Abelian varieties with prescribed embedding degree

David Freeman¹, Peter Stevenhagen² and Marco Streng²

¹ University of California, Berkeley **2** Universiteit Leiden Science and Engineering Graduate Fellowship contract MRTN-CT-2006-035495

Supported by a National Defense Supported by the European Commission under

 $+$ ロ $+$ $+$ $-$

ANTS-VIII, Banff, Alberta (Canada) May 20, 2008

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

つひひ

Overview

We construct *Weil numbers* that correspond to abelian varieties with prescribed *embedding degree*.

Overview:

- \triangleright What is the embedding degree?
- \triangleright What are Weil numbers and how to construct the corresponding abelian varieties?
- \triangleright Our actual construction.

 Ω

 \rightarrow \Rightarrow \rightarrow \Rightarrow \Rightarrow

The embedding degree

- \blacktriangleright Let A be an abelian variety over a finite field $\mathbb{F} = \mathbb{F}_q$ and let $r \nmid q$ be a prime dividing $\#A(\mathbb{F})$.
- \blacktriangleright Two pairings:

Weil:
$$
A(\mathbb{F})[r] \times \widehat{A}(\mathbb{F})[r] \to \mu_r(\mathbb{F}),
$$

 Tate: $A(\mathbb{F})[r] \times \widehat{A}(\mathbb{F})/r\widehat{A}(\mathbb{F}) \to \mathbb{F}^*/(\mathbb{F}^*)^r \cong \mu_r(\mathbb{F}).$

- \triangleright The embedding degree *k* of *A* with respect to *r* is the degree of the field extension $\mathbb{F}(\zeta_r)/\mathbb{F}$.
- \triangleright For random *r* and *q*, the embedding degree grows like *r*.
- If k is small and the discrete logarithm problem is hard in both $A(\mathbb{F})[r]$ and $\mathbb{F}(\zeta_r)^*$, then these pairings can be used for pairing-based cryptography.

 OQ

.

The embedding degree

The embedding degree of *A* with respect to *r* | #*A*(F) is the degree of $\mathbb{F}(\zeta_r)/\mathbb{F}$.

Lemma

The embedding degree of A with respect to r is equal to the order of $(q \mod r)$ *in* \mathbb{F}_r^* *.*

Proof: The embedding degree is the smallest number *k* such that $r \mid \# \mathbb{F}_q^*$ $_{q^{k}}^{*} = q^{k} - 1.$ H

So the embedding degree is *k* if and only if (*q* mod *r*) is some primitive *k*-th root of unity in F*^r* .

 Ω

イロト イ押ト イラト イラトー

Weil numbers

- \blacktriangleright Let *q* be a prime power. A *Weil q-number* is an algebraic integer π such that $\pi \bar{\pi} = q$ for every embedding of π into \mathbb{C} .
- \blacktriangleright Honda-Tate theory gives a bijection

$$
\xrightarrow{\text{simple abelian varieties over }\mathbb{F}_q} \leftrightarrow \xrightarrow{\text{{Weil }q$-numbers}}
$$
\n
$$
\leftrightarrow \xrightarrow{\text{conjugation}}
$$
\n
$$
A \leftrightarrow \text{Frob}_q.
$$

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

 QQ

イロト イ押ト イミト イミト

Weil numbers

- \blacktriangleright Let *q* be a prime power. A *Weil q-number* is an algebraic integer π such that $\pi \bar{\pi} = q$ for every embedding of π into \mathbb{C} .
- \blacktriangleright Honda-Tate theory gives a bijection

$$
\xrightarrow{\text{simple abelian varieties over }\mathbb{F}_q} \leftrightarrow \xrightarrow{\text{{Weil } q-numbers}} \text{conjugation}
$$
\n
$$
A \mapsto \text{Frob}_q.
$$

If *q* is prime and $\pi \neq \pm \sqrt{q}$ is a Weil *q*-number, then

- $K = \mathbb{Q}(\pi)$ is a *CM field*, i.e. a non-real number field with a unique complex conjugation automorphism,
- \triangleright the corresponding abelian variety *A* has dimension *g*, where 2*g* is the degree of *K* and

$$
\blacktriangleright \#A(\mathbb{F}_q) = N_{K/\mathbb{Q}}(\pi-1).
$$

 Ω

.

The CM method

Given a Weil *q*-number π , the corresponding abelian variety can be constructed using the *complex multiplication* method:

- \blacktriangleright List the isogeny classes of abelian varieties over $\overline{\mathbb{Q}}$ with CM by the ring of integers of $\mathbb{Q}(\pi)$.
- \blacktriangleright Reduce them modulo a prime dividing *q*.
- \triangleright Some twist of one of the reduced varieties will have Frobenius π . Select the one of the correct order.

This method is only well-developed for dimensions 1 and 2 and some special cases of higher dimension and takes time exponential in the bit size of the discriminant of $\mathbb{O}(\pi)$.

つひひ

[Abelian varieties with prescribed embedding degree](#page-0-0)

About our algorithm

We give an algorithm with **input:**

- \blacktriangleright a positive integer k ,
- \triangleright a CM field K of degree 2*g* with a 'primitive CM type' and
- \triangleright a prime *r* \equiv 1 (mod *k*) that splits completely in *K*.

output:

a prime number *q* and a Weil *q*-number $\pi \in K$ corresponding to an abelian variety of dimension *g* with embedding degree *k* with respect to *r*.

 QQ

イロト イ母 トイラ トイラトー

[Abelian varieties with prescribed embedding degree](#page-0-0)

About our algorithm

We give an algorithm with **input:**

- \blacktriangleright a positive integer k ,
- \triangleright a CM field *K* of degree 2*g* with a 'primitive CM type' and
- \triangleright a prime *r* \equiv 1 (mod *k*) that splits completely in *K*.

output:

a prime number *q* and a Weil *q*-number $\pi \in K$ corresponding to an abelian variety of dimension *g* with embedding degree *k* with respect to *r*.

Heuristic expected run time polynomial in log *r* (for fixed *K*).

For $q = 1$, we recover the Cocks-Pinch algorithm, so we assume $q \geq 2$ for simplicity.

 QQ

イロト イ母 トイヨ トイヨ トー

- **F** Suppose ϕ generates Gal(K/\mathbb{Q}) and r is a prime of K dividing *r*. Let $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$, so $r\mathcal{O}_K = \prod_{i=1}^g \mathfrak{r}_i \overline{\mathfrak{r}_i}$.
- \triangleright We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$
r \mid N_{K/\mathbb{Q}}(\pi - 1)
$$
, e.g. $(\pi \mod r) = 1 \in \mathbb{F}_r$ and

2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r .

 QQ

 $+$ ロ $+$ $+$ $+$ $+$

- **If** Suppose ϕ generates Gal(K/\mathbb{Q}) and r is a prime of K dividing *r*. Let $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$, so $r\mathcal{O}_K = \prod_{i=1}^g \mathfrak{r}_i \overline{\mathfrak{r}_i}$.
- \triangleright We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$
r \mid N_{K/\mathbb{Q}}(\pi - 1)
$$
, e.g. $(\pi \mod r) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r .
- ► Idea: take $\pi = \prod_{i=1}^{g} \phi^i(\xi)$ with $\xi \in \mathcal{O}_K$, so $q = \pi \overline{\pi} = N_{K/\mathbb{O}}(\xi) \in \mathbb{Z}$.

 OQ

イロト イ母 トイヨ トイヨ トー

- **If** Suppose ϕ generates Gal(K/\mathbb{Q}) and r is a prime of K dividing *r*. Let $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$, so $r\mathcal{O}_K = \prod_{i=1}^g \mathfrak{r}_i \overline{\mathfrak{r}_i}$.
- \triangleright We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$
r \mid N_{K/\mathbb{Q}}(\pi - 1)
$$
, e.g. $(\pi \mod r) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r .
- **I** Idea: take $\pi = \prod_{i=1}^{g} \phi^i(\xi)$ with $\xi \in \mathcal{O}_K$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$
(\pi \bmod r) = \prod_{i=1}^{g} (\phi^i(\xi) \bmod r) \qquad \text{in} \quad \mathbb{F}_r
$$

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

 OQ

イロト イ母 トイヨ トイヨ トー

- **If** Suppose ϕ generates Gal(K/\mathbb{Q}) and r is a prime of K dividing *r*. Let $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$, so $r\mathcal{O}_K = \prod_{i=1}^g \mathfrak{r}_i \overline{\mathfrak{r}_i}$.
- \triangleright We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$
r \mid N_{K/\mathbb{Q}}(\pi - 1)
$$
, e.g. $(\pi \mod r) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r .
- **I** Idea: take $\pi = \prod_{i=1}^{g} \phi^i(\xi)$ with $\xi \in \mathcal{O}_K$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$
(\pi \bmod \mathfrak{r}) = \prod_{i=1}^{g} (\phi^i(\xi) \bmod \mathfrak{r}) = \prod_{i=1}^{g} (\xi \bmod \mathfrak{r}_i) \quad \text{in} \quad \mathbb{F}_r
$$

 OQ

イロト イ母 トイヨ トイヨ トー

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

- **If** Suppose ϕ generates Gal(K/\mathbb{Q}) and r is a prime of K dividing *r*. Let $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$, so $r\mathcal{O}_K = \prod_{i=1}^g \mathfrak{r}_i \overline{\mathfrak{r}_i}$.
- \triangleright We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$
r \mid N_{K/\mathbb{Q}}(\pi - 1)
$$
, e.g. $(\pi \mod r) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r .
- **I** Idea: take $\pi = \prod_{i=1}^{g} \phi^i(\xi)$ with $\xi \in \mathcal{O}_K$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$
(\pi \bmod \mathfrak{r}) = \prod_{i=1}^g (\phi^i(\xi) \bmod \mathfrak{r}) = \prod_{i=1}^g (\xi \bmod \mathfrak{r}_i) \quad \text{in} \quad \mathbb{F}_r
$$

and similarly $(q \text{ mod } \mathfrak{r}) = \prod_{i=1}^g (\xi \text{ mod } \mathfrak{r}_i) (\xi \text{ mod }\overline{\mathfrak{r}_i})$ in $\mathbb{F}_r.$

 Ω

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

- **If** Suppose ϕ generates Gal(K/\mathbb{Q}) and r is a prime of K dividing *r*. Let $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$, so $r\mathcal{O}_K = \prod_{i=1}^g \mathfrak{r}_i \overline{\mathfrak{r}_i}$.
- \triangleright We want $\pi \in \mathcal{O}_K$ with $q = \pi \overline{\pi} \in \mathbb{Z}$ prime such that

1.
$$
r \mid N_{K/\mathbb{Q}}(\pi - 1)
$$
, e.g. $(\pi \mod r) = 1 \in \mathbb{F}_r$ and

- 2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r .
- **I** Idea: take $\pi = \prod_{i=1}^{g} \phi^i(\xi)$ with $\xi \in \mathcal{O}_K$, so $q = \pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

$$
(\pi \bmod r) = \prod_{i=1}^{g} (\phi^{i}(\xi) \bmod r) = \prod_{i=1}^{g} (\xi \bmod r_i) \quad \text{in} \quad \mathbb{F}_r
$$

and similarly $(q \text{ mod } \mathfrak{r}) = \prod_{i=1}^g (\xi \text{ mod } \mathfrak{r}_i) (\xi \text{ mod }\overline{\mathfrak{r}_i})$ in $\mathbb{F}_r.$

► So all we need to do is find $\xi \in \mathcal{O}_K$ with prime norm and

1.
$$
\prod_{i=1}^{g} (\xi \mod r_i) = 1
$$
 and

2.
$$
\prod_{i=1}^{g} (\xi \mod \overline{\tau_i}) = \zeta_k \text{ in } \mathbb{F}_r.
$$

 OQ

イロン イ団ン イミン イミンニミ

Algorithm

- 1. Let $\langle \phi \rangle = \text{Gal}(K/\mathbb{Q})$, $\mathfrak{r} \mid r$ a prime of K and $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$.
- 2. *Choose* α_i and β_i randomly in \mathbb{F}_r^* such that $\prod \alpha_i = 1$ *and* $\prod \beta_i = \zeta_k$ *.*
- 3. *Compute* $\xi \in \mathcal{O}_K$ *with* (ξ mod \mathfrak{r}_i) = α_i and (ξ mod $\overline{\mathfrak{r}_i}$) = β_i .
- 4. If $q = N_{K/{\mathbb Q}}(\xi)$ is prime and $\pi = \prod_{i=1}^g \phi^i(\xi)$ generates K, *return* π *and* q *. Otherwise, go to step [\(2\)](#page-15-0).*

 Ω

イロト イ母 トイラ トイラトー

Algorithm

- 1. Let $\langle \phi \rangle = \text{Gal}(K/\mathbb{Q})$, $\mathfrak{r} \mid r$ a prime of K and $\mathfrak{r}_i = \phi^{-i}(\mathfrak{r})$.
- 2. *Choose* α_i and β_i randomly in \mathbb{F}_r^* such that $\prod \alpha_i = 1$ *and* $\prod \beta_i = \zeta_k$ *.*
- 3. *Compute* $\xi \in \mathcal{O}_K$ *with* (ξ mod \mathfrak{r}_i) = α_i and (ξ mod $\overline{\mathfrak{r}_i}$) = β_i .
- 4. If $q = N_{K/{\mathbb Q}}(\xi)$ is prime and $\pi = \prod_{i=1}^g \phi^i(\xi)$ generates K, *return* π *and q. Otherwise, go to step [\(2\)](#page-15-0).*

The heuristic expected run time is polynomial in log *r* (fixed *K*).

Proof: As ξ is a lift of a random element modulo $r\mathcal{O}_K$, we expect its norm *q* to behave like *r* 2*g* . By the prime number theorem, we thus expect to need log(*r* 2*g*) iterations before we find a prime *q*. Moreover, π generates K with probability tending to 1.

 QQ

K ロ ト K 部 ト K ミ ト K ミ ト

► The analogue of the map ξ $\mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.

> イロト イ押ト イミト イミト QQ

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

- **►** The analogue of the map ξ $\mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.
- \triangleright A *CM type* of a CM field *K* of degree 2*g* is a set $\Phi = {\phi_1, \ldots, \phi_q}$ of embeddings of *K* into a normal closure *L* such that $\Phi \cup \overline{\Phi}$ is the complete set of embeddings.
	- **►** We call Φ *primitive* if there is no proper CM subfield *K'* of *K* such that $\Phi_{|K'}$ is a CM type of K' .

つひひ

- **►** The analogue of the map ξ $\mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.
- \triangleright A *CM type* of a CM field *K* of degree 2*g* is a set $\Phi = {\phi_1, \ldots, \phi_q}$ of embeddings of *K* into a normal closure *L* such that $\Phi \cup \overline{\Phi}$ is the complete set of embeddings.
	- **►** We call Φ *primitive* if there is no proper CM subfield *K'* of *K* such that $\Phi_{|K'}$ is a CM type of K' .
- \triangleright The *type norm* N_{Φ} with respect to Φ is the map
	- $\xi \mapsto \prod_{i=1}^g \phi_i(\xi).$
		- **If** Notice that for $\pi = N_{\Phi}(\xi)$, we have $\pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Q}$.

 Ω

イロメ イ母メ イヨメ イヨメー

- **►** The analogue of the map ξ $\mapsto \prod_{i=1}^{g} \phi^{i}(\xi)$ for general CM fields is the *type norm*.
- \triangleright A *CM type* of a CM field K of degree 2*g* is a set $\Phi = {\phi_1, \ldots, \phi_q}$ of embeddings of *K* into a normal closure *L* such that $\Phi \cup \overline{\Phi}$ is the complete set of embeddings.
	- **►** We call Φ *primitive* if there is no proper CM subfield *K'* of *K* such that $\Phi_{|K'}$ is a CM type of K' .
- \triangleright The *type norm* N_{Φ} with respect to Φ is the map
	- $\xi \mapsto \prod_{i=1}^g \phi_i(\xi).$
		- **If** Notice that for $\pi = N_{\Phi}(\xi)$, we have $\pi \overline{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Q}$.
- \triangleright The image of N_{Φ} does not lie in K but in a field called the *reflex field*.

 Ω

.

[Abelian varieties with prescribed embedding degree](#page-0-0)

The reflex field

- \triangleright Given a pair (K, Φ) of a CM field and a CM type, there is a *reflex* pair (\widehat{K}, Ψ) .
	- **Figure 1** The image of N_{Φ} lies inside \hat{K} .
	- If Φ is primitive, then the reflex of (\widehat{K}, Ψ) is (K, Φ) .
- \blacktriangleright We construct π as $N_{\Psi}(\xi)$ for some $\xi \in \mathcal{O}_{\widehat{k}}$.

つひひ

4 D.K.

The reflex field

- \triangleright Given a pair (K, Φ) of a CM field and a CM type, there is a *reflex* pair (\widehat{K}, Ψ) .
	- **Fi** The image of N_{Φ} lies inside K .
	- If Φ is primitive, then the reflex of (\widehat{K}, Ψ) is (K, Φ) .
- \blacktriangleright We construct π as $N_{\Psi}(\xi)$ for some $\xi \in \mathcal{O}_{\widehat{k}}$.
- **F** Remarks about the reflex field: (assume Φ is primitive)
	- If *K* is normal, then $\widehat{K} = K$.
	- In general, *K* and \widehat{K} don't even have to have the same degree!
	- **Denote the degree of** \hat{K} **by 2** \hat{g} **.**
	- If $g = 2$, then $\hat{g} = 2$. If $g = 3$, then $\hat{g} \in \{3, 4\}$.

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

つひひ

The general case

- **In Let** $\Psi = {\psi_1, \ldots, \psi_{\hat{\theta}}}$ **be the reflex type.**
- **F** Let r be a prime of \mathcal{O}_L dividing r and $r_i = \psi_i^{-1}$ \overline{a} ⁻¹(**r**) ∩ $\mathcal{O}_{\widehat{K}}$. Then

$$
r\mathcal{O}_{\widehat{K}}=\prod_{i=1}^g\mathfrak{r}_i\overline{\mathfrak{r}_i}.
$$

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

 QQ

イロト イ部 トイミト イミト

The general case

- **If** Let $\Psi = {\psi_1, \ldots, \psi_{\hat{\sigma}}}$ be the reflex type.
- **F** Let r be a prime of \mathcal{O}_L dividing r and $r_i = \psi_i^{-1}$ \overline{a} ⁻¹(**r**) ∩ $\mathcal{O}_{\widehat{K}}$. Then *g*b

$$
r\mathcal{O}_{\widehat{K}}=\prod_{i=1}^g\mathfrak{r}_i\overline{\mathfrak{r}_i}.
$$

Algorithm

1. *Choose* α_i and β_i randomly in \mathbb{F}_r^* such that $\prod_{i=1}^{g} \alpha_i = 1$ *and* $\prod_{i=1}^{g} \beta_i = \zeta_k$ *in* \mathbb{F}_r *.* 2. *Compute* $\xi \in \mathcal{O}_{\hat{k}}$ *with* $(\xi \text{ mod } \mathfrak{r}_i) = \alpha_i \text{ and } (\xi \text{ mod } \overline{\mathfrak{r}_i}) = \beta_i.$ 3. If $q = N_{\widehat K/{\mathbb Q}}(\xi)$ is prime and $\pi = N_\Psi(\xi)$ generates K, return π *and q. Otherwise, go to step [\(1\)](#page-23-0).*

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

 Ω

KORKOR KERKER

 \blacktriangleright Consider the value

$$
\rho = \frac{\log q^g}{\log r} \sim \frac{\log \#A(\mathbb{F}_q)}{\log r} \geq 1,
$$

which we want to be small.

イロト イ部 トイミト イミト QQ Þ

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

 \blacktriangleright Consider the value

$$
\rho = \frac{\log q^g}{\log r} \sim \frac{\log \#A(\mathbb{F}_q)}{\log r} \geq 1,
$$

which we want to be small.

- **► We expect our output to satisfy** $\rho \sim 2g\hat{g}$ **.**
	- **Proof:** As ξ is a lift of a random element modulo $r\mathcal{O}_{\hat{\kappa}}$, we expect its norm *q* to behave like r^{2g} , so log $q \sim 2\hat{g}$ log *r*.

 Ω

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

 \blacktriangleright Consider the value

$$
\rho = \frac{\log q^g}{\log r} \sim \frac{\log \#A(\mathbb{F}_q)}{\log r} \geq 1,
$$

which we want to be small.

 \triangleright We expect our output to satisfy $\rho \sim 2g\hat{g}$.

Proof: As ξ is a lift of a random element modulo $rO_{\hat{\kappa}}$, we expect its norm *q* to behave like r^{2g} , so log $q \sim 2\hat{g}$ log *r*.

► For fixed *K*, *k* and *r*, the optimal ξ gives $\rho \sim 2g$.

- ► Proof: We have $(r-1)^{2\hat{g}-2}$ choices for α_i and β_i , so we expect the minimal norm for a ξ to be approximately r^2 .
- \triangleright Open question: can we find it efficiently?

つひひ

イロト イ母 トイヨト

 \blacktriangleright Consider the value

$$
\rho = \frac{\log q^g}{\log r} \sim \frac{\log \#A(\mathbb{F}_q)}{\log r} \geq 1,
$$

which we want to be small.

 \triangleright We expect our output to satisfy $\rho \sim 2g\hat{g}$.

Proof: As ξ is a lift of a random element modulo $rO_{\hat{\kappa}}$, we expect its norm *q* to behave like r^{2g} , so log $q \sim 2\hat{g}$ log *r*.

► For fixed *K*, *k* and *r*, the optimal ξ gives $\rho \sim 2g$.

- ► Proof: We have $(r-1)^{2\hat{g}-2}$ choices for α_i and β_i , so we expect the minimal norm for a ξ to be approximately r^2 .
- \triangleright Open question: can we find it efficiently?
- ► A method by Freeman based on our algorithm, in which *r* is not prescribed, achieves $\rho < 2g\hat{g}$ for some *K* and *k*.

つひひ

Experimental results $K = \mathbb{O}(\zeta_5)$

Histograms of ρ -values produced by our algorithm:

Notice that $q = \hat{q} = 2$.

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden

[Abelian varieties with prescribed embedding degree](#page-0-0)

つひひ

4 0 8

Example $K = \mathbb{Q}(\zeta_7)$, $k = 17$, $r = 2^{180} - 7427$

- \triangleright Absolutely simple abelian varieties with CM by *K* are Jacobians of curves of the form $y^2 = x^7 + a$.
- \triangleright Our algorithm found a suitable Weil *q*-number for
	- *q* = 1575584138119771535917878020143687930577769468671374639550678761402500812 \ 1759749726349377162542168169176007186988081292604570406371468028127020440 \ 6861277269259077188966205156107806823000096120874915612017184924206843204 \ 6217592329462633576371925169798774026389116897144108553148110927632874029 \ 911153126048408269857121431033499 (1077 bits)

in 51 seconds.

- It has $\rho = 17.95$ and $q = \hat{q} = 3$.
- If The corresponding curve is given by $y^2 = x^7 + 10$.

 Ω

イロト イ押ト イミト イミト

Summary

- \triangleright Our algorithm constructs Weil numbers corresponding to abelian varieties over finite fields with prescribed embedding degree with respect to a subgroup of prescribed order *r*.
- \triangleright We fix our CM field K in advance.
- \triangleright The algorithm is polynomial in log r.
- \triangleright We get

$$
\frac{\log \#A(\mathbb{F})}{\log r} \sim 2g\widehat{g}.
$$

つひひ

4 D.K.

David Freeman, Peter Stevenhagen and Marco Streng UC Berkeley and Universiteit Leiden