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Elliptic Curves

Let K be a number field. An elliptic curve E over K is the set of
all (x , y) satisfying the Weierstrass equation

E : y 2 + a1xy + a3y = x3 + a2x2 + a4x + a6

for some ai ∈ K , with non-zero discriminant.

For any field L ⊇ K , define the set of all L-points of E as

E (L) = {(x , y) ∈ L× L : (x , y) ∈ E} ∪ {O}

where O denotes the point at infinity.

The set E (L) is an abelian group under “addition”, with O as the
identity
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Moreover,

Theorem (Mordell–Weil)

Let K be a number field. The group E (K ) is finitely generated.

Equivalently,
E (K ) ∼= T × Zs

where the torsion subgroup T of E (K ) is finite, and the rank s of
E (K ) is non-negative.

Thus every point P ∈ E (K ) is a linear combination of points in the
T , and a Mordell–Weil basis {P1, . . . ,Ps} of E (K ). In contrast to
T , determining a Mordell–Weil basis is much harder.
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The Problem

In general, the task of explicit computation of a Mordell–Weil basis
consists of:

1 An m-descent (for some m ≥ 2) is used to determine
P1, . . . ,Ps , a basis for E (K )/mE (K ).

2 A lower bound λ > 0 for the canonical height ĥ(P) is
determined. This together with the geometry of numbers
yields an upper bound for the index

n = [E (K )/T : 〈P1, . . . ,Ps〉].

3 A sieving procedure is used to deduce a Mordell–Weil basis.

In Step 2, we wish to have the upper bound for n as small as
possible. This can be achieved if we have a larger value of λ
(Siksek 1995).
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In the past, a number of algorithms for computing such lower
bound have been proposed. This includes:

Hindry and Silverman (1988): Works for any number field K ,
model-independent, but rather theoretical.

Cremona and Siksek (2006): Works for K = Q. Recently
known to be the sharpest one for such K .

This work is mainly a generalisation of Cremona and Siksek’s
algorithm. In particular, I aim to extend their algorithm to any
elliptic curves over totally real number fields.
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Points of Good Reduction

Suppose K is a totally real number field of degree r = [K : Q]. Let
E be an elliptic curve over K given by an integral Weierstrass
model, and ∆ = disc(E ). Define a map

φ : E (K )→
∏
v∈S

E (v)(Kv )

where
S = {∞1, . . . ,∞r} ∪ {p : p | ∆}

in such a way that φ maps each point P ∈ E (K ) to its
corresponding point on each real embedding E 1, . . . ,E r , and on
each minimal model of E at p, denoted by E (p).
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We wish to estimate a lower bound for ĥ(P), where P ∈ E (K ).
Instead of working over E (K ) itself, we compute a lower bound of
ĥ(P) for

P ∈ Egr(K ) := φ−1

(∏
v∈S

E
(v)
0 (Kv )

)
where

E
(v)
0 (Kv ) =

{
connected component of the identity if v =∞j

set of points of good reduction if v = p.

In other words, Egr(K ) is the set of all points having good
reduction on every E (v)(Kv ).
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The lower bound for the canonical height on the whole E (K ) can
be easily deduced once the lower bound µ for the canonical height
on Egr(K ) is determined.

Let c be the least common multiple of the Tamagawa indices

cv = [E (v)(Kv ) : E
(v)
0 (Kv )]

for every v ∈ MK (This is well-defined since cv = 1 for almost all
v). Then the lower bound for the canonical height of all
non-torsion points in E (K ) is

λ = µ/c2.
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Estimating the Local Heights

From the properties of the canonical height, we have

ĥ(P) =
1

r

∑
v∈MK

nvλv (P)

=
1

r

∑
p

npλp(P) +
r∑

j=1

λ∞j (P)

 .

Note that nv = [Kv : Qv ] = [R : R] = 1 for all v =∞j . The
function λv : E (Kv )→ R is called the local height of P at v .

It then suffices to estimate a lower bound for each sum, in order to
obtain a lower bound for ĥ(P) on Egr(K ).
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Non-Archimedean Local Heights

Let kp be the residue class field of p, with c(p) = char(kp). Also

let ep be the exponent of the group E
(p)
ns (kp) ∼= E

(p)
0 (Kp)/E

(p)
1 (Kp).

Then

Proposition

Suppose P ∈ Egr(K ) \ {O}. Then

∑
p

npλp(nP) ≥ DE (n)− 1

6
logN

(∏
p

pordp(∆/∆(p))

)

where DE (n) =
∑

p
ep|n

2(1 + ordc(p)(n/ep)) logN (p).

Moreover, if ep | n, then N (p) ≤ (n + 1)max{2,[K :Q]} (i.e. the sum
for DE is finite).
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Archimedean Local Heights

Let

α−3
j = inf

P∈E j
0(R)

{
max{|f (P)|∞j , |g(P)|∞j}

max{1, |x(P)|∞j}4

}
where

f (P) = 4x(P)3 + b2x(P)2 + 2b4x(P) + b6

g(P) = x(P)4 − b4x(P)2 − 2b6x(P)− b8

and b2, b4, b6, b8 ∈ K are usual constants associated to E .

Lemma

If P ∈ E j
0(R) \ {O}, then

λ∞j (P) ≥ log max{1, |x(P)|∞j} − logαj .

The number αj can be efficiently computed (Cremona, Prickett,
Siksek 2006).
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A Bound for Multiples of Points of Good Reduction

We wish to show whether a given µ > 0 satisfies ĥ(P) > µ for all
non-torsion P ∈ Egr(K ). This involves the approximation of a
bound for x(nP), which we derive from our previous estimate on
local heights.

Let

Bn(µ) = exp

(
rn2µ− DE (n) +

1

6
logN

(∏
p

pordp(∆/∆(p))

)

+
r∑

j=1

logαj

 .
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Proposition

If Bn(µ) < 1, then ĥ(P) > µ for all non-torsion P ∈ Egr(K ).
If Bn(µ) ≥ 1 then for all non-torsion P ∈ Egr(K ) with ĥ(P) ≤ µ,
we have

|x(nP)|∞j ≤ Bn(µ)

for all j = 1, . . . , r .

Note that µ may still be a lower bound for ĥ(P) even Bn(µ) ≥ 1.
In this case, we shall prove this by solving the inequalities involving
x(nP) on each real embedding E j .
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Solving Inequalities on Real Embeddings

For j = 1, . . . , r , the previous proposition says that every
non-torsion point P ∈ Egr(K ) with ĥ(P) ≤ µ must satisfy
|x(nP)|j ≤ Bn(µ). This means we need to consider s elliptic curves
over R, say

E j : y 2 + σj(a1)xy + σj(a3)y = x3 + σj(a2)x2 + σj(a4)x + σj(a6)

where σj : K → R are the real embeddings of K . In particular, we
need to consider the system of inequalities involving x(σj(nP)) on

each E j
0(R).

To do this, we use an application of elliptic logarithm, which is an
isomorphism

ϕ : E0(R)→ R/Z ∼= [0, 1).
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To solve the inequalities, first we fix a real embedding E j at a
time. Let ϕj : E j

0(R)→ [0, 1) be the corresponding elliptic
logarithm map.

Suppose P ∈ E j
0(R) such that |x(nP)| ≤ Bn(µ) for every n > 0.

Then we have ϕj(nP) ∈ S j(−Bn(µ),Bn(µ)) where
S j : R× R→ [0, 1) yields a subinterval of [0, 1).

Since ϕj is an isomorphism, we have ϕj(nP) = nϕj(P) (mod 1).
Hence

ϕj(P) ∈ S j
n(−Bn(µ),Bn(µ))

for every n, where

S j
n(−Bn(µ),Bn(µ)) =

n−1⋃
t=0

(
t

n
+

1

n
S j(−Bn(µ),Bn(µ))

)
.
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The Algorithm

To check if µ > 0 is a lower bound for ĥ(P) on Egr(K ):

1 Start with a given initial guess µ > 0 and k ∈ Z+.

2 For n = 1, . . . , k, compute Bn(µ).

3 If Bn(µ) < 1 for some n, then ĥ(P) > µ for all non-torsion
P ∈ Egr(K ) =⇒ Done.

4 Otherwise, choose a real embedding E j . Compute⋂k
n=1 S

j
n(−Bn(µ),Bn(µ)).

5 If the intersection is empty, we conclude that ĥ(P) > µ for all
non-torsion P ∈ Egr(K ) =⇒ Done.

6 If not, repeat (4)–(6) with a different E j .

If for all E j the intersections are not empty, we fail to show that µ
is a lower bound for ĥ(P).
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Example I

Let E be the elliptic curve over K = Q(
√

10) given by

E : y 2 = f (x) = x3 + 125.

Note that K has class number 2. The decomposition of the
discriminant ∆ of E is 〈∆〉 = p12

1 p3
2p

3
3p

8
4, where

p1 = 〈5,
√

10〉, p2 = 〈3, 4+
√

10〉, p3 = 〈3, 2+
√

10〉, p4 = 〈2,
√

10〉.

Indeed E is minimal everywhere except at p1.
By substituting

x = (
√

10)2x ′, y = (
√

10)3y ′

we have a new elliptic curve E ′ : y ′2 = x ′3 + 1/8.
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Hence E ′ is minimal at p1 and elsewhere, except at all prime ideals
dividing 2. Thus we let E (p1) = E ′ and E (p) = E for any p 6= p1.
Our program shows that

ĥ(P) > 0.2859

for every non-torsion P ∈ Egr(K ).

The Tamagawa indices at p1, p2, p3, p4 are 1, 2, 2, and 1
respectively. Also since c∞1 = c∞2 = 1, then c = 2. Hence for any
non-torsion point P ∈ E (K ), we have

ĥ(P) > 0.2859/(22) = 0.0714.

Observe that the point P = (5, 5
√

10) ∈ E (K ) is non-torsion.
Assume E (K ) has rank 1. Then by Siksek’s theorem, we have

n = [E (K ) : 〈P〉] ≤ 3.0229.
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Example II

Let E be the elliptic curve over K = Q(
√

7) given by

E : y 2 + (3 + 3
√

7)xy + y = x3 + (26 + 4
√

7)x2 + x

By computing the discriminant ∆ of E , we have 〈∆〉 = p1p2p3,
where

p1 = 〈4219, 1083 +
√

7〉, p2 = 〈4657, 35443 +
√

7〉,
p3 = 〈12799, 5358 +

√
7〉.

Thus E is already a globally minimal model.
The algorithm shows that

ĥ(P) > 0.1415

for every non-torsion point P ∈ Egr(K ).
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The Tamagawa indices at p1, p2, p3 are all 1. In addition,
c∞1 = c∞2 = 2. Hence c = 2. This gives us

ĥ(P) > 0.1415/22 = 0.0353

for all non-torsion points P ∈ E (K ).

Finally, let
P1 = (0, 0), P2 = (1,

√
7).

Then P1,P2 ∈ E (K ) and are non-torsion. Assume that E (K ) has
rank 2, then by Siksek’s theorem we have

n = [E (K ) : 〈P1,P2〉] ≤ 35.2450.
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