Abelian varieties with prescribed embedding degree

David Freeman¹, Peter Stevenhagen² and Marco Streng²

¹ University of California, Berkeley Supported by a National Defense Science and Engineering Graduate Fellowship ²Universiteit Leiden Supported by the European Commission under contract MRTN-CT-2006-035495

ANTS-VIII, Banff, Alberta (Canada) May 20, 2008

David Freeman, Peter Stevenhagen and Marco Streng

UC Berkeley and Universiteit Leiden

Overview

We construct *Weil numbers* that correspond to abelian varieties with prescribed *embedding degree*.

Overview:

- What is the embedding degree?
- What are Weil numbers and how to construct the corresponding abelian varieties?
- Our actual construction.

San

イロト イポト イヨト イヨト

The embedding degree

- ► Let *A* be an abelian variety over a finite field $\mathbb{F} = \mathbb{F}_q$ and let $r \nmid q$ be a prime dividing $\#A(\mathbb{F})$.
- ► Two pairings:

Weil:
$$A(\mathbb{F})[r] \times \widehat{A}(\mathbb{F})[r] \longrightarrow \mu_r(\mathbb{F}),$$

Tate: $A(\mathbb{F})[r] \times \widehat{A}(\mathbb{F})/r\widehat{A}(\mathbb{F}) \longrightarrow \mathbb{F}^*/(\mathbb{F}^*)^r \cong \mu_r(\mathbb{F}).$

- The embedding degree k of A with respect to r is the degree of the field extension F(ζr)/F.
- ► For random *r* and *q*, the embedding degree grows like *r*.
- If k is small and the discrete logarithm problem is hard in both A(𝔅)[r] and 𝔅(ζ_r)*, then these pairings can be used for pairing-based cryptography.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

The embedding degree

The embedding degree of *A* with respect to $r \mid #A(\mathbb{F})$ is the degree of $\mathbb{F}(\zeta_r)/\mathbb{F}$.

Lemma

The embedding degree of A with respect to r is equal to the order of $(q \mod r)$ in \mathbb{F}_r^* .

Proof: The embedding degree is the smallest number *k* such that $r \mid \#\mathbb{F}_{q^k}^* = q^k - 1$.

So the embedding degree is *k* if and only if $(q \mod r)$ is some primitive *k*-th root of unity in \mathbb{F}_r .

200

(日) (同) (目) (日) (日) (日)

Abelian varieties with prescribed embedding degree

Weil numbers

- Let q be a prime power. A Weil q-number is an algebraic integer π such that ππ = q for every embedding of π into C.
- Honda-Tate theory gives a bijection

$$\frac{\{\text{simple abelian varieties over } \mathbb{F}_q\}}{\text{isogeny}} \quad \leftrightarrow \quad \frac{\{\text{Weil } q\text{-numbers}\}}{\text{conjugation}}$$
$$A \quad \mapsto \quad \text{Frob}_q.$$

イロト イポト イヨト イヨト

Weil numbers

- Let q be a prime power.
 A Weil q-number is an algebraic integer π such that ππ = q for every embedding of π into C.
- Honda-Tate theory gives a bijection

$$\begin{array}{rcl} \displaystyle \frac{\{\text{simple abelian varieties over } \mathbb{F}_q\}}{\text{isogeny}} & \leftrightarrow & \displaystyle \frac{\{\text{Weil } q\text{-numbers}\}}{\text{conjugation}}\\ & A & \mapsto & \text{Frob}_q. \end{array}$$

If *q* is prime and $\pi \neq \pm \sqrt{q}$ is a Weil *q*-number, then

- K = Q(π) is a CM field, i.e. a non-real number field with a unique complex conjugation automorphism,
- ► the corresponding abelian variety A has dimension g, where 2g is the degree of K and

•
$$#A(\mathbb{F}_q) = N_{K/\mathbb{Q}}(\pi - 1).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 − つへつ

The CM method

Given a Weil *q*-number π , the corresponding abelian variety can be constructed using the *complex multiplication* method:

- List the isogeny classes of abelian varieties over Q
 with CM by the ring of integers of Q(π).
- ► Reduce them modulo a prime dividing *q*.
- Some twist of one of the reduced varieties will have Frobenius π. Select the one of the correct order.

This method is only well-developed for dimensions 1 and 2 and some special cases of higher dimension and takes time exponential in the bit size of the discriminant of $\mathbb{Q}(\pi)$.

イロト イポト イヨト イヨト

About our algorithm

We give an algorithm with **input:**

- ▶ a positive integer k,
- ▶ a CM field K of degree 2g with a 'primitive CM type' and
- a prime $r \equiv 1 \pmod{k}$ that splits completely in *K*.

output:

a prime number q and a Weil q-number $\pi \in K$ corresponding to an abelian variety of dimension g with embedding degree kwith respect to r.

About our algorithm

We give an algorithm with **input:**

- ▶ a positive integer k,
- ▶ a CM field K of degree 2g with a 'primitive CM type' and
- a prime $r \equiv 1 \pmod{k}$ that splits completely in *K*.

output:

a prime number q and a Weil q-number $\pi \in K$ corresponding to an abelian variety of dimension g with embedding degree kwith respect to r.

Heuristic expected run time polynomial in $\log r$ (for fixed *K*).

For g = 1, we recover the Cocks-Pinch algorithm, so we assume $g \ge 2$ for simplicity.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Suppose φ generates Gal(K/Q) and τ is a prime of K dividing r. Let τ_i = φ⁻ⁱ(τ), so rO_K = ∏^g_{i=1} τ_iτ_i.
- We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$r \mid N_{K/\mathbb{Q}}(\pi - 1)$$
, e.g. $(\pi \mod \mathfrak{r}) = 1 \in \mathbb{F}_r$ and

2. $(q \mod r) = \zeta_k \inf \mathbb{F}_r$.

- Suppose φ generates Gal(K/Q) and τ is a prime of K dividing r. Let τ_i = φ⁻ⁱ(τ), so rO_K = ∏^g_{i=1} τ_iτ_i.
- We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$r \mid N_{\mathcal{K}/\mathbb{Q}}(\pi - 1)$$
, e.g. $(\pi \mod \mathfrak{r}) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k \inf \mathbb{F}_r$.
- ► Idea: take $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ with $\xi \in \mathcal{O}_{K}$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$.

- Suppose φ generates Gal(K/Q) and τ is a prime of K dividing r. Let τ_i = φ⁻ⁱ(τ), so rO_K = ∏^g_{i=1} τ_iτ_i.
- We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$r \mid N_{\mathcal{K}/\mathbb{Q}}(\pi-1)$$
, e.g. $(\pi \mod \mathfrak{r}) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k \inf \mathbb{F}_r$.
- ► Idea: take $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ with $\xi \in \mathcal{O}_{K}$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$(\pi \mod \mathfrak{r}) = \prod_{i=1}^{g} (\phi^i(\xi) \mod \mathfrak{r})$$
 in \mathbb{F}_r

David Freeman, Peter Stevenhagen and Marco Streng

- Suppose φ generates Gal(K/Q) and τ is a prime of K dividing r. Let τ_i = φ⁻ⁱ(τ), so rO_K = ∏^g_{i=1} τ_iτ_i.
- We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$r \mid N_{\mathcal{K}/\mathbb{Q}}(\pi-1)$$
, e.g. $(\pi \mod \mathfrak{r}) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k \inf \mathbb{F}_r$.
- ► Idea: take $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ with $\xi \in \mathcal{O}_{K}$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$(\pi \mod \mathfrak{r}) = \prod_{i=1}^{g} (\phi^i(\xi) \mod \mathfrak{r}) = \prod_{i=1}^{g} (\xi \mod \mathfrak{r}_i) \quad \text{in} \quad \mathbb{F}_r$$

David Freeman, Peter Stevenhagen and Marco Streng

- Suppose φ generates Gal(K/Q) and τ is a prime of K dividing r. Let τ_i = φ⁻ⁱ(τ), so rO_K = ∏^g_{i=1} τ_iτ_i.
- We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$r \mid N_{\mathcal{K}/\mathbb{Q}}(\pi-1)$$
, e.g. $(\pi \mod \mathfrak{r}) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k \inf \mathbb{F}_r$.
- ► Idea: take $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ with $\xi \in \mathcal{O}_{K}$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$(\pi \mod \mathfrak{r}) = \prod_{i=1}^{g} (\phi^i(\xi) \mod \mathfrak{r}) = \prod_{i=1}^{g} (\xi \mod \mathfrak{r}_i) \quad \text{in} \quad \mathbb{F}_r$$

and similarly $(q \mod \mathfrak{r}) = \prod_{i=1}^{g} (\xi \mod \mathfrak{r}_i) (\xi \mod \overline{\mathfrak{r}_i})$ in \mathbb{F}_r .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

David Freeman, Peter Stevenhagen and Marco Streng

- Suppose φ generates Gal(K/Q) and τ is a prime of K dividing r. Let τ_i = φ⁻ⁱ(τ), so rO_K = ∏^g_{i=1} τ_iτ_i.
- We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$r \mid N_{\mathcal{K}/\mathbb{Q}}(\pi-1),$$
 e.g. $(\pi \mod \mathfrak{r}) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k \inf \mathbb{F}_r$.
- ► Idea: take $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ with $\xi \in \mathcal{O}_{K}$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$(\pi \mod \mathfrak{r}) = \prod_{i=1}^{g} (\phi^i(\xi) \mod \mathfrak{r}) = \prod_{i=1}^{g} (\xi \mod \mathfrak{r}_i) \quad \text{in} \quad \mathbb{F}_r$$

and similarly $(q \mod \mathfrak{r}) = \prod_{i=1}^{g} (\xi \mod \mathfrak{r}_i) (\xi \mod \overline{\mathfrak{r}_i})$ in \mathbb{F}_r .

▶ So all we need to do is find $\xi \in \mathcal{O}_K$ with prime norm and

1.
$$\prod_{i=1}^{g} (\xi \mod \mathfrak{r}_i) = 1$$
 and
2. $\prod_{i=1}^{g} (\xi \mod \overline{\mathfrak{r}_i}) = \zeta_k$ in \mathbb{F}_r .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Algorithm

- 1. Let $\langle \phi \rangle = \text{Gal}(K/\mathbb{Q}), \mathfrak{r} \mid r \text{ a prime of } K \text{ and } \mathfrak{r}_i = \phi^{-i}(\mathfrak{r}).$
- 2. Choose α_i and β_i randomly in \mathbb{F}_r^* such that $\prod \alpha_i = 1$ and $\prod \beta_i = \zeta_k$.
- 3. Compute $\xi \in \mathcal{O}_{\mathcal{K}}$ with $(\xi \mod \mathfrak{r}_i) = \alpha_i$ and $(\xi \mod \overline{\mathfrak{r}_i}) = \beta_i$.
- 4. If $q = N_{K/\mathbb{Q}}(\xi)$ is prime and $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ generates *K*, return π and *q*. Otherwise, go to step (2).

David Freeman, Peter Stevenhagen and Marco Streng

Algorithm

- 1. Let $\langle \phi \rangle = \text{Gal}(K/\mathbb{Q}), \mathfrak{r} \mid r \text{ a prime of } K \text{ and } \mathfrak{r}_i = \phi^{-i}(\mathfrak{r}).$
- 2. Choose α_i and β_i randomly in \mathbb{F}_r^* such that $\prod \alpha_i = 1$ and $\prod \beta_i = \zeta_k$.
- 3. Compute $\xi \in \mathcal{O}_K$ with $(\xi \mod \mathfrak{r}_i) = \alpha_i$ and $(\xi \mod \overline{\mathfrak{r}_i}) = \beta_i$.
- 4. If $q = N_{K/\mathbb{Q}}(\xi)$ is prime and $\pi = \prod_{i=1}^{g} \phi^{i}(\xi)$ generates *K*, return π and *q*. Otherwise, go to step (2).

The heuristic expected run time is polynomial in $\log r$ (fixed *K*).

Proof: As ξ is a lift of a random element modulo $r\mathcal{O}_K$, we expect its norm q to behave like r^{2g} . By the prime number theorem, we thus expect to need $\log(r^{2g})$ iterations before we find a prime q. Moreover, π generates K with probability tending to 1.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

► The analogue of the map $\xi \mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.

- ► The analogue of the map $\xi \mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.
- A CM type of a CM field K of degree 2g is a set Φ = {φ₁,...,φ_g} of embeddings of K into a normal closure L such that Φ ∪ Φ is the complete set of embeddings.
 - We call Φ primitive if there is no proper CM subfield K' of K such that Φ_{|K'} is a CM type of K'.

イロト イポト イヨト イヨト

- ► The analogue of the map $\xi \mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.
- A CM type of a CM field K of degree 2g is a set Φ = {φ₁,...,φ_g} of embeddings of K into a normal closure L such that Φ ∪ Φ is the complete set of embeddings.
 - We call Φ primitive if there is no proper CM subfield K' of K such that Φ_{|K'} is a CM type of K'.
- ► The type norm N_{Φ} with respect to Φ is the map
 - $\xi \mapsto \prod_{i=1}^{g} \phi_i(\xi).$
 - Notice that for $\pi = N_{\Phi}(\xi)$, we have $\pi \overline{\pi} = N_{\mathcal{K}/\mathbb{Q}}(\xi) \in \mathbb{Q}$.

A Q Q

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

David Freeman, Peter Stevenhagen and Marco Streng

- ► The analogue of the map $\xi \mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.
- A CM type of a CM field K of degree 2g is a set Φ = {φ₁,...,φ_g} of embeddings of K into a normal closure L such that Φ ∪ Φ is the complete set of embeddings.
 - We call Φ primitive if there is no proper CM subfield K' of K such that Φ_{|K'} is a CM type of K'.
- The *type norm* N_{Φ} with respect to Φ is the map
 - $\xi \mapsto \prod_{i=1}^{g} \phi_i(\xi).$
 - Notice that for $\pi = N_{\Phi}(\xi)$, we have $\pi \overline{\pi} = N_{\mathcal{K}/\mathbb{Q}}(\xi) \in \mathbb{Q}$.
- ► The image of N_Φ does not lie in K but in a field called the reflex field.

200

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨ

Abelian varieties with prescribed embedding degree

The reflex field

- ► Given a pair (K, Φ) of a CM field and a CM type, there is a reflex pair (K̂, Ψ).
 - The image of N_{Φ} lies inside \widehat{K} .
 - If Φ is primitive, then the reflex of (\widehat{K}, Ψ) is (K, Φ) .
- We construct π as $N_{\Psi}(\xi)$ for some $\xi \in \mathcal{O}_{\widehat{K}}$.

The reflex field

- ► Given a pair (K, Φ) of a CM field and a CM type, there is a reflex pair (K̂, Ψ).
 - The image of N_{Φ} lies inside \widehat{K} .
 - If Φ is primitive, then the reflex of (\widehat{K}, Ψ) is (K, Φ) .
- We construct π as $N_{\Psi}(\xi)$ for some $\xi \in \mathcal{O}_{\widehat{K}}$.
- Remarks about the reflex field: (assume Φ is primitive)
 - If K is normal, then $\widehat{K} = K$.
 - ► In general, K and K don't even have to have the same degree!
 - Denote the degree of \hat{K} by $2\hat{g}$.
 - If g = 2, then $\widehat{g} = 2$. If g = 3, then $\widehat{g} \in \{3, 4\}$.

NQ P

・ロト ・ 同ト ・ ヨト ・ ヨト

The general case

- Let $\Psi = \{\psi_1, \dots, \psi_{\widehat{g}}\}$ be the reflex type.
- ► Let \mathfrak{r} be a prime of \mathcal{O}_L dividing r and $\mathfrak{r}_i = \psi_i^{-1}(\mathfrak{r}) \cap \mathcal{O}_{\widehat{K}}$. Then

$$r\mathcal{O}_{\widehat{K}} = \prod_{i=1}^{g} \mathfrak{r}_i \overline{\mathfrak{r}_i}$$

David Freeman, Peter Stevenhagen and Marco Streng Abelian varieties with prescribed embedding degree

The general case

- Let $\Psi = \{\psi_1, \dots, \psi_{\widehat{g}}\}$ be the reflex type.
- ► Let \mathfrak{r} be a prime of \mathcal{O}_L dividing r and $\mathfrak{r}_i = \psi_i^{-1}(\mathfrak{r}) \cap \mathcal{O}_{\widehat{K}}$. Then

$$r\mathcal{O}_{\widehat{K}} = \prod_{i=1}^{g} \mathfrak{r}_i \overline{\mathfrak{r}_i}.$$

Algorithm

- 1. Choose α_i and β_i randomly in \mathbb{F}_r^* such that $\prod_{i=1}^{\hat{g}} \alpha_i = 1$ and $\prod_{i=1}^{\hat{g}} \beta_i = \zeta_k$ in \mathbb{F}_r .
- 2. Compute $\xi \in \mathcal{O}_{\widehat{K}}$ with $(\xi \mod \mathfrak{r}_i) = \alpha_i$ and $(\xi \mod \overline{\mathfrak{r}_i}) = \beta_i$.
- 3. If $q = N_{\widehat{K}/\mathbb{Q}}(\xi)$ is prime and $\pi = N_{\Psi}(\xi)$ generates *K*, return π and *q*. Otherwise, go to step (1).

David Freeman, Peter Stevenhagen and Marco Streng

Consider the value

$$\rho = \frac{\log q^g}{\log r} \sim \frac{\log \# A(\mathbb{F}_q)}{\log r} \geq 1,$$

which we want to be small.

Consider the value

$$ho = rac{\log q^g}{\log r} \sim rac{\log \# A(\mathbb{F}_q)}{\log r} \geq 1,$$

which we want to be small.

- We expect our output to satisfy $\rho \sim 2g\hat{g}$.
 - Proof: As ξ is a lift of a random element modulo rO_κ, we expect its norm q to behave like r^{2ĝ}, so log q ~ 2ĝ log r.

San

A D A A D A A D A A D A

Consider the value

$$\rho = \frac{\log q^g}{\log r} \sim \frac{\log \# A(\mathbb{F}_q)}{\log r} \geq 1,$$

which we want to be small.

• We expect our output to satisfy $\rho \sim 2g\hat{g}$.

Proof: As ξ is a lift of a random element modulo rO_κ, we expect its norm q to behave like r^{2ĝ}, so log q ~ 2ĝ log r.

For fixed *K*, *k* and *r*, the optimal ξ gives $\rho \sim 2g$.

- Proof: We have (r − 1)^{2g−2} choices for α_i and β_i, so we expect the minimal norm for a ξ to be approximately r².
- Open question: can we find it efficiently?

・ロット (雪) ・ ヨ) ・ ・ ・ ・

Consider the value

$$\rho = \frac{\log q^g}{\log r} \sim \frac{\log \# A(\mathbb{F}_q)}{\log r} \geq 1,$$

which we want to be small.

• We expect our output to satisfy $\rho \sim 2g\hat{g}$.

Proof: As ξ is a lift of a random element modulo rO_κ, we expect its norm q to behave like r^{2ĝ}, so log q ~ 2ĝ log r.

For fixed *K*, *k* and *r*, the optimal ξ gives $\rho \sim 2g$.

- Proof: We have (r − 1)^{2g−2} choices for α_i and β_i, so we expect the minimal norm for a ξ to be approximately r².
- Open question: can we find it efficiently?
- ► A method by Freeman based on our algorithm, in which r is not prescribed, achieves p < 2gĝ for some K and k.</p>

イロト イポト イヨト イヨト

Experimental results $K = \mathbb{Q}(\zeta_5)$

Histograms of ρ -values produced by our algorithm:

Notice that $g = \hat{g} = 2$.

David Freeman, Peter Stevenhagen and Marco Streng Abelian varieties with prescribed embedding degree イロト イヨト イヨト

Example $K = \mathbb{Q}(\zeta_7), k = 17, r = 2^{180} - 7427$

- ► Absolutely simple abelian varieties with CM by K are Jacobians of curves of the form y² = x⁷ + a.
- ► Our algorithm found a suitable Weil *q*-number for
 - q
 =
 1575584138119771535917878020143687930577769468671374639550678761402500812 \

 1759749726349377162542168169176007186988081292604570406371468028127020440 \

 6861277269259077188966205156107806823000096120874915612017184924206843204 \

 6217592329462633576371925169798774026389116897144108553148110927632874029 \

 911153126048408269857121431033499
 (1077 bits)

in 51 seconds.

- It has $\rho = 17.95$ and $g = \hat{g} = 3$.
- The corresponding curve is given by $y^2 = x^7 + 10$.

Abelian varieties with prescribed embedding degree

・ロット (雪) ・ ヨ) ・ ・ ・ ・

Summary

- Our algorithm constructs Weil numbers corresponding to abelian varieties over finite fields with prescribed embedding degree with respect to a subgroup of prescribed order r.
- ▶ We fix our CM field K in advance.
- The algorithm is polynomial in log *r*.
- ► We get

$$\frac{\log \#A(\mathbb{F})}{\log r} \sim 2g\widehat{g}.$$

イロト イポト イヨト イヨト

David Freeman, Peter Stevenhagen and Marco Streng