Hecke operators and Hilbert modular forms

Paul E. Gunnells and Dan Yasaki

University of Massachusetts Amherst, Amherst, MA 01003, USA

May 21, 2008

Overview

Let F be a real quadratic field with ring of integers \mathcal{O} . Let Γ be a congruence subgroup of $\mathrm{GL}_2(\mathcal{O})$.

The cohomology group $H^3(\Gamma; \mathbb{C})$ contains the cuspidal cohomology corresponding to cuspidal Hilbert modular forms of parallel weight 2.

We describe a technique to compute the action of the Hecke operators on the cohomology $H^3(\Gamma;\mathbb{C})$, giving a way to compute the Hecke action on these Hilbert modular forms.

A motivating example

Let $\mathfrak H$ be the upper half-plane in the complex numbers

$$\mathfrak{H} = \{x + iy \mid y > 0\}.$$

Let $\Gamma_0(N) \subseteq \mathrm{SL}_2(\mathbb{Z})$ the subgroup of matrices that are upper triangular modulo N.

The group $\mathrm{SL}_2(\mathbb{R})$ acts on $\mathfrak H$ via fractional linear transformations

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \cdot z = \frac{az+b}{cz+d}.$$

Classical modular forms

A holomorphic function $f: \mathfrak{H} \to \mathbb{C}$ is a *modular form* of weight k and level N if

- ▶ $f(\gamma \cdot z) = (cz + d)^k f(z)$ for every $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N)$, and
- *f* satisfies certain growth conditions (holomorphic at cusps).

We say f is a *cuspform* if f satisfies more stringent growth conditions (vanishes at cusps).

Let $M_k(N)$ denote the space of modular forms of weight k and level N, and let $S_k(N)$ denote the subspace of cuspforms.

Fourier coefficients

Since
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \Gamma_0(N)$$
, we have $f(z+1) = f(z)$ for a modular form f .

We get a Fourier expansion for a modular form f

$$f(z) = \sum a_n q^n$$
, where $q = e^{2\pi i z}$.

The growth condition implies $a_n = 0$ for n < 0.

Hecke operators

There is a family of operators called Hecke operators

$$T_m: M_k(N) \to M_k(N).$$

Hecke operators satisfy nice properties and $\{T_p\}$ are simultaneously diagonalizable for primes p not dividing the level N.

If f is a suitably normalized eigenform for $\{T_n\}$, then

$$T_n(f) = a_n f$$
.

We want to study Hecke operators (or their eigenvalues) on spaces of modular forms.

Related geometric object

 $Y_0(N) = \Gamma_0(N) \backslash \mathfrak{H}$ is a punctured Riemann surface.

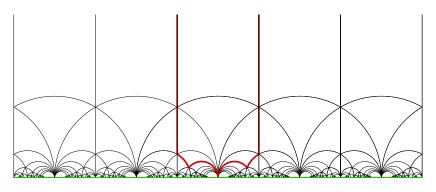


Figure: Tessellation of \mathfrak{H} with $Y_0(5)$ shown in red, cusps shown in green.

Modular forms and cohomology

$$H^1(Y_0(N); \mathbb{C}) \simeq S_2(N) \oplus \overline{S_2(N)} \oplus \operatorname{Eis}_2(N).$$

We can study Hecke eigenvalues by understanding the action of Hecke operators on the cohomology.

Modular symbols

Modular symbols for $\mathrm{SL}_2(\mathbb{Z})$ (Manin 1972) can be defined as a pair of cusps $\{\alpha,\beta\}$, or the geodesic joining them, viewed as a homology class in $H_1(X_0(N))$.

Hecke operators act on the space of modular symbols.

There is a group of *unimodular symbols* that is finite modulo $\mathrm{SL}_2(\mathbb{Z})$ and a reduction algorithm for writing a general modular symbol as a linear combination of unimodular symbols.

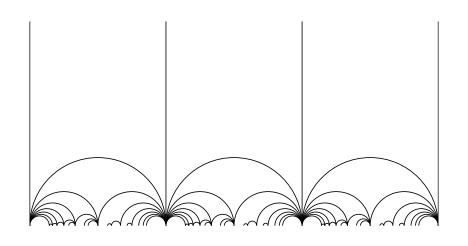


Figure: Unimodular symbols

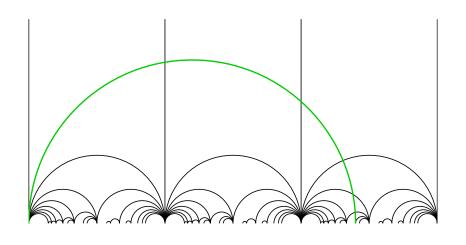


Figure: The modular symbol $\{0,12/5\}$ is shown in green.

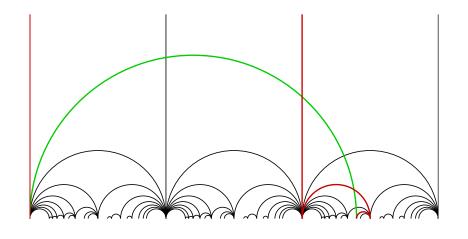


Figure: The reduction is shown in red.

$$\{0,12/5\}=\{0,\infty\}+\{\infty,2\}+\{2,5/2\}+\{5/2,12/5\}.$$

Summary of motivational example

- One wants to understand the action of Hecke operators on spaces of modular forms.
- ▶ There is a geometric object Y, attached to $G = \mathrm{SL}_2(\mathbb{R})$ and Γ whose cohomology "sees" modular forms.
- ► Compute Hecke operators on objects related to cohomology of Y. e.g. Modular symbols (Manin)

Hilbert modular forms over real quadratic fields

Let F/\mathbb{Q} be a real quadratic field with ring of integers \mathcal{O} . Let $\Gamma \subseteq \mathrm{GL}_2(\mathcal{O})^+$ be a congruence subgroup.

A holomorphic function $f:\mathfrak{H}^2\to\mathbb{C}$ is a Hilbert modular form of weight $k=(k_1,k_2)$ if

$$f(\gamma \cdot z) = \left(\prod \det(\gamma_i)^{-k_i/2} (c_i z_i + d_i)^{k_i}\right) f(z)$$

for every
$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$$
.

Hilbert modular forms and cohomology

Let $\mathbf{G} = \mathrm{Res}_{F/\mathbb{Q}}(\mathrm{GL}_2)$. The associated symmetric space is $X \simeq \mathfrak{H} \times \mathfrak{H} \times \mathbb{R}$. Then $Y = \Gamma \backslash X$ is a circle bundle over a Hilbert modular surface, possibly with orbifold singularities if Γ has torsion.

We will compute Hecke operators on Hilbert modular forms by computing the Hecke action on the corresponding cohomology groups $H^*(Y)$.

Related results: totally different technique

Socrates and Whitehouse (2005), Dembélé (2005, 2007), an Dembélé-Donnelly (2008) compute the Hecke action on Hilbert modular forms using the Jaquet-Langlands correspondence.

Sharbly complex

For our case, $\nu=4$, but the cuspidal cohomology occurs in degrees 2 and 3. Modular symbols compute in degree ν , and hence will not see the cuspidal cohomology.

The sharbly complex $S_*(\Gamma)$, a homology complex with modular symbols in degree 0, provides the proper setting in which to study $H^*(Y; \mathcal{M})$ (Ash, Gunnells, Lee-Szczarba). There is a natural action of Hecke operators on $S_*(\Gamma)$.

Outline

- 1. The sharbly complex provides a model for the cohomology.
- There is an analogue of the tessellation of \$5\$ by ideal triangles for X. It comes from viewing points in X as quadratic forms modulo homothety (Koecher, Ash). This gives rise to a notion of reduced sharblies.
- 3. Reduced 1-sharblies, which look like triples of cusps, will span the cohomology in degree 3.
- 4. There is a reduction algorithm (Gunnells-Y) which works in practice, to express a 1-sharbly as a linear combination of reduced 1-sharblies.

X as quadratic forms

Let $G = \mathbf{G}(\mathbb{R})$. The two real embeddings of F into \mathbb{R} give rise to an isomorphism

$$G \stackrel{\sim}{\longrightarrow} \mathrm{GL}_2(\mathbb{R}) \times \mathrm{GL}_2(\mathbb{R}).$$

Thinking of $\operatorname{GL}_2(\mathbb{R})/\operatorname{O}(2)$ as the cone C of positive definite quadratic forms via $g\operatorname{O}(2)\mapsto g^tg$, we get a map

$$G/KA_G \to (C \times C)/\mathbb{R}_{>0}.$$

Rational boundary components

For $v \in F^2$, let R(v) be the ray $\mathbb{R}_{>0} \cdot v^t v \subset \overline{C \times C}$. Equivalence classes of these rays in $\overline{C \times C}$ correspond to the usual cusps of the Hilbert modular variety.

One has a decomposition of $\overline{C \times C}$ into Voronoĭ-cones which descends to a tessellation of X with vertices contained in $R(F^2)$.

Sharbly complex

Let S_k , $k \geq 0$, be the Γ -module A_k/C_k , where A_k is the set of formal \mathbb{C} -linear sums of symbols $[v] = [v_1, \cdots, v_{k+2}]$, where each v_i is in F^2 , and C_k is the submodule generated by

- 1. $[v_{\sigma(1)}, \cdots, v_{\sigma(k+2)}] \operatorname{sgn}(\sigma)[v_1, \cdots, v_{k+2}],$
- 2. $[v, v_2, \dots, v_{k+2}] [w, v_2, \dots v_{k+2}]$ if R(v) = R(w), and
- 3. [v], if v is degenerate, i.e., if v_1, \dots, v_{k+2} are contained in a hyperplane.

We define a boundary map $\partial \colon S_{k+1} \to S_k$ by

$$\partial[v_1, \cdots, v_{k+2}] = \sum_{i=1}^{k+2} (-1)^i [v_1, \cdots, \hat{v}_i, \cdots, v_{k+2}].$$
 (1)

This makes S_* into a homological complex, called the *sharbly complex*.

*T***-coinvariants**

The boundary map commutes with the action of Γ , and we let $S_*(\Gamma)$ be the homological complex of coinvariants. Specifically, $S_k(\Gamma)$ is the quotient of S_k by relations of the form $\gamma \cdot \mathbf{v} - \mathbf{v}$, where $\gamma \in \Gamma$ and $\mathbf{v} \in S_k$.

A theorem of Borel and Serre gives that

$$H^{4-k}(\Gamma;\mathbb{C})\simeq H_k(S_*(\Gamma)).$$

Moreover, there is a natural action of the Hecke operators on $S_*(\Gamma)$.

Thus to compute $H^3(\Gamma; \mathbb{C})$, which will realize cuspidal Hilbert modular forms over F of weight (2,2), we work with 1-sharblies.

1-sharblies

We think of a 1-sharbly ${\bf v}$ as a triangle, with vertices labeled by the spanning vectors of ${\bf v}$. The boundary 0-sharblies correspond to the edges of the triangle.

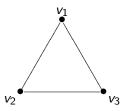


Figure: A 1-sharbly

1-sharbly chain in $S_1(\Gamma)$

Thus a 1-sharbly chain $\xi = \sum a(\mathbf{v})\mathbf{v}$ can be thought of a collection of triangles with vertices labeled by rays in $\overline{C \times C}$. If ξ becomes a cycle in $S_1(\Gamma)$, then its boundary must vanish modulo Γ .

Voronoĭ reduced sharblies

Definition

A k-sharbly $[v_1, \dots, v_{k+2}]$ is Voronoĭ reduced if its spanning vectors $\{R(v_i)\}$ are a subset of the vertices of a Voronoĭ cone.

Main step in reduction algorithm

We must take a general 1-sharbly cycle ξ and to modify it by subtracting an appropriate coboundary to obtain a homologous cycle ξ' that is closer to being Voronoĭ reduced.

By iterating this process, we eventually obtain a cycle that lies in our finite-dimensional subspace $S_1^{\text{red}}(\Gamma)$.

Unfortunately, we are unable to prove that at each step the output cycle ξ' is better than the input cycle ξ , in other words that it is somehow "more reduced." However, in practice this always works.

The reduction algorithm

Definition

Given a 0-sharbly \mathbf{v} , the size Size(\mathbf{v}) of \mathbf{v} is given by the absolute value of the norm determinant of the 2 \times 2 matrix formed by spanning vectors for \mathbf{v} .

The basic strategy

Voronoĭ reduced 1-sharblies tend to have edges of small size. Thus our first goal is to systematically replace all the 1-sharblies in a cycle with edges of large size with 1-sharblies having smaller size edges.

Reducing points

Definition

Let **v** be a non-reduced 0-sharbly with spanning vectors $\{x, y\}$. Then $u \in \mathcal{O}^2 \setminus \{0\}$ is a *reducing point for* **v** if the following hold:

- 1. $R(u) \neq R(x), R(y)$.
- 2. R(u) is a vertex of the unique Voronoĭ cone σ (not necessarily top-dimensional) containing the ray R(x + y).
- 3. If x = ty for some $t \in F^{\times}$, then u is in the span of x.
- 4. Of the vertices of σ , the point u minimizes the sum of the sizes of the 0-sharblies [x, u] and [u, y].

Reducing points (ctd.)

Given a non-Voronoĭ reduced 0-sharbly $\mathbf{v} = [x, y]$ and a reducing point u, we apply the relation

$$[x, y] = [x, u] + [u, y]$$

in the hopes that the two new 0-sharblies created are closer to being Voronoĭ reduced.

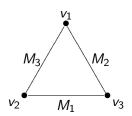
Remark

Note that choosing u uses the geometry of the Voronoĭ decomposition instead of (a variation of) the continued fraction algorithms of (Manin, Cremona, Ash-Rudolph).

T-invariance

The reduction algorithm proceeds by picking reducing points for non-Voronoı̆ reduced edges. We make sure that this is done Γ -equivariantly; in other words that if two edges \mathbf{v} , \mathbf{v}' satisfy $\gamma \cdot \mathbf{v} = \mathbf{v}'$, then if we choose u for \mathbf{v} we need to make sure that we choose γu for \mathbf{v}' .

We achieve this by attaching a lift matrix to each edge, and making sure that the choice of reducing point for \mathbf{v} only depends on the lift matrix M that labels \mathbf{v} .



Algorithm

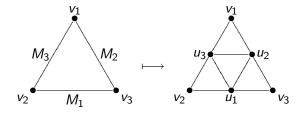
Let ${\cal T}$ be a non-degenerate 1-sharbly. The method of subdividing depends on the number of edges of ${\cal T}$ that are Voronoĭ reduced.

Remark

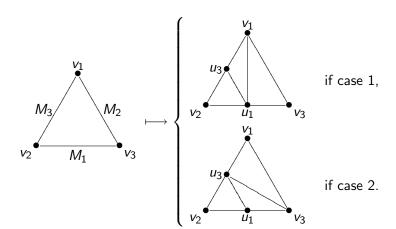
The reduction algorithm can be viewed as a two stage process.

- ▶ If T is "far" from being Voronoĭ reduced, one tries to replace T by a sum of 1-sharblies that are more reduced in that the edges have smaller size.
- ▶ If *T* is "close" to being Voronoĭ reduced, then one must use the geometry of the Voronoĭ cones more heavily.

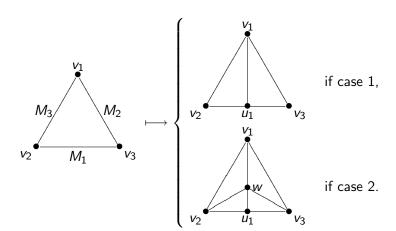
(I) Three non-reduced edges



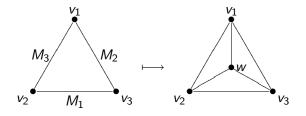
(II) Two non-reduced edges.



(III) One non-reduced edge.



(IV) All edges Voronoĭ reduced



Example: $F = \mathbb{Q}(\sqrt{2})$

$$T = \begin{bmatrix} \sqrt{2} + 3 & 4\sqrt{2} + 4 & 3\sqrt{2} - 4 \\ \sqrt{2} & 5\sqrt{2} - 1 & -3\sqrt{2} - 5 \end{bmatrix}.$$

T has 3 non-reduced edges with sizes given by the vector [5299, 529, 199].

T

Figure: Complete reduction of *T*.

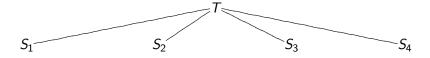


Figure: Complete reduction of *T*.

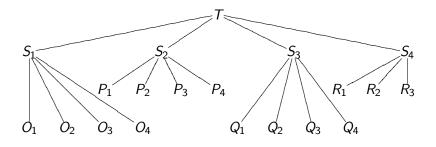


Figure: Complete reduction of *T*.

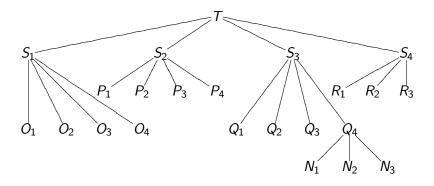


Figure: Complete reduction of *T*.

Output of example

$$T \mapsto N_1 + N_2 + N_3 + O_3 + O_4 + P_1 + P_2 + P_3 + P_4 + Q_3 + R_1 + R_2 + R_3.$$

Comment

First, we emphasize that the reducing point u of works in practice to shrink the size of a 0-sharbly \mathbf{v} , but we have no proof that it will do so. The difficulty is that the reducing point is chosen using the geometry of the Voronoĭ polyhedron Π and not the size of \mathbf{v} directly. Moreover, our experience with examples shows that this use of the structure of Π is essential.

Testing

Let ξ be a 1-sharbly cycle. The reduction algorithm is a local computation that tries to reduce each triangle contributing to ξ . While the algorithm does not use the fact that ξ is a cycle, by using the lift data for the edges, each step of the algorithm maintains this property.

Since we cannot control the types of triangles that can arise as a piece of a 1-sharbly cycle, the algorithm was tested on thousands triangles with random lift data for $F=\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$. We are currently writing programs to deal with general discriminant.