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Problem

Problem

Given B ∈ R>0, enumerate the set NF (B) of totally real number
fields F with root discriminant δF ≤ B, up to isomorphism.

To solve this problem, for each n ∈ Z>0 we enumerate the set

NF (n,B) = {F ∈ NF (B) : [F : Q] = n}

which is finite (Minkowski).

By the Odlyzko bounds, for

B < 4πe1+γ < 60.840

(or B < 8πeγ+π/2 < 215.333 on the GRH), we have NF (n,B) = ∅
for n sufficiently large and so the set NF (B) is finite.
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Existing tables

1. There are tables of number fields computed by the Pari group
(late 1990s) and the KASH group (QaoS, 2005). These tables
contain fields of all signatures with n ≤ 7 and varying
discriminant bound and sporadic fields in degrees 8 and 9.

2. Malle (ANTS VII) computed all totally real primitive number
fields of discriminant dF ≤ 109. This was reported to take
several years of CPU time on a SUN workstation.

3. Klüners and Malle (2001) created a database for number
fields, containing representative polynomials for all transitive
Galois groups up to degree 15.

4. Tables of totally real fields with small root discriminant
(Roblot), fields with prescribed ramification (Jones), ...

From (2) we could determine NF (10) if we also separately
compute imprimitive fields; the latter two are in a different spirit.
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Main result

Theorem

#NF (14) = 1229.

n #NF (n, 14) Prim F Imprim F Min dF Min δF

2 59 59 0 5 2.236
3 86 86 0 49 3.659
4 277 117 160 725 5.189
5 170 170 0 14641 6.809
6 263 104 159 300125 8.182
7 301 301 0 20134393 11.051
8 62 19 43 282300416 11.385
9 11 6 5 9685993193 12.869
10 0 0 0 443952558373? 14.613?

Total 1229 862 367 - -
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Degree 10

Conjecture

Let F = Q(α) where α is a root of the polynomial

x10 − 11x8 − 3x7 + 37x6 + 14x5 − 48x4 − 22x3 + 20x2 + 12x + 1.

Then F is the totally real field of degree 10 with smallest
discriminant dF = 443952558373 = 6123972757.

The number field F (though not this polynomial) already appears
in the tables of Klüners-Malle. It is a quadratic extension of the
second smallest totally real quintic field, of discriminant 24217 (an
S5 extension).
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Motivation and applications

As we have seen, many of the existing tables are either old,
incomplete, or in a different spirit.

The complete list of these fields is available online at
http://www.cems.uvm.edu/~voight/nf-tables/. Our
algorithm is included in Sage 3.0.

One may place alternative constraints on the signature of the fields
F under consideration or even analogous p-adic conditions.
However, totally real fields are interesting for many reasons.
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Motivation and applications: Towers

Recall that assuming the GRH, for B < 215.333 the set NF (B) is
finite. Martin has constructed an infinite tower of totally real fields
with root discriminant δ ≈ 913.493. The value

lim inf
n→∞

min{δF : F ∈ NF (n,B)}

is presently unknown.

By comparison, Hajir-Maire have constructed an unramified tower
of totally complex number fields with root discriminant ≈ 82.100,
which comes within a factor 2 of the GRH-conditional Odlyzko
bound of 8πeγ ≈ 44.763.

Totally real octics of moderate discriminant are good candidates as
the base field for such a tower (coming from the Golod-Shafarevich
bound). In joint work with Martin, we are now searching for a
better tower.
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Motivation and applications: Arithmetic

In studying certain enumerative problems in arithmetic geometry
and number theory, one often reduces to a bound on the root
discriminant and concludes finiteness using the Odlyzko bounds.
Therefore, provably complete and extensive tables of totally real
fields are useful (if not essential).

For example, using our tables we enumerated all Shimura curves of
genus at most two. A Shimura curve is a generalization of a
modular curve, given by taking the quotient XD

0 (N) = ΓD
0 (N)\H

where ΓD
0 (N) is the group of units of reduced norm 1 in a

quaternion algebra over a totally real field F which is split at a
unique real place. There are exactly 858 such curves.

We also recently enumerated all CM-extensions K/F with higher
relative class number at most sixteen, generalizing the Gauss class
number 1 problem to higher K -groups.
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Motivation and applications: Asymptotics of number fields

Finally, work of Bhargava has renewed interest in the asymptotics
of number fields with fixed Galois group. Bhargava (2005–) counts
the number of cubic, quartic, quintic fields up to discriminant X
and obtains an asymptotic in terms of local densities. It would be
interesting to investigate the convergence of the data and the error
term.

Also, in joint work with Dummit, we are investigating the signature
rank of totally real quintic fields, the F2-rank of the group of
totally positive units modulo squares Z∗F ,+/Z∗2F . For this
application, we need very large tables of (totally real) quintics.
This work is motivated by the Stark conjecture.
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Results and timings

For good measure (and for our applications), we actually compute
NF (n,B) ≤ ∆(n) as follows.

n 2 3 4 5 6 7 8 9 10
∆(n) 30 25 20 17 16 15.5 15 14.5 14

f 443 4922 57721 244600 3242209 1.7 · 107 1.2 · 108 9.5 · 108 2.5 · 109

F 273 630 1273 674 802 301 164 15 0
CPU time 0.2s 2.2s 26.8s 1m25s 17m3s 2h59m 1d4.5h 17d21h 193d
Imprim f 0 0 7059 0 62532 0 239404 15658 945866
Imprim F 0 0 702 0 420 0 100 6 0
CPU time - - 4m22s - 8m38s - 1h56m 16m53s 11h27m
Total fields 273 630 1578 674 827 301 164 15 0

The CPU time is relative to the processor of a desktop machine
(Opteron 1.8GHz, Athlon Dual Core 2.0GHz, and Celeron
2.53GHz).
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Method: Hunter’s theorem

We follow the well-known method for enumerating NF (n,B), with
a few new tricks.

First, we use the geometry of numbers (Hunter’s theorem): there
exists α ∈ ZF \ Z such that 0 ≤ Tr(α) ≤ n/2 and

T2(α) =
∑n

i=1|αi |2 ≤ C (n,B)

for an explicit bound C (n,B). This gives bounds on the
coefficients ai ∈ Z of the characteristic polynomial of α

f (x) = xn + an−1x
n−1 + · · ·+ a0 =

∏n
i=1(x − αi ).

(We must also deal with the possibility that F is imprimitive and
Q(α) 6= F .)
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Method: Analysis

This yields a finite set NS(n,B) of possible f (x) ∈ Z[x ] of size
O(Bn(n+2)/4).

Conjecture (Linnik)

#NF (n,B) ∼ c(n)Bn for some cn ∈ R>0.

This conjecture is known for n = 3 (Davenport-Heilbronn) and for
n = 4, 5 (Bhargava). For large n, the best result known is

#NF (n,B) = O
(
Bn exp(C

√
log n)

)
for some absolute constant C (Ellenberg-Venkatesh). It is an open
problem to make their method practical, so we are left to chip
away at the implied constant.
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Method: Smyth’s lower bound

We now assume F is totally real and primitive.

From Hunter’s theorem, we obtain an upper bound on
T2(α) = Tr(α2). We then apply the following result of Smyth.

Lemma (Smyth)

If θ is a totally positive algebraic integer, then

Tr(θ) > 1.7719[Q(θ) : Q]

with finitely many (explicitly known) exceptions.

We therefore have finitely many possibilities for the first two
coefficients an−1, an−2.
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Method: Rolle’s theorem

Now, given values for an−1, an−2, . . . , an−k , we deduce bounds for
an−k−1. Let fk(x) = 1

(n−k)! f
(n−k)(x) = gk(x) + an−k . Consider for

illustration the case k = 3, so

g3(x) = n(n−1)(n−2)
6 x3 + (n−1)(n−2)

2 an−1x
2 + (n − 2)an−2x .

Let β1 < β2 denote the roots of f2(x).

Thus f3(β1) = g3(β1) + an−3 > 0 and
similarly f3(β2) = g3(β2) + an−3 < 0
hence −g3(β1) < an−3 < −g3(β2).

In a similar way, using Lagrange multipliers (Pohst) we find a
bound on the largest β3 and smallest root β0 of f (x) which yields
f3(β3) = g3(β3) + an−3 > 0 so −g3(β3) < an−3 < −g3(β0).
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Method: Conclusion

The combined Rolle’s theorem-Lagrange multiplier bounds are by
far the best available in the case of totally real fields, in our
experience.

We find additional (substantial!) speedups by using an “easy
irreducibility” test and other implementation tricks.

Finally, we extend these ideas to the imprimitive case. We use a
lattice point enumeration method which allows us to generalize the
use of Rolle’s theorem and Lagrange multipliers to the relative
situation.
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