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The Diophantine Equation

Consider

(*) ax*+bxy+cy?+dx+ey+1=0,

where q, b, ¢, d, e, f are given integers.

We have two questions:

1)
2)

Does (*) have solutions 1n integers x, y?

If so, what are they?



Lagrange (1767-69)

Lagrange solved these problems by writing
(*) as
DY?= (Dy+E)? + DF-E?,
where D = b*- 4ac, E=bd-2ae, F=d*-4af, Y=2ax+by+d.

Putting N=E?- DF, X=Dy+E, we get
(1) X2-DY2=N,

Thus, any solution X, Y of (1) such that
(2) X =E (mod D) and Y = b(X-E)/D + d ( mod 2a)

will provide a solution of (¥).



The Pell Equation

Let D be a positive integer and not a perfect square.
Solve for integers 7, U

(3) T°-DU? = 1.

For example, for D=7, a solution 1s T=8, U=3.

All solutions of (3) are generated by a fundamental

solution ¢, u by
T+UND = (t+u\D)" .
We may assume that g(D).= ¢ +uND >1.




Solutions of (1)

When D < 0, (1) can be easily solved by using Cornacchia’s
Algorithm. We will assume, then, that D > 0.

If X, Y is a solution of (1), then
A=X+Y\D = ug(D)",
Where 7 is some integer, 4 =R+SVD is from a finite set S and R,

S 1s a solution of (1).
Thus, for a given u we need to find » such that (2) holds.



Finding n (Dujardin, 1894)

If we are given p =R+SVD, in order for (2) to hold
we must have either

R=E mod (D) (n even) or tR=E (mod D) (n odd).
Also, R=bS (mod 2a).

Furthermore,

D |( dD-bE-DS+bR)/2a (n even)

D |(dD-bE-DSt+bRt)/2a (n odd).

Thus, only the parity of n needs to be determined.



Finding u

Let [a, B] denote the module {xo +yP}, where x and y

range over the integers.
We need to find the principal ideals of O= [I,ND]

which have norm |N|. Such ideals have the form
cla, b+ D /.
Here ¢ | N, a=|N|/c?, and b? =D (mod a).

Let O*=< -1, >, where ¢ (>1) is the fundamental unit of O.

If v 1s a generator of such an ideal, then u= y or u= &y



The Regulator

We overcome the problem of large units by working
with the regulator of O 1nstead of &. This 1s defined to
be R ;=log ¢. Here d denotes the discriminant (4D) of
0. We also use h(d) or h to represent the class

number of O.

R ;1s a transcendental number, so we are content
to compute R', a rational approximation to R ; which 1s
within 1 of R ;.



How Big is R;?

Analytic class number formula

n

2y =L 202 0=

L(1,z,) =5 %) =H[q__ ! }

n=l N q (Q/YZ)

<%10gd+1 (Hua,1942).



Comments

Quite frequently

g> eVl
For example, if
D =990676090995853870156271607886,
then x and y have in excess of 2-101° decimal digits
each. As the average paperback contains about one
million symbols this means that it would take more than
two billion such volumes to record x alone.

If v 1s the generator of a principal ideal, then
Ify<e



Techniques for computing R,

Continued fraction method— O( dl/2+e )
Infrastructure Method (Shanks, 1972) — O(d/#+¢ )
Lenstra’s Las Vegas Algorithm (1982) — O(d?”*¢ )

Srinivasan’s Las Vegas Algorithm (1998) — O(d*”+¢ )



Subexponential Methods

Buchmann (1989) and Abel(1994) have shown that it 1s
possible to compute R'; and A(d) by an index calculus
algorithm that under certain generalized Riemann

hypotheses (GRH) should execute in expected time
exp{(\/2+0(]))(log d)2 (log log d)?)

(Vollmer 2002).



Example

For
D=13022194102190350410319085329793205127-
3194641328847761633615783665713790925835-
60263087397184669099836 (101D)

we get (under the GRH)

R=31780254623174755539291764915494863617-
2763163478260.945231457

This required 87 days on a Beowulf cluster of 16
55 MHz Pentium III computers.

Jacobson, Scheidler, W. 2001



Remarks

[f this algorithm were to fail to find a correct value for R,
1t would, nevertheless, find a close rational approximation of
an integral multiple of ®,. It will also find a divisor of A(d).

The subexponential algorithm can also be generalized to solve
the DLP in O. That is, if we are given a principal ideal, we
can find the logarithm of its generator in expected

subexponential time.



Where Do We Need the GRH

Correctness

1. Factor base (prime ideals of small norm)
must generate the entire class group.
- without GRH, factor base size is
exponential.

2. Find H such that H < h(d)R;<2H
- accurate error estimate in approximation of
L(1, x;) requires GRH.



Problems

The exponential methods are slow.

The subexponential method is dependent on
the truth of the GRH.

Notation change:

We let
R, denote log, €.



Questions

1.Can we verity the value of &; (actually R ',

an approximation of &;) computed by

Buchmann’s algorithm more quickly than
the current exponential techniques?

2.Can we be sure that our value of R ',
satisfies

Ra—Ry €17



Error Sources

Any fast algorithm for computing &,

mvolves many approximations to
transcendental numbers.

Possible sources of error

1. Round-off, truncation

2. Software

3. Hardware

4.  Accidents



Verification of R’

Given R'; from the index calculus algorithm, we want to

verity unconditionally that R’; is within 1 of R ,.

Recently, de Haan, Jacobson and W. (2007) showed
how this can be done, but unfortunately the process
still takes exponential time. The good news is that it 1s
less expensive than any other method.



Reduced Ideals

If a 1s a primitive 1deal (has no rational integer divisors) of O,
then a 1s said to be reduced if there does not exist any non-zero
o 1n a such that both

jof <N(a), o] <N(a)
hold. Here o’ denotes the conjugate of a.

Theorem If a is reduced, then N(a) <vd



The Cycle of Reduced 1deals

Let a(=a,) be a given reduced ideal. The simple
contimued fraction algorithm produces a
sequence of all the reduced ideals equivalent to
a:

s By Bgy suap By o4

H

such that
a,.,~=a; a~0a,0.,>0, fori=1, 2, 3...



(f,p)-Representations

Defmition: LetpeN, fe R, /I<f<2Pand a be any primitive ideal
of K. An (f, p)-representation of a is a triple (b, m, k),

where k € Z, m € N, 2P<m < 2P*! and b is a primitive ideal

of O equivalent to a.

Furthermore b=(8)a with 6 € K and
|12P% B/m -1]< f72P

If b 1s a reduced ideal, we say that (b, m, k) is a reduced

(f. p)-representation of a.




a(x)

Definition

Let (a;,m,k;) (i=1,2,3,...) be reduced (7,p)-representations
of a,. For a positive integer x, we define a(x) to be an ideal
a; such that k; <xand £;, ; > x.

Here a(x) = 0= (0) a, and
x-4+logl5 —(1/2)log d < log Bj <x-3+logl7

when 7'< 2P-4. That is, the value of log HJ- is close to that of
X.



L.

Algorithms

Given (a (x"),m', k") an
(f, p) - representation of a and
(a (x"),m",k") an (f", p) representation of

a, we can compute
(a (x'+x"),m,k),an( f, p) - representation

of a, where
Fo=fr11/4+27PH) px

= P

in O(d®) operations.
P

Given a and x, we can compute a certain
(f,p) — representation of a

(a (x),m,k)
in O((log x) d°) operations.

If
27 >20.2xmax{16,[ logx ]}, then f <277*



Two theorems

Put -
(y =(1)5‘S = {a4aa37a23a19a29a37u4}

Theorem If ce Z* and |R';—cR, k1

then
a([R'y])eS.

Ifa([R'; ])€ S., we can easily modify the
value of R '; to ensure that |R ', —cR ; |<1.

Theorem If g=2 and

x=[R';/q].R,; >q(2logd +1og17/4),

then g|c if and only if a(x)e S.



Strategy

Given R ', from the subexponential
algorighm we must show that

1. ®R,>K (cost O(K™” d*))

2. R 'yjcR <1 (cost O(d°))
If (2) holds, then

C<1+K'd/£_d <1+K'd/K
3. c¢=1 (cost O(d"**¢ 1K)

Optimal value of K is such that
V2 g2 g — g = g3

—>overallcostis O (d1/6+8 )



Timings

2 Intel P4 Xeon 2.4 GHz processors, 1 GB of RAM

d= 10 --- | Subexponential | (°*® d "
15 0.29 sec 0.42 sec 0.25 sec
20 0.45 sec 0.93 sec 263 sec
25 0.68 sec 3.20 sec 2 min, 20 sec
30 1.44 sec 14.60 sec |44 min, 26 sec
35 2.57 sec 1 min, 27 sec | 2 days, 13hr
40 6.06 sec 6min, 12 sec N/A
45 26.27 sec 1hr, 10min N/A
50 Imin, 27 sec 1 day 9hr N/A




Further Timings

d~ 10" R,;%...XlO30 Processors Time

60 1.1 180 4d,9h

62 3.4 240 6d,3h

63 3.2 240 8d,2h

64 8.1 240 10d, 13h

65 195.7 240 102 d, 7h
Example:

d=392863757345425947497580508351516
55092118848530833398743561568481
(65D)

Rg =
195696290466865524253842387693615.27
6328149



Ideal Principality

Let b be a reduced 1deal of K.

1. Use the subexponential algorithm to
find R '; and & — the class number

2. Verify ',

3. Find (¢,m,k) a reduced (f,p) —
representation of b” (8= (¢)bh)



4. Use the subexponential algorithm to
- solve the DLP for ¢ to obtain ge Q
such that
| g - log, <1, where ¢ = (&)
(Jacobson, 2000).

5. Puta; =(1) and find i e {£3,£2,£1,0}
such that

P (a(g]))=c

6. Compute m', k"' such that (¢, m',k')isa
reduced (f,p) — representation of a;.



If b 1s principal, then

b =(f) (1<pB<g;)

o

fr=ap™2 (A=¢,)

Theorem

Theorem If

o[ atrd]

then

|log B—b(r)|<2+3/h.



Put

s'={p'(b): |i|<9]
b is principal if and only if
a(b(r))e S

for some

re{-2,-1,0,....h}.



Complexity

By infrastructure techniques we can determine
unconditionally whether or not b is principal in
O(R,"?a*) operations.

By our technique we can do this in
0(d"***)+0(hd®) operations.

Since
hRd =O(d”2+£),

we have a Las Vegas algorithm for solving this
problem of complexity

O(d1f6+£)-



Example (Jacobson and Williams, 2002)

d; = 187060083
dy = 1489467623830555129

dg =
1311942540724389723505929002667880175005208

Jj1=2
jo = 21040446251556347115048521645334887

We need to verify that the equation

d]XZ - d3 = (d3j1-djj2)/dz:=c
=88081306349606091 1643645

has no solutions.



We do this by verifying that there are no
principal ideals of norm ¢ d; in the quadratic

field Q(\(d;dsz)). This yields the field
discrimirnant

d=did=
2454120805591352218033661302311608869705287
33912264 (51D)

From the subexponential algorithm
W(d) = 1024
Rg =6851/06675369184895740.2467



Verification

We now need to verify that all of the 1deals of norm
cd;= 3-57-769-:33809-8907623-6775714175075849

are not principal in O by using the new method. Note
that 3, 7, 8907623 each divide the discriminant d, so we
have a total of 16 i1deals of norm cd;.

Using the new method, we were able to show in 5 hours
that none of these is principal. 87% of the time needed

to do this was required to verify the value of R’,.
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