# Faster Multiplication in $\mathbb{F}_2[X]$

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann





## Post-doc position

The CACAO project (Nancy, France) offers a post-doc position for working on the Number Field Sieve ; in particular:

- implementation concerns.
- Software speed-up.
- Large scale distribution.

This is part an ongoing project on NFS, named CADO: http://cado.gforge.inria.fr/

# Faster Multiplication in $\mathbb{F}_2[X]$

R. P. Brent, P. Gaudry, E. Thomé, P. Zimmermann





#### Plan

- **1. Introduction**
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

#### 1. Introduction

- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

# Why?

We focus on polynomial multiplication over  $\mathbb{F}_2[x]$ .

This is used in many contexts:

- polynomial factorization, irreducibility tests ;
- (some) crypto applications ;
- less obvious: sparse linear algebra over  $\mathbb{F}_2$ ;
- and more.

#### How does data look like ?

Binary polynomial  $x^3 + x^2 + 1 \rightarrow \text{machine integer}(1101)_2$  ("dense").

- up to degree 63: one machine word (64-bit).
- degree 64 to 127: two words.

In hardware: **\_\_** add is trivial;

- mul is easy ; much easier than integer mul.
- Not our business.

In software:

- add is trivial (xor);
  - mul is tedious (no PCMULQDQ yet !).

### What do we do ?

We are interested in:

- software.
- **speed** everywhere: from 64 to  $2^{32}$  coefficients (think recursion).

## Existing software

Existing software typically has:

- **Possibly fast multiplication for**  $1, 2 \dots$  up to a few words.
- Karatsuba multiplication above.

Main reference: Victor Shoup's NTL: shoup.net/ntl

Very rarely (if ever), one finds:

- Code that takes advantage of CPU-specific instructions ;
- Joom-Cook multiplication ;
- Fast multiplication for unbalanced operands ;
- FFT (Schönhage ternary + Cantor additive).

- **1.** Introduction
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

#### Below degree 64: mul1

Classical:  $c = a \times b$  computed with a (fixed-) window method.

- **•** Tabulate multiples  $g \times b$ , for  $\deg g < s$  (s =window size).
- Split  $a = A_0 + A_1 x^s + A_2 x^{2s} + \cdots$ .
- Accumulate  $c = A_0 \times b + (A_1 \times b)x^s + (A_2 \times b)x^{2s} + \cdots$ .

#### Operations required: shifts, XORs.

For degree below 64, we work with machine words only.

- We measure the best window size with experiments.
- $\clubsuit~64 \times 64$ :  $\sim 75$  Intel core2 cycles ;  $\sim 85$  AMD k8 cycles.
- $64k \times 64$  would work the same way.

## Using SIMD capabilities

What about  $128 \times 128$  ?

- Karatsuba  $\Rightarrow$  three  $64 \times 64$ .
- Schoolbook requires  $a \times b_{low}$  and  $a \times b_{high} \Rightarrow two 128 \times 64$ .
- **•** BUT  $a \times b_{\text{low}}$  and  $a \times b_{\text{high}}$  can be computed in a SIMD-manner.
- SIMD instructions on  $x86_{64}$  provide the necessary shifts and XORs.
  - Accessible with compiler builtins (gcc, icc, MSVC).
  - Assembly is not absolutely necessary.
- $128\times 128$ :  $\checkmark$   $\sim 129$  Intel core2 cycles ;
  - $\checkmark \sim 226 \text{ AMD}$  k8 cycles.
  - Faster than Karatsuba here.

- **1.** Introduction
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes

#### Medium sizes

Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.  $\Rightarrow$  No branching.

Example for mul4:

```
mul2 (c, a, b);
mul2 (c + 4, a + 2, b + 2);
aa[0] = a[0] ^ a[2]; aa[1] = a[1] ^ a[3];
bb[0] = b[0] ^ b[2]; bb[1] = b[1] ^ b[3];
c24 = c[2] ^ c[4];
c35 = c[3] ^ c[5];
mul2 (ab, aa, bb);
c[2] = ab[0] ^ c[0] ^ c24; c[3] = ab[1] ^ c[1] ^ c35;
c[4] = ab[2] ^ c[6] ^ c24; c[5] = ab[3] ^ c[7] ^ c35;
```

### Medium sizes

Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.  $\Rightarrow$  No branching.

Cycle counts, Intel core2.

| $\operatorname{deg}$ | NTL     | LIDIA | ZEN   | this paper |
|----------------------|---------|-------|-------|------------|
| 63                   | 99      | 117   | 158   | 75         |
| 127                  | 368     | 317   | 480   | 132        |
| 191                  | 703     | 787   | 1 005 | 364        |
| 255                  | 1 1 3 0 | 988   | 1 703 | 410        |
| 319                  | 1787    | 1 926 | 2629  | 806        |
| 383                  | 2182    | 2416  | 3677  | 850        |
| 447                  | 3070    | 2849  | 4 960 | 1 242      |
| 511                  | 3517    | 3019  | 6 433 | 1 287      |

#### What comes next?

Toom-3: deg a < 3k, write  $a = A(x, x^k)$ ,  $A(x, t) = a_0(x) + a_1(x)t + a_2(x)t^2$ .

- ▶ Evaluate  $(A(x, x_i))_{i=0,1,2,3,4}$  and  $(B(x, x_i))_{i=0,1,2,3,4}$
- Multiply:  $C(x, x_i) = A(x, x_i)B(x, x_i)$ .
- Interpolate: recover C(x,t) from  $(C(x,x_i))_{i=0,1,2,3,4}$

Misbelief:  $\checkmark$  This is only for  $\#K \ge 4...$ 

● because we need 5 evaluation points (in  $\mathbb{P}^1(K)$ ).

- We can use:  $0, 1, \infty, x, x^{-1}$ .
- Often better:  $0, 1, \infty, x^{64}, x^{-64}$ : avoids shifts.
- The degrees in recursive calls increase mildly.

See paper for timings.

- **1.** Introduction
- 2. Small sizes
- 3. Medium sizes
- 4. Large sizes



We are also interested in multiplication in the FFT range. Several options:

- integer FFT and (huge) padding (Krönecker-Schönhage).
- Cantor's additive FFT algorithm.
- Schönhage's ternary FFT algorithm.

Assume we are given fast polynomial multiplication in  $F_k = \mathbb{F}_{2^{2^k}} = \mathbb{F}_2[\gamma]$ . We use it for multiplication in  $\mathbb{F}_2[x]$ .

- Separate coefficients of a and b in blocks of  $2^{k-1}$  coefficients:
  - Write  $a = A(x, x^{2^{k-1}}), A(x, t) = a_0(x) + a_1(x)t + a_2(x)t^2 + \cdots$ .
  - $\tilde{a} = A(\gamma, t) \in F_k[t].$
- $\tilde{a} \times \tilde{b}$  has coefficients in  $F_k$ .
- Since  $\deg a_i b_j < 2^k$ , then  $c = a \times b$  is such that  $\tilde{c} = \tilde{a} \times \tilde{b}$ .

# Multiplying in $F_k$

Let 
$$s_1(x) = x^2 + x$$
, and  $s_i(x) = \underbrace{s_1(s_1(\cdots s_1(x) \cdots))}_{i \text{ times}}$ .

 $s_i$  satisfies many properties:

• 
$$s_i$$
 is sparse ;  $s_i$  is linear ;  $s_{2^k} = x^{2^{2^k}} + x$ .

• Let 
$$2^k \ge i$$
 and  $W_i = \{ \alpha \in \mathbb{F}_{2^{2^k}} \mid s_i(\alpha) = 0 \} = \operatorname{Ker} s_i$ .  
 $W_i$  is a sub-vector space of  $\mathbb{F}_{2^{2^k}}$ ;  $\dim W_i = i$ .

How do we multiply  $h = f \times g$  in  $F_k[x]$ ?

- Evaluate f and g at points of some  $W_i$ .
- multiply pointwise to obtain  $\{f(\alpha) \times g(\alpha), \alpha \in W_i\}$ .
- Interpolate: recover *h* from  $\{f(\alpha) \times g(\alpha), \alpha \in W_i\}$ .

# Multiplying in $F_k$ (2)

Multi-evaluating at  $W_i$  is done with a sub-product tree:

 $\{f(\alpha), \ \alpha \in W_i\} = \{f \ \mathrm{mod} \ (x + \alpha), \ \alpha \in W_i\}.$ 



- right-child = 1 + left-child.
- Only the constant coefficients are in extension fields.
- $\bullet$   $s_j$  is sparse, so reduction is cheap.

## Performance of additive FFT



## Performance of additive FFT



## Performance of additive FFT



## Schönhage's ternary FFT algorithm

- FFT typically calls for  $2^n$  roots of unity ; bad for char K = 2.
- Schönhage (1977): work in  $R = \mathbb{F}_2[x]/x^{2L} + x^L + 1$ , where  $L = \lambda 3^{k-1}$ .
- $x^{\lambda}$  is a  $3^k$ -th root of 1 in R.
- Use ternary FFT to multiply polynomials of degree  $< 3^k$  in R[t].
  - Evaluate  $\hat{f} = \{f(x^{\lambda i}), 0 \le i < 3^k\}$ . (same for  $\hat{g}$ ).
  - Multiply pointwise to obtain  $\widehat{fg}$ ; multiplications in R: recurse.
  - Interpolate to recover fg; FFT again since  $\hat{f} = f$ .

Same clumping technique as before  $\Rightarrow$  multiplication in  $\mathbb{F}_2[x]$ .

- In effect, we multiply modulo  $x^N + 1$  (for some  $N > \deg ab$ ).
- See details in paper.

## Schönhage FFT



There is a (mild) staircase effect.

We can compute a product of degree < N by splitting:

- Compute one product modulo N' > N/2.
- Compute another product modulo N'' > N'.
- Very simple XORs do the reconstruction.

## Schönhage FFT + splitting



## Schönhage FFT + splitting



## Comparison Cantor – Schönhage



## Comparison Cantor – Schönhage

A word of caution:

- Additive FFT has cheap pointwise products.
- Jernary FFT has cheap evaluation / interpolation.

When transforms can be reused (matrices over  $\mathbb{F}_2[x]$ ), additive FFT wins. Example for deg  $ab < 2^{20}$ :

- Additive FFT: 57 ms, 2.3 ms in pointwise mults.
- Jernary FFT: 28 ms, 18 ms in pointwise mults.
- $n \times n$  matrix mult:  $c_{\text{eval/interp}} * n^2 + c_{\text{pointwise}} * n^3$
- Additive FFT faster for  $3 \times 3$  matrices and above.

## Conclusion

- Significant speed-ups over existing software.
- Openly available implementation of two FFT algorithms.
- Accessible from rpbrent.com/gf2x.html