4, d1 = 0, d2 = 1 and

d = 4 + 0 · p + 1 · p = 29.

This shows that for each p, the above algorithm gives the p-adic expansion of d.
The result is as follows:

Theorem. For each p, the above algorithm gives the p-adic expansion of d.
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