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Overview

We construct Weil numbers that correspond to abelian varieties
with prescribed embedding degree.

Overview:
I What is the embedding degree?
I What are Weil numbers and how to construct the

corresponding abelian varieties?
I Our actual construction.
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The embedding degree

I Let A be an abelian variety over a finite field F = Fq and let
r - q be a prime dividing #A(F).

I Two pairings:

Weil: A(F)[r ] × Â(F)[r ] → µr (F),

Tate: A(F)[r ] × Â(F)/r Â(F) → F∗/(F∗)r ∼= µr (F).

I The embedding degree k of A with respect to r is the
degree of the field extension F(ζr )/F.

I For random r and q, the embedding degree grows like r .
I If k is small and the discrete logarithm problem is hard in

both A(F)[r ] and F(ζr )∗, then these pairings can be used
for pairing-based cryptography.
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The embedding degree

The embedding degree of A with respect to r | #A(F) is the
degree of F(ζr )/F.

Lemma
The embedding degree of A with respect to r is equal to the
order of (q mod r) in F∗r .

Proof: The embedding degree is the smallest number k such
that r | #F∗qk = qk − 1.

So the embedding degree is k if and only if (q mod r) is some
primitive k -th root of unity in Fr .
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Weil numbers

I Let q be a prime power.
A Weil q-number is an algebraic integer π such that ππ = q
for every embedding of π into C.

I Honda-Tate theory gives a bijection

{simple abelian varieties over Fq}
isogeny

↔ {Weil q-numbers}
conjugation

A 7→ Frobq.

If q is prime and π 6= ±√q is a Weil q-number, then
I K = Q(π) is a CM field, i.e. a non-real number field with a

unique complex conjugation automorphism,
I the corresponding abelian variety A has dimension g,

where 2g is the degree of K and
I #A(Fq) = NK/Q(π − 1).
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The CM method

Given a Weil q-number π, the corresponding abelian variety
can be constructed using the complex multiplication method:

I List the isogeny classes of abelian varieties over Q with
CM by the ring of integers of Q(π).

I Reduce them modulo a prime dividing q.
I Some twist of one of the reduced varieties will have

Frobenius π. Select the one of the correct order.
This method is only well-developed for dimensions 1 and 2 and
some special cases of higher dimension and takes time
exponential in the bit size of the discriminant of Q(π).
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About our algorithm

We give an algorithm with
input:

I a positive integer k ,
I a CM field K of degree 2g with a ‘primitive CM type’ and
I a prime r ≡ 1 (mod k) that splits completely in K .

output:
a prime number q and a Weil q-number π ∈ K corresponding to
an abelian variety of dimension g with embedding degree k
with respect to r .

Heuristic expected run time polynomial in log r (for fixed K ).

For g = 1, we recover the Cocks-Pinch algorithm, so we
assume g ≥ 2 for simplicity.
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Special case: K cyclic

I Suppose φ generates Gal(K/Q) and r is a prime of K
dividing r . Let ri = φ−i(r), so rOK =

∏g
i=1 riri .

I We want π ∈ OK with q = ππ ∈ Z prime such that
1. r | NK/Q(π − 1), e.g. (π mod r) = 1 ∈ Fr and
2. (q mod r) = ζk in Fr .

I Idea: take π =
∏g

i=1 φ
i(ξ) with ξ ∈ OK , so

q = ππ = NK/Q(ξ) ∈ Z. Then

(π mod r) =

g∏
i=1

(φi(ξ) mod r)

=

g∏
i=1

(ξ mod ri)

in Fr

and similarly (q mod r) =
∏g

i=1(ξ mod ri)(ξ mod ri) in Fr .
I So all we need to do is find ξ ∈ OK with prime norm and

1.
∏g

i=1(ξ mod ri ) = 1 and
2.

∏g
i=1(ξ mod ri ) = ζk in Fr .
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Special case: K cyclic

Algorithm

1. Let 〈φ〉 = Gal(K/Q), r | r a prime of K and ri = φ−i(r).

2. Choose αi and βi randomly in F∗r such that∏
αi = 1 and

∏
βi = ζk .

3. Compute ξ ∈ OK with (ξ mod ri) = αi and (ξ mod ri) = βi .
4. If q = NK/Q(ξ) is prime and π =

∏g
i=1 φ

i(ξ) generates K ,
return π and q. Otherwise, go to step (2).

The heuristic expected run time is polynomial in log r (fixed K ).

Proof: As ξ is a lift of a random element modulo rOK , we expect
its norm q to behave like r2g . By the prime number theorem, we
thus expect to need log(r2g) iterations before we find a prime q.
Moreover, π generates K with probability tending to 1.
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The type norm

I The analogue of the map ξ 7→
∏g

i=1 φ
i(ξ) for general CM

fields is the type norm.

I A CM type of a CM field K of degree 2g is a set
Φ = {φ1, . . . , φg} of embeddings of K into a normal closure
L such that Φ ∪ Φ is the complete set of embeddings.

I We call Φ primitive if there is no proper CM subfield K ′ of K
such that Φ|K ′ is a CM type of K ′.

I The type norm NΦ with respect to Φ is the map
ξ 7→

∏g
i=1 φi(ξ).

I Notice that for π = NΦ(ξ), we have ππ = NK/Q(ξ) ∈ Q.
I The image of NΦ does not lie in K but in a field called the

reflex field.
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The reflex field

I Given a pair (K ,Φ) of a CM field and a CM type, there is a
reflex pair (K̂ ,Ψ).

I The image of NΦ lies inside K̂ .
I If Φ is primitive, then the reflex of (K̂ ,Ψ) is (K ,Φ).

I We construct π as NΨ(ξ) for some ξ ∈ OK̂ .

I Remarks about the reflex field: (assume Φ is primitive)
I If K is normal, then K̂ = K .
I In general, K and K̂ don’t even have to have the same

degree!
I Denote the degree of K̂ by 2ĝ.
I If g = 2, then ĝ = 2. If g = 3, then ĝ ∈ {3,4}.
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The general case

I Let Ψ = {ψ1, . . . , ψĝ} be the reflex type.

I Let r be a prime of OL dividing r and ri = ψ−1
i (r) ∩ OK̂ .

Then

rOK̂ =

ĝ∏
i=1

riri .

Algorithm

1. Choose αi and βi randomly in F∗r such that∏ĝ
i=1 αi = 1 and

∏ĝ
i=1 βi = ζk in Fr .

2. Compute ξ ∈ OK̂ with
(ξ mod ri) = αi and (ξ mod ri) = βi .

3. If q = NK̂/Q(ξ) is prime and π = NΨ(ξ) generates K , return
π and q. Otherwise, go to step (1).
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ĝ∏
i=1

riri .

Algorithm

1. Choose αi and βi randomly in F∗r such that∏ĝ
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Heuristics

I Consider the value

ρ =
log qg

log r
∼

log #A(Fq)

log r
≥ 1,

which we want to be small.

I We expect our output to satisfy ρ ∼ 2gĝ.
I Proof: As ξ is a lift of a random element modulo rOK̂ , we

expect its norm q to behave like r2ĝ , so log q ∼ 2ĝ log r .
I For fixed K , k and r , the optimal ξ gives ρ ∼ 2g.

I Proof: We have (r − 1)2ĝ−2 choices for αi and βi , so we
expect the minimal norm for a ξ to be approximately r2.

I Open question: can we find it efficiently?
I A method by Freeman based on our algorithm, in which r

is not prescribed, achieves ρ < 2gĝ for some K and k .
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Experimental results
K = Q(ζ5)

Histograms of ρ-values produced by our algorithm:
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minimal ρ: 4.19

Notice that g = ĝ = 2.
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Example
K = Q(ζ7), k = 17, r = 2180 − 7427

I Absolutely simple abelian varieties with CM by K are
Jacobians of curves of the form y2 = x7 + a.

I Our algorithm found a suitable Weil q-number for

q = 1575584138119771535917878020143687930577769468671374639550678761402500812 \
1759749726349377162542168169176007186988081292604570406371468028127020440 \
6861277269259077188966205156107806823000096120874915612017184924206843204 \
6217592329462633576371925169798774026389116897144108553148110927632874029 \
911153126048408269857121431033499 (1077 bits)

in 51 seconds.
I It has ρ = 17.95 and g = ĝ = 3.
I The corresponding curve is given by y2 = x7 + 10.
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Summary

I Our algorithm constructs Weil numbers corresponding to
abelian varieties over finite fields with prescribed
embedding degree with respect to a subgroup of
prescribed order r .

I We fix our CM field K in advance.
I The algorithm is polynomial in log r .
I We get

log #A(F)

log r
∼ 2gĝ.
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