Faster Multiplication in Fy| X|

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann

Post-doc position

The CACAO project (Nancy, France) offers a post-doc position for working
on the Number Field Sieve ; in particular:

» implementation concerns.
» Software speed-up.

® Large scale distribution.

This is part an ongoing project on NFS, named CADO:
http://cado.gforge.inria.fr/

Faster Multiplication in Fy| X|

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann

Plan

1. Introduction
2. Small sizes
3. Medium sizes

4. Large sizes

ANTS VIII — May 21st, 2008 — p. 1/21

1. Introduction
2. Small sizes
3. Medium sizes

4. Large sizes

Why ?

We focus on polynomial multiplication over Fs|z].

This is used in many contexts:

» polynomial factorization, irreducibility tests ;
#» (some) crypto applications ;

|ess obvious: sparse linear algebra over [y ;

9 and more.

ANTS VIII — May 21st, 2008 — p. 2/21

How does data look like ?

Binary polynomial z° + 2 +1 — machine integer(1101), (“dense”).
® up to degree 63: one machine word (64-bit).

® degree 64 to 127: two words.

o ...

In hardware: $ addistrivial ;
$ mul IS easy ; much easier than integer mul.
Not our business.

In software: $ add is trivial (xor) ;

mul Is tedious (no PCMULQDQ yet !).

ANTS VIII — May 21st, 2008 — p. 3/21

What do we do ?

We are interested In:
9 software.

» speed everywhere: from 64 to 232 coefficients (think recursion).

ANTS VIII — May 21st, 2008 — p. 4/21

Existing software

Existing software typically has:
» Possibly fast multiplication for 1,2 ... up to a few words.
» Karatsuba multiplication above.

Main reference: Victor Shoup’s NTL: shoup.net/ntl

Very rarely (if ever), one finds:

» Code that takes advantage of CPU-specific instructions ;
» Toom-Cook multiplication ;

Fast multiplication for unbalanced operands ;

» FFT (Schonhage ternary + Cantor additive).

ANTS VIII — May 21st, 2008 — p. 5/21

1. Introduction
2. Small sizes
3. Medium sizes

4. Large sizes

Below degree 64: mull

Classical: ¢ = a x b computed with a (fixed-) window method.
» Tabulate multiples g x b, for deg g < s (s = window size).
9 Sp”ta:A0+A1$S+A2$2S—I—---.

»® Accumulate ¢ = Ag x b+ (Ay x b)x® + (Ag x b)x?s + ---.

Operations required: shifts, XORs.

For degree below 64, we work with machine words only.

» \We measure the best window size with experiments.
® 64 x 64: ~ 75 Intel core2 cycles ; ~ 8 AMD k8 cycles.

®» 64k x 64 would work the same way.

ANTS VIII — May 21st, 2008 — p. 6/21

Using SIMD capabillities

What about 128 x 128 ?

» Karatsuba =- three 64 x 64.

Schoolbook requires a x biow and a x bpigh = two 128 x 64.

® BUT a X biow and a x bnigh can be computed in a SIMD-manner.

SIMD instructions on x86_64 provide the necessary shifts and XORs.
» Accessible with compiler builtins (gcc, icc, MSVC).
» Assembly is not absolutely necessary.
128 x 128.: ® ~ 129 Intel core2 cycles ;
» ~ 226 AMD k8 cycles.

® Faster than Karatsuba here.

ANTS VIII — May 21st, 2008 — p. 7/21

1. Introduction
2. Small sizes
3. Medium sizes

4. Large sizes

Medium sizes

Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.
= No branching.

Example for mul4:

mul2 (c, a, b);

mul2 (c + 4, a + 2, b + 2);

aal0] = al[0] =~ al[2]; aall] = al1] ~ al3];

bb[0] = b[0] ~ b[2]; bb[1] b[1] ~ b[3];

c24 = c[2] - c[4];

c35 = c[3] ~ c[5];

mul2 (ab, aa, bb);

c[2] = ab[0] ~ c[0] =~ c24; c[3] = abl[1l] =~ c[1] =~ c35;
cl4] = ab[2] ~ c[6] ~ c24; c[b] = ab[3] ~ c[7] ~ c35;

ANTS VIII — May 21st, 2008 — p. 8/21

Medium sizes

Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.

= No branching.

Cycle counts, Intel core2.

deg NTL | LIDIA | ZEN | this paper
63 99 117 158 75
127 368 317 480 132
191 703 787 | 1005 364
255 | 1130 988 | 1703 410
319 | 1787 | 1926 | 2629 806
383 | 2182 | 2416 | 3677 850
447 | 3070 | 2849 | 4960 | 1242
511 | 3517 | 3019 | 6433 | 1287

ANTS VIII — May 21st, 2008 — p. 8/21

What comes next ?

Toom-3: dega < 3k, write a = A(x, z%), A(z,t) = ao(z) + a1(z)t + as(x)t2.
» Evaluate (A(z,z;))i=0.1234 and (B(z, ;))i=0.1.2,3.4

o Multiply: C(x,z;) = A(x, ;) B(x, x;).

» Interpolate: recover C'(x,t) from (C(x, x;))i=0.1,2.34

Misbelief: ® This is only for #K > 4...

» because we need 5 evaluation points (in P}(K)).
» We can use: 0,1,00, 2,21
» Often better: 0,1, 0o, 2%, 7% avoids shifts.
® The degrees in recursive calls increase mildly.

See paper for timings.

ANTS VIII — May 21st, 2008 — p. 9/21

1. Introduction
2. Small sizes
3. Medium sizes

4. Large sizes

Large sizes

We are also interested in multiplication in the FFT range.

Several options:
integer FFT and (huge) padding (Kronecker-Schonhage).
» Cantor’s additive FFT algorithm.

Schonhage’s ternary FFT algorithm.

ANTS VIII — May 21st, 2008 — p. 10/21

Cantor’s additive FFT

Assume we are given fast polynomial multiplication in Fy, = F . = Fa|y].

We use it for multiplication in Fs|[z].

» Separate coefficients of « and b in blocks of 2! coefficients:
® Write a = A(z, 22"), A(x,t) = ag(z) + a1 (2)t + ag(z)t2 + - - -
9 a=A(v,t) € Filt].

® @ x b has coefficients in F,.

® Since dega;b; < 2F, then ¢ = a x bis such that é = @ x b.

ANTS VIII — May 21st, 2008 — p. 11/21

Multiplying In Fj,

Let s1(x) = 22 + 2, and s;(z) = 51(51(- x slj(at)).

-~

1 times

s; satisfies many properties:

: . ok
® s;issparse; s;islinear ; s,p = 227 + .

’Let2k>landW—{Oé€F2k‘Sz —O} Ker s;.
W; Is a sub-vector space of F,« ; dim W; = 1.

How do we multiply A~ = f x g in Fi|z] ?
® Evaluate f and ¢ at points of some W;.
» multiply pointwise to obtain { f(«) x g(a), a € W;}.

Interpolate: recover h from {f(a) x g(«@), a € W;}.

ANTS VIII — May 21st, 2008 — p. 12/21

Multiplying In Fj, (2)

Multi-evaluating at W; is done with a sub-product tree:

{fla), a € W;} ={f mod (x +), a € W;}.

ss(x)

/ \SQ(x)+1
RN TN

s1(x) s1(x) + B2 1(x) + B2 +1

/NN X

x+0 xz+1 x+4+pP2 x+pP2+1 x+063 x+063+1 x4+PB3+P2 z+PB3+F2+1

right-child = 1 + left-child.

so(x)

»

» Only the constant coefficients are in extension fields.

» s, Is sparse, so reduction is cheap.

ANTS VIII — May 21st, 2008 — p. 13/21

Performance of additive FFT

50 ms

40 ms

30 ms

20 ms

10 ms

0O ms

—— plain Cantor | |
NN
-A—w\,—'-—v/-——-——J
-—'’ ! ! !
0 128000 256000 512000 640000

ANTS VIII — May 21st, 2008 — p. 14/21

Performance of additive FFT

50 ms

40 ms

30 ms

20 ms

10 ms

0O ms

—— plain Cantor

truncated Cantor

,".f"‘"“""
Al
_ —
i ,A("“'\'v“‘\' i i
) M\"‘W”.
.rFJ" ~ ! ! !
0 128000 256000 512000

ANTS VIII — May 21st,

640000
2008 — p. 14/21

Performance of additive FFT

50 ms

40 ms

30 ms

20 ms

10 ms

0O ms

truncate'd Cantor

128000

256000

512000 640000
ANTS VIII — May 21st, 2008 — p. 14/21

Schonhage’s ternary FFT algorithm

FFT typically calls for 2" roots of unity ; bad for char K = 2.
Schonhage (1977): work in R =Fa[z|/z2L 4 2L 4 1, where L = A3% 1,

™ is a 3¥-th root of 1 in R.

o o o b

Use ternary FFT to multiply polynomials of degree < 3% in R[t].
Evaluate f = {f(2"), 0 <i < 3*}. (same for g).

o Multiply pointwise to obtain f/\g , multiplications in R: recurse.
Interpolate to recover fg ; FFT again since f = f.

Same clumping technique as before = multiplication in Fy[x].

» In effect, we multiply modulo 2%V + 1 (for some N > degab).

» See detalls in paper.

ANTS VIII — May 21st, 2008 — p. 15/21

Schonhage FFT

50 ms

-------- Ternary FFT | '
40 ms - |
30 ms + |
20 ms |
omsl e |
0Oms g— 128000 ’’’’’ 256000 512000 640000

ANTS VIII — May 21st, 2008 — p. 16/21

Splitting the ternary FFT

There is a (mild) staircase effect.

We can compute a product of degree < NN by splitting:
» Compute one product modulo N’ > N/2.
» Compute another product modulo N > N’.

» Very simple XORs do the reconstruction.

ANTS VIIl — May 21st, 2008 — p. 17/21

SChbnhage FFT + Sphttlng

50 ms

-
.-o'

.
-
.
"

........

l.l‘

........ Ternary'FFT
40 ms |
30 ms |-
20 ms |
10 ms |
0 ms ; 128,000

512000 640000
ANTS VIII — May 21st, 2008 — p. 18/21

Schonhage FFT + splitting

50 ms

40 ms

30 ms

20 ms

10 ms

0O ms

Ternary FFT

Ternary FFT+split

.
-

- .

" o

.m
..........
eIy

........

128000

256000

512000 640000
ANTS VIII — May 21st, 2008 — p. 18/21

Comparison Cantor — Schonhage

50 ms

40 ms

30 ms

20 ms

10 ms

0O ms

ANTS VIII — May 21st,

. J I T
—— plain Cantor
------- truncated Cantor
-------- Ternary FFT \
---------------- Ternary FFT+split o aid Y
A A '
A
B \ ~\l"”wNAJ [n
R e
e i PSSR
»‘y“M e RER
-J—_t':._l_‘. PR I I I
0 128000 256000 512000 640000

2008 — p. 19/21

Comparison Cantor — Schonhage

A word of caution:
» Additive FFT has cheap pointwise products.
» Ternary FFT has cheap evaluation / interpolation.

When transforms can be reused (matrices over Fs|z]), additive FFT wins.
Example for degab < 2°°:

» Additive FFT: 57 ms, 2.3 ms in pointwise mults.
Ternary FFT: 28 ms, 18 ms in pointwise mults.
3

» Additive FFT faster for 3 x 3 matrices and above.

ANTS VIII — May 21st, 2008 — p. 20/21

Conclusion

Significant speed-ups over existing software.
#» Openly available implementation of two FFT algorithms.

» Accessible from rpbrent.com/gf2x.html

ANTS VIII — May 21st, 2008 — p. 21/21

