
Functorial Properties of Stark Units in
Multiquadratic Extensions

Jonathan W. Sands1 and Brett A. Tangedal2

1 University of Vermont, Burlington VT, 05401, USA
jwsands@uvm.edu

2 University of North Carolina at Greensboro, Greensboro NC, 27402, USA
batanged@uncg.edu

May 18, 2008



Let F = Q(θ), where θ2 = D and D is a square-free
integer > 1. Define the first embedding

e1 : F ↪→ R by sending θ 7→
√
D

and the second embedding

e2 : F ↪→ R by sending θ 7→ −
√
D.

For α ∈ F , we use the notation ej(α) = α(j).
Let

d = dF be the discriminant of F ,
h = hF the class number of F ,

u = uF the unique fundamental unit of F with 1 < u(1), and
OF the integral closure of Z in F .



The Kronecker symbol χd(n), n ∈ Z+, attached to F is defined
as follows. For any given rational prime p,

χd(p) =


1 if p splits in OF ,
−1 if p is inert in OF ,

0 if p ramifies in OF , i.e., iff p | d.

We set χd(1) = 1 and extend χd to all other positive integers
multiplicatively. Using quadratic reciprocity, one may show that
χd defines a primitive (even) Dirichlet character of conductor d.
The corresponding L–function

L(s, χd) =
∞∑
n=1

χd(n)
ns

is absolutely convergent for <(s) > 1 and may be analytically
continued to an entire function.



The value L(1, χd) was computed expicitly by Dirichlet and he
found that

L(1, χd) =
2h log u(1)

√
d

.

The function L(s, χd) has a first order zero at s = 0 and the
functional equation for L(s, χd) relates the value L(1, χd) to the
leading coefficient L′(0, χd) at s = 0 giving the relation

L′(0, χd) = h log u(1),

which is cleaner than the value at s = 1.



If χ0 is the trivial character modulo d, we define

L(s, χ0) =
∑

(n,d)=1
n≥1

1
ns

= ζ(s)
∏
p | d

(1− p−s).

If t = # of distinct prime divisors of d, then L(s, χ0) has a zero
of order t at s = 0 upon meromorphic continuation to the whole
complex plane. We have t = 1 precisely when D = 2 or D = p,
where p is a prime ≡ 1 (mod 4). We have

L′(0, χ0) =
{
−1

2 logD if t = 1,
0 if t ≥ 2.

Let G = Gal(F/Q) = {σ0, σ} and define χd on G by
χd(p) = χd(σp) ∀p - d or, equivalently, χd(σ0) = 1 and
χd(σ) = −1. Similarly, χ0(σ0) = χ0(σ) = 1.



Stark’s Conjecture for the extension F/Q says that there exists
an algebraic integer ε ∈ OF such that

L′(0, χ0) = −1
2

∑
ρ∈G

χ0(ρ) log |ρ(ε)(1)| = −1
2

log |N(ε)|, (1)

where N(ε) = NF/Q(ε), and

L′(0, χd) = −1
2

∑
ρ∈G

χd(ρ) log |ρ(ε)(1)| = −1
2

log

∣∣∣∣∣ ε(1)

σ(ε)(1)

∣∣∣∣∣ , (2)

and F (ε1/2) is an abelian extension of Q. This last “abelian
condition” holds iff N(ε) is a square in F . Therefore, we must
have N(ε) = D when t = 1 and N(ε) = 1 when t ≥ 2 since we
can’t have N(ε) negative and satisfy the abelian condition at
the same time.



It is easy to check that

ε = u−hθ when t = 1 (θ2 = D)

and
ε = u−h when t ≥ 2

satisfy equations (1) and (2) and that ε(1) > 0 in both cases. In
order for F (ε1/2) to be an abelian extension of Q we also
require that σ(ε)(1) > 0 as well. That this holds in all cases is
nontrivial and is intimately related to the genus theory of
quadratic fields. In the case where t = 1, genus theory says
that N(u) = −1 and that h is odd. Therefore

σ(ε)(1) =

[(
−1
u

)−h
· (−θ)

](1)

=
[
uhθ
](1)

> 0,

and so N(ε) = D is a square in F and the abelian condition is
satisfied.



If t ≥ 2 and N(u) = 1, then σ(ε) = uh and σ(ε)(1) > 0. If t ≥ 2
and N(u) = −1, then genus theory tells us that h is even.
Therefore

σ(ε)(1) =

[(
−1
u

)−h](1)

=
[
uh
](1)

> 0,

and so N(ε) = 1 is a square in F .

It happens often that the “Stark unit” ε is a square in the field in
which it lies. Note that ε above is a square in F when h is even.



Let F be a fixed real quadratic field for the rest of the talk. We
next consider relative quadratic extensions K/F and consider
Stark’s Conjecture in this new setting. Corresponding to K/F is
a generalized Kronecker symbol χ defined just as before:
If p is a prime ideal in OF , then

χ(p) =


1 if p splits in OK ,
−1 if p is inert in OK ,

0 if p ramifies in OK , i.e., iff p | d(K/F ).

We set χ((1)) = 1 and extend χ to all other nonzero ideals in
OF multiplicatively. By class field theory, χ defines a ray class
character, the finite part of whose conductor is equal to d(K/F ).



The corresponding L–function

L(s, χ) =
∑ χ(a)

Nas
,

where the sum is taken over all nonzero ideals in OF , again
defines an entire function upon analytic continuation. The order
r(χ) of the zero of this function at s = 0 depends upon the
signature of the field K in the following way:

r(χ) =


2 if K has signature [4, 0] (i.e., K is totally real),
1 if K has signature [2, 1],
0 if K has signature [0, 2] (i.e., K is totally complex).

The relative quadratic extensions of F of greatest interest to us
are those with signature [2, 1] and r(χ) = 1.



If K has signature [2, 1], then by class field theory there is at
least one prime ideal from OF that ramifies in OK . We define in
this case

L(s, χ0) = ζF (s) ·
∏

p | d(K/F )

(1−Np−s)

and note that L′(0, χ0) = 0. We may consider χ0 and χ as
characters on the Galois group G = Gal(K/F ) = {σ0, σ} just as
before.

We will assume from now on that if K has signature [2, 1] that
the two real embeddings of K extend what we defined earlier
as the first embedding of F into R. We choose one of these two
real embeddings of K as the designated “first” embedding
K ↪→ R, whose image in R is denoted by K(1).



Stark’s Conjecture for the extension K/F says that there exists
an algebraic integer ε ∈ OK that is an “L–function evaluator”
just as before, namely:

L′(0, χ0) = 0 = −1
2

∑
ρ∈G

χ0(ρ) log |ρ(ε)(1)| = −1
2

log |NK/F (ε)(1)|,

(3)

L′(0, χ) = −1
2

∑
ρ∈G

χ(ρ) log |ρ(ε)(1)| = −1
2

log

∣∣∣∣∣ ε(1)

σ(ε)(1)

∣∣∣∣∣ . (4)

In addition to ε being an L–function evaluator, Stark’s
Conjecture also says that K(ε1/2) is an abelian extension of F ,
which holds iff NK/F (ε) is a square in K. By (3), NK/F (ε) = ±1
and so the Stark unit ε is a “true” unit in this case. The abelian
condition implies the stronger condition NK/F (ε) = 1 since K
has a real embedding.



Stark’s Conjecture has been proved in general for relative
quadratic extensions using methods that generalize the genus
theory employed earlier. Since we can prove Stark’s Conjecture
for relative quadratic extensions, it is natural to try to extend this
result to multiquadratic extensions.

If L/F is a relative Galois extension with Gal(L/F ) isomorphic
to a direct product of m copies of Z/2Z, we say that L/F is a
multiquadratic extension of rank m. Sands has proved Stark’s
Conjecture when Gal(L/F ) is the Klein 4-group, so the
Conjecture is known when m = 1, 2.



We proved in

[DST2] Dummit, D., Sands, J., Tangedal, B.:
Stark’s conjecture in multi-quadratic extensions, revisited,
J. Théor. Nombres Bordeaux 15 (2003), 83–97,

that an algebraic integer ε ∈ OL may always be found that is a
simultaneous L–function evaluator for the L–functions
associated to a multiquadratic extension L/F and in many
cases we prove the abelian condition as well, namely, that
L(
√
ε) is an abelian extension of F .

Our goal was to construct and study a special collection of
multiquadratic extensions of rank 3 over real quadratic base
fields for which the abelian condition is nontrivial and not known
to hold by the theorems in [DST2].



If more than a certain number of finite primes of F ramify in
L/F , the abelian condition is known to hold. Our examples
were constructed in such a way that only a single prime p ⊂ OF
lying over 2 ramifies in L/F . The Hasse diagram for our
examples looks as follows:
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The 7 relative quadratic extensions over F are numbered in
such a way that K1, K2, K3, and K4 all have signature [2, 1]
and K5, K6, and K7 all have signature [4, 0].

Corresponding to each Kj , 1 ≤ j ≤ 7, is a generalized
Kronecker symbol χj and a Stark unit εj ∈ Kj

(ε5 = ε6 = ε7 = 1, but ε1, ε2, ε3, and ε4 are all nontrivial).



There are also precisely 7 quartic extensions of F contained in
L all having Galois group isomorphic to the Klein 4-group over
F . We label the first 6 of these as Kij , with 1 ≤ i < j ≤ 4, since
each Kij here is the composite of Ki and Kj . Each of these 6
fields has signature [4, 2] and a nontrivial Stark unit εij ∈ Kij .

The 7th quartic extension of F contained in L is the composite
of K5, K6, and K7 and is denoted by Kre since it is totally real.
The signature of L is [8, 4].

By results obtained in [DST2], each εj is a square in Kj for
1 ≤ j ≤ 4 and εij =

√
εi
√
εj for 1 ≤ i < j ≤ 4.



Also, by [DST2], we have 4
√
εj ∈ L for 1 ≤ j ≤ 4. Let

Nj = F ( 4
√
εj) for 1 ≤ j ≤ 4 and note that Nj is either a quartic

or quadratic extension of F such that F ⊂ Kj ⊆ Nj ⊂ L. Since
each Nj , 1 ≤ j ≤ 4, can be one of exactly 4 distinct
intermediate fields between F and L, there are 256 possible
arrangements of the fields N1, N2, N3, and N4 inside L.



The following proposition holds independently of how the fields
N1, N2, N3, and N4 are situated within L and represents the
strongest result provable with respect to the examples we
computed using the methods of [DST2].

Proposition
The element ε = 4

√
ε1 4
√
ε2 4
√
ε3 4
√
ε4 ∈ O×L is a simultaneous

L–function evaluator for all 8 of the L–functions L(s, χj),
0 ≤ j ≤ 7, associated to the extension L/F .



The reason that this proposition can be proved without any
knowledge of how the fields Nj , 1 ≤ j ≤ 4, are situated within L
is that only the absolute values |ρ(ε)(1)|, ρ ∈ G := Gal(L/F ),
appear in the L–function evaluation. However, the abelian
condition requires for starters that ρ(ε)(1) =

∏4
j=1 ρ( 4

√
εj)(1) > 0

for all ρ ∈ G.

We will only have an even number of negative values among
the numbers ρ( 4

√
εj)(1), 1 ≤ j ≤ 4, for all ρ ∈ G if the four fields

N1, N2, N3, and N4 are situated within L in a specific fashion.



We know the “right” Stark unit for the extension L/F is
ε =

∏4
j=1

4
√
εj , but what is the relation of these 4th roots of

Stark units from quadratic subfields to each other?

The relationships among all of the various Stark units within L
constitute what we refer to as the “functorial properties of Stark
units”. Understanding these relationships is critical to proving
the abelian condition in general and very few results have been
obtained in this direction.

Our computations helped lead us to understand the exact
requirements for the abelian condition to hold in this setting.



Theorem
If ε =

∏4
j=1

4
√
εj , then L(

√
ε) is an abelian extension of F

exactly when the fields Nj = F ( 4
√
εj), 1 ≤ j ≤ 4, are arranged

within L as follows:

A.) All 4 fields Nj , 1 ≤ j ≤ 4, are quartic extensions of F .
Assuming that N1 = K12 (below, 12 is short for K12, etc.),
(N2, N3, N4) = (12, 34, 34), (23, 34, 14), (24, 13, 34).

B.) Exactly one of the Nj ’s is a quadratic extension of F .
Assuming that N4 = K4,
(N1, N2, N3) = (12, 24, 23), (13, 23, 34), (14, 12, 13), (14, 24, 34).

C.) Exactly two of the Nj ’s are quadratic extensions of F .
Assuming that N3 = K3 and N4 = K4,
(N1, N2) = (12, 12).

D.) Nj = Kj for j = 1, 2, 3 and 4.



The Stark unit ε is a square in L for class A examples when
(N2, N3, N4) = (12, 34, 34), class B examples when
(N1, N2, N3) = (14, 24, 34), and in case D. Otherwise,
ε is not a square in L.

Comment: Having exactly 3 of the Nj ’s being quadratic
extensions of F is incompatible with the abelian condition.
Having all 4 of the Nj ’s being quadratic extensions of F is
compatible with the abelian condition but no such example was
found.



We computed 46 multiquadratic examples of rank 3 over real
quadratic base fields and in all cases the abelian condition was
verified to hold.

29 of our examples were of class A and in 9 of these examples,
ε was a square in L.

10 of our examples were of class B and in 5 of these examples,
ε was a square in L.

7 of our examples were of class C and ε was a nonsquare in L
in all 7 cases.

In total, 32 of the 46 examples were such that ε was not a
square in L and for these the abelian condition is not known to
hold by any previous work.


