
Faster Multiplication in F2[X ]

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann



Post-doc position

The CACAO project (Nancy, France) offers a post-doc position for working
on the Number Field Sieve ; in particular:

implementation concerns.

Software speed-up.

Large scale distribution.

This is part an ongoing project on NFS, named CADO:
http://cado.gforge.inria.fr/



Faster Multiplication in F2[X ]

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann



Plan

1. Introduction

2. Small sizes

3. Medium sizes

4. Large sizes

ANTS VIII – May 21st, 2008 – p. 1/21



1. Introduction

2. Small sizes

3. Medium sizes

4. Large sizes



Why ?

We focus on polynomial multiplication over F2[x].

This is used in many contexts:

polynomial factorization, irreducibility tests ;

(some) crypto applications ;

less obvious: sparse linear algebra over F2 ;

and more.

ANTS VIII – May 21st, 2008 – p. 2/21



How does data look like ?

Binary polynomial x3 + x2 + 1 → machine integer(1101)2 (“dense”).

up to degree 63: one machine word (64-bit).

degree 64 to 127: two words.

. . .

In hardware: add is trivial ;

mul is easy ; much easier than integer mul.

Not our business.

In software: add is trivial (xor) ;

mul is tedious (no PCMULQDQ yet !).

ANTS VIII – May 21st, 2008 – p. 3/21



What do we do ?

We are interested in:

software.

speed everywhere: from 64 to 232 coefficients (think recursion).

ANTS VIII – May 21st, 2008 – p. 4/21



Existing software
Existing software typically has:

Possibly fast multiplication for 1, 2 . . . up to a few words.

Karatsuba multiplication above.

Main reference: Victor Shoup’s NTL: shoup.net/ntl

Very rarely (if ever), one finds:

Code that takes advantage of CPU-specific instructions ;

Toom-Cook multiplication ;

Fast multiplication for unbalanced operands ;

FFT (Schönhage ternary + Cantor additive).

ANTS VIII – May 21st, 2008 – p. 5/21



1. Introduction

2. Small sizes

3. Medium sizes

4. Large sizes



Below degree 64: mul1
Classical: c = a × b computed with a (fixed-) window method.

Tabulate multiples g × b, for deg g < s (s = window size).

Split a = A0 + A1x
s + A2x

2s + · · · .

Accumulate c = A0 × b + (A1 × b)xs + (A2 × b)x2s + · · · .

Operations required: shifts, XORs.

For degree below 64, we work with machine words only.

We measure the best window size with experiments.

64 × 64: ∼ 75 Intel core2 cycles ; ∼ 85 AMD k8 cycles.

64k × 64 would work the same way.

ANTS VIII – May 21st, 2008 – p. 6/21



Using SIMD capabilities
What about 128 × 128 ?

Karatsuba ⇒ three 64 × 64.

Schoolbook requires a × blow and a × bhigh ⇒ two 128 × 64.

BUT a × blow and a × bhigh can be computed in a SIMD-manner.

SIMD instructions on x86_64 provide the necessary shifts and XORs.

Accessible with compiler builtins (gcc, icc, MSVC).

Assembly is not absolutely necessary.

128 × 128: ∼ 129 Intel core2 cycles ;

∼ 226 AMD k8 cycles.

Faster than Karatsuba here.

ANTS VIII – May 21st, 2008 – p. 7/21



1. Introduction

2. Small sizes

3. Medium sizes

4. Large sizes



Medium sizes
Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.
⇒ No branching.

Example for mul4:

mul2 (c, a, b);

mul2 (c + 4, a + 2, b + 2);

aa[0] = a[0] ^ a[2]; aa[1] = a[1] ^ a[3];

bb[0] = b[0] ^ b[2]; bb[1] = b[1] ^ b[3];

c24 = c[2] ^ c[4];

c35 = c[3] ^ c[5];

mul2 (ab, aa, bb);

c[2] = ab[0] ^ c[0] ^ c24; c[3] = ab[1] ^ c[1] ^ c35;

c[4] = ab[2] ^ c[6] ^ c24; c[5] = ab[3] ^ c[7] ^ c35;

ANTS VIII – May 21st, 2008 – p. 8/21



Medium sizes
Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.
⇒ No branching.

Cycle counts, Intel core2.

deg NTL LIDIA ZEN this paper

63 99 117 158 75

127 368 317 480 132

191 703 787 1 005 364

255 1 130 988 1 703 410

319 1 787 1 926 2 629 806

383 2 182 2 416 3 677 850

447 3 070 2 849 4 960 1 242

511 3 517 3 019 6 433 1 287

ANTS VIII – May 21st, 2008 – p. 8/21



What comes next ?

Toom-3: deg a < 3k, write a = A(x, xk), A(x, t) = a0(x) + a1(x)t + a2(x)t2.

Evaluate (A(x, xi))i=0,1,2,3,4 and (B(x, xi))i=0,1,2,3,4

Multiply: C(x, xi) = A(x, xi)B(x, xi).

Interpolate: recover C(x, t) from (C(x, xi))i=0,1,2,3,4

Misbelief: This is only for #K ≥ 4. . .

because we need 5 evaluation points (in P
1(K)).

We can use: 0, 1,∞, x, x−1.

Often better: 0, 1,∞, x64, x−64: avoids shifts.

The degrees in recursive calls increase mildly.

See paper for timings.

ANTS VIII – May 21st, 2008 – p. 9/21



1. Introduction

2. Small sizes

3. Medium sizes

4. Large sizes



Large sizes

We are also interested in multiplication in the FFT range.

Several options:

integer FFT and (huge) padding (Krönecker-Schönhage).

Cantor’s additive FFT algorithm.

Schönhage’s ternary FFT algorithm.

ANTS VIII – May 21st, 2008 – p. 10/21



Cantor’s additive FFT

Assume we are given fast polynomial multiplication in Fk = F
22k = F2[γ].

We use it for multiplication in F2[x].

Separate coefficients of a and b in blocks of 2k−1 coefficients:

Write a = A(x, x2
k−1

), A(x, t) = a0(x) + a1(x)t + a2(x)t2 + · · · .

ã = A(γ, t) ∈ Fk[t].

ã × b̃ has coefficients in Fk.

Since deg aibj < 2k, then c = a × b is such that c̃ = ã × b̃.

ANTS VIII – May 21st, 2008 – p. 11/21



Multiplying in Fk

Let s1(x) = x2 + x, and si(x) = s1(s1(· · · s1︸ ︷︷ ︸
i times

(x) · · · )).

si satisfies many properties:

si is sparse ; si is linear ; s2k = x2
2
k

+ x.

Let 2k ≥ i and Wi =
{
α ∈ F

22k | si(α) = 0
}

= Ker si.
Wi is a sub-vector space of F

22k ; dimWi = i.

How do we multiply h = f × g in Fk[x] ?

Evaluate f and g at points of some Wi.

multiply pointwise to obtain {f(α) × g(α), α ∈ Wi}.

Interpolate: recover h from {f(α) × g(α), α ∈ Wi}.

ANTS VIII – May 21st, 2008 – p. 12/21



Multiplying in Fk (2)
Multi-evaluating at Wi is done with a sub-product tree:

{f(α), α ∈ Wi} = {f mod (x + α), α ∈ Wi} .

s3(x)

s2(x)

s1(x)

x + 0 x + 1

s1(x) + 1

x + β2 x + β2 + 1

s2(x) + 1

s1(x) + β2

x + β3 x + β3 + 1

s1(x) + β2 + 1

x + β3 + β2 x + β3 + β2 + 1

right-child = 1 + left-child.

Only the constant coefficients are in extension fields.

sj is sparse, so reduction is cheap.

ANTS VIII – May 21st, 2008 – p. 13/21



Performance of additive FFT

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

plain Cantor

ANTS VIII – May 21st, 2008 – p. 14/21



Performance of additive FFT

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

plain Cantor
truncated Cantor

ANTS VIII – May 21st, 2008 – p. 14/21



Performance of additive FFT

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

truncated Cantor

ANTS VIII – May 21st, 2008 – p. 14/21



Schönhage’s ternary FFT algorithm

FFT typically calls for 2n roots of unity ; bad for charK = 2.

Schönhage (1977): work in R = F2[x]/x2L + xL + 1, where L = λ3k−1.

xλ is a 3k-th root of 1 in R.

Use ternary FFT to multiply polynomials of degree < 3k in R[t].

Evaluate f̂ =
{
f(xλi), 0 ≤ i < 3k

}
. (same for ĝ).

Multiply pointwise to obtain f̂g ; multiplications in R: recurse.

Interpolate to recover fg ; FFT again since ˆ̂
f = f .

Same clumping technique as before ⇒ multiplication in F2[x].

In effect, we multiply modulo xN + 1 (for some N > deg ab).

See details in paper.

ANTS VIII – May 21st, 2008 – p. 15/21



Schönhage FFT

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

Ternary FFT

ANTS VIII – May 21st, 2008 – p. 16/21



Splitting the ternary FFT

There is a (mild) staircase effect.

We can compute a product of degree < N by splitting:

Compute one product modulo N ′ > N/2.

Compute another product modulo N ′′ > N ′.

Very simple XORs do the reconstruction.

ANTS VIII – May 21st, 2008 – p. 17/21



Schönhage FFT + splitting

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

Ternary FFT

ANTS VIII – May 21st, 2008 – p. 18/21



Schönhage FFT + splitting

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

Ternary FFT
Ternary FFT+split

ANTS VIII – May 21st, 2008 – p. 18/21



Comparison Cantor – Schönhage

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

plain Cantor
truncated Cantor
Ternary FFT
Ternary FFT+split

ANTS VIII – May 21st, 2008 – p. 19/21



Comparison Cantor – Schönhage

A word of caution:

Additive FFT has cheap pointwise products.

Ternary FFT has cheap evaluation / interpolation.

When transforms can be reused (matrices over F2[x]), additive FFT wins.
Example for deg ab < 220:

Additive FFT: 57 ms, 2.3 ms in pointwise mults.

Ternary FFT: 28 ms, 18 ms in pointwise mults.

n × n matrix mult: ceval/interp ∗ n2 + cpointwise ∗ n3

Additive FFT faster for 3 × 3 matrices and above.

ANTS VIII – May 21st, 2008 – p. 20/21



Conclusion

Significant speed-ups over existing software.

Openly available implementation of two FFT algorithms.

Accessible from rpbrent.com/gf2x.html

ANTS VIII – May 21st, 2008 – p. 21/21


