On the Diophantine Equation $x^2 + 2^{\alpha}5^{\beta}13^{\gamma} = y^n$

Alain Togbé

joint work with Edray Goins and Florian Luca

Ants VIII, Banff, May 19th, 2008

Alain Togbé On the Diophantine Equation $x^2 + 2^{\alpha}5^{\beta}13^{\gamma} = y^n$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 ● � � � �

Background and history

The history of the Diophantine equation

$$x^2 + C = y^n, x \ge 1, y \ge 1, n \ge 3,$$

is very rich. This equation is called *Lebesque-Nagell* equation.

• In 1850, Lebesgue was the first to study this equation when C = 1. He found no solutions.

• In 1923, Nagell studied the equation for C = 3, 5. He also found no solutions.

• In 1943, Ljunggren extended a result of Fermat to prove that the equation for C = 2 has only the solution x = 5, y = 3.

• A particular case is the *Ramanujan-Nagell* equation $x^2 + 7 = 2^n$ solved by Nagell in 1948.

• The case C = -1 was solved by Chao Ko in 1965. The only solution is x = 3, y = 2. This is a special case of the Catalan equation.

• J.H.E. Cohn solved the above equation for several values of the parameter *C* in the range $1 \le C \le 100$ in 1992 and 1993.

• Mignotte and De Weger studied the cases C = 74,86 in 1996.

• Bennett and Skinner applied the modular approach to solve the equation for C = 55,95 in 2004.

• In 2006, Bugeaud-Mignotte-Siksek used classical and modular approaches to solve the rest of the cases, for $1 \le C \le 100$.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Recently, several authors become interested in the case $C = p^k$, where *p* is a prime number or *C* is the product of prime powers.

- The case p = 2 was studied by Arif-Abu Muriefah (1997) and Le (2002).
- The case p = 3 was solved by Arif-Abu Muriefah (1998), and Luca (2000).
- In 2000, Arif-Abu Muriefah studied the case p = 5 and k odd.
- Partial results for a general prime *p* appear in Arif-Muriefah (2002) and Le (2001).
- Luca T. obtained a result when $C = 7^{2a}$.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

• All the solutions when x and y are coprime and

$$C = 2^a \cdot 3^b$$

were found by Luca in 2002.

• The cases

$$C = 2^a \cdot 5^b$$
 and $C = 2^a \cdot 13^b$

were studied by Luca and T.

• Abu Muriefah, Luca, and T. solved the equation when

$$C=5^a\cdot 13^b.$$

• The first result when *C* is a product of higher number of factors was obtained by Pink in 2007. He considered

$$\boldsymbol{C} = \boldsymbol{2}^{\alpha} \cdot \boldsymbol{3}^{\beta} \cdot \boldsymbol{5}^{\gamma} \cdot \boldsymbol{7}^{\delta}.$$

The main result

Theorem

The equation

$$x^2 + 2^{\alpha} 5^{\beta} 13^{\gamma} = y^n, \qquad (0.1)$$

with $x \ge 1$, $y \ge 1$, gcd(x, y) = 1, $n \ge 3$, $\alpha > \mathbf{0}, \ \beta \ge \mathbf{0}, \ \gamma \ge \mathbf{0};$ has no solution except for: n = 3 the solutions given in Table 1; n = 4 the solutions given in Table 2; n = 5 $(x, y, \alpha, \beta, \gamma) = (401, 11, 1, 3, 0);$ n = 6 $(x, y, \alpha, \beta, \gamma) \in$ $\{(25,3,3,0,1), (23,3,3,2,0), (333,7,3,1,2), (521,9,5,4,1)\};$ n = 7 $(x, y, \alpha, \beta, \gamma) = (43, 3, 1, 0, 2);$ n = 8 $(x, y, \alpha, \beta, \gamma) \in \{(79, 3, 6, 1, 0), (49, 3, 6, 1, 1)\};$ n = 12 $(x, y, \alpha, \beta, \gamma) = (521, 3, 5, 4, 1).$

For $n \ge 3$ fixed, let $(x, y, \alpha, \beta, \gamma)$ be a solution to the equation.

α	β	γ	X	У	α	β	γ	X	У
0	0	1	70	17	8	0	2	6183	337
0	2	2	142	29	14	2	10	137411503	422369
6	2	2	98233	2129	2	4	1	441	61
1	0	0	5	3	3	0	1	25	9
7	6	0	383	129	9	12	1	1071407	14049
1	0	1	1	3	9	0	3	181	105
1	0	1	207	35	9	1	6	83149	2681
7	0	1	57	17	3	1	2	333	49
7	0	1	18719	705	9	2	0	17771	681
1	6	1	8553	419	3	2	0	23	9
25	0	1	15735	881	9	2	1	109513	2289
1	2	3	151	51	15	4	3	11706059	51561
13	2	5	1075281	10721	4	0	2	47	17
7	3	2	3114983	21329	4	4	6	1397349	12601
1	4	0	9	11	5	1	2	3017	209
1	4	2	9823	459	5	2	0	261	41
1	16	2	46679827	130659	11	2	1	1217	129
2	0	0	11	5	5	2	3	103251	2201
2	0	2	27045	901	5	4	1	521	81

 Table: Solutions for $n = 3^{< \Box > < \Box > < \exists > < ?</th>

 Alain Togbé
 On the Diophantine Equation <math>x^2 + 2^{\alpha}5^{\beta}13^{\gamma} = y^{n}$

0	ß	a /	v	17
α	ρ	γ	X	y
4	1	0	1	3
0	1	1	4	3
12	1	1	959	33
5	0	0	7	3
5	4	1	521	27
5	2	1	2599	51
6	1	0	79	9
6	1	1	49	9
10	1	1	16639	129
7	2	1	391	21

Table: Solutions for n = 4.

990

Lemma

- When n = 3, then the only solutions to equation (0.1) are given in Table 1.
- For n = 6, the only solutions are

(25, 3, 3, 0, 1), (23, 3, 3, 2, 0), (333, 7, 3, 1, 2), (521, 9, 5, 4, 1);

• For n = 12 then (521, 3, 5, 4, 1) is the only solution.

注▶▲注▶ 注 のへの

Factoring the initial equation leads to the equations

$$\left(\frac{x}{z^3}\right)^2 + A = \left(\frac{y}{z^2}\right)^3, \qquad (0.2)$$

where A is implicitly defined by

$$\mathbf{2}^{\alpha}\,\mathbf{5}^{\beta}\,\mathbf{13}^{\gamma}=\mathbf{A}\mathbf{z}^{\mathbf{6}}.$$

One can see that $A = 2^{\alpha_1} 5^{\beta_1} 13^{\gamma_1}$ with $\alpha_1, \ \beta_1, \ \gamma_1 \in \{0, 1, 2, 3, 4, 5\}$. We thus get $V^2 = U^3 - 2^{\alpha_1} \cdot 5^{\beta_1} \cdot 13^{\gamma_1}$, (0.3) with $U = y/z^2$, $V = x/z^3$ and $\alpha_1, \ \beta_1, \ \gamma_1 \in \{0, 1, 2, 3, 4, 5\}$.

We used Magma to find the solutions.

Looking in the list of solutions those whose *y* is a perfect power, we determine the solutions for n = 6, 12.

Lemma

- If n = 4, then the only solutions to equation (0.1) are given in Table 2.
- If n = 8, then the only solutions to equation (0.1) are (79,3,6,1,0), (49,3,6,1,1).

프 > 프

Equation (0.1) can be written as

$$\left(\frac{x}{z^2}\right)^2 + A = \left(\frac{y}{z}\right)^4, \qquad (0.4)$$

where A is fourth-power free and defined implicitly by

$$2^{\alpha} 5^{\beta} 13^{\gamma} = Az^4.$$

One can see that $A = 2^{\alpha_1} 5^{\beta_1} 13^{\gamma_1}$ with $\alpha_1, \beta_1, \gamma_1 \in \{0, 1, 2, 3\}.$

Hence, the problem consists in determining the $\{2, 5, 13\}$ -integer points on the totality of the 64 elliptic curves

$$V^2 = U^4 - 2^{\alpha_1} \, 5^{\beta_1} \, 13^{\gamma_1}, \tag{0.5}$$

with U = y/z, $V = x/z^2$ and α_1 , β_1 , $\gamma_1 \in \{0, 1, 2, 3\}$. Magma does the job.

For n = 8, we look in the list of solutions those whose y is a perfect square.

Lemma

The Diophantine equation (0.1) has no solution with $n \ge 5$ prime except for

•
$$n = 5$$
 $(x, y, \alpha, \beta, \gamma) = (401, 11, 1, 3, 0);$

•
$$n = 7$$
 $(x, y, \alpha, \beta, \gamma) = (43, 3, 1, 0, 2).$

< □ > < □ > < □ > . □ =

Let $\mathbb{K} = \mathbb{Q}[i\sqrt{d}]$, where $C = 2^{\alpha} 5^{\beta} 13^{\gamma} = dz^2$,

d = 1, 2, 5, 10, 13, 26, 65, 130

according to the parities of the exponents α , β , and γ .

We factor the above equation in \mathbb{K} to get

$$\left(x+i\sqrt{d}\ z\right)\left(x-i\sqrt{d}\ z\right)=y^{p}.$$
(0.6)

Assume that

$$x + i\sqrt{d}z = \eta^{\rho} \tag{0.7}$$

holds with some algebraic integer $\eta \in \mathcal{O}_{\mathbb{K}}$.

We obtain

$$2i\sqrt{d}\ 2^a\ 5^b\ 13^c = \eta^p - \bar{\eta}^p. \tag{0.8}$$

Alain Togbé On the Diophantine Equation $x^2 + 2^{\alpha}5^{\beta}13^{\gamma} = y^n$

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q @

If we set $\eta = u + v\sqrt{d}$, then we deduce that $v \mid 2^a 5^b 13^c$, and that

$$\frac{2^{a} 5^{b} 13^{c}}{v} = \frac{\eta^{p} - \bar{\eta}^{p}}{\eta - \bar{\eta}} \in \mathbb{Z}.$$
 (0.9)

Let
$$\{L_m\}_{m\geq 0}$$
 be the *Lucas sequence* of general term $L_m = \frac{\eta^m - \bar{\eta}^m}{\eta - \bar{\eta}}$, for all $n \geq 0$.

Equation (0.9) leads to the conclusion that

$$P(L_p) = P\left(\frac{2^a 5^b 13^c}{v}\right). \tag{0.10}$$

Using the Primitive Divisor Theorem for Lucas sequences implies that if $p \ge 5$, then L_p has a *primitive* prime factor except for finitely many pairs $(\eta, \bar{\eta})$ and all of them appear in tables obtained by Bilu-Hanrot-Voutier and Abouzaid.

We obtain that $d \in \{2, 5, 10\}$ and p = 5, 7.

• Can one obtain similar results the equation

$$a_1x^2+C=a_2y^n?$$

• For $a_2 = 2$, some results are obtained by Ljunggren, Bugeaud, Tengely, Muriefah-Luca-Siksek-Tengely,...

• For $a_2 = 4$, some results are obtained by Bugeaud, Mignotte, Maohua, Bilu, Yuan, Arif-Al Ali,...

• For $a_2 = 3$, ???... It may be a little difficult. But something can be done.

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● � � �