
An Improved Multi-Set Algorithm for the Dense
Subset Sum Problem

Andrew Shallue

University of Calgary

May 19, 2008



Outline

Random Modular Subset Sum

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion



Outline

Random Modular Subset Sum

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion



Problem Statement

Modular Subset Sum (MSS) :
Given a1, . . . , an, t ∈ Z/mZ, find xi ∈ {0, 1} such that

n∑
i=1

aixi = t mod m

Random Modular Subset Sum (RMSS) :
n, t,m fixed, ai chosen uniformly at random from Z/mZ



Density

Definition
The density of an instance of MSS is given by n

log m

Intuitively, the map x = (x1, . . . , xn) 7→
∑n

i=1 aixi mod m is

1− 1 if density less than 1

onto if density greater than 1

We will focus on dense instances of RMSS, i.e. m < 2n

These instances should have many solutions



Birthday Problems

Definition (k-Set Birthday Problem)

Given k lists L1, . . . , Lk of elements drawn uniformly and
independently from Z/mZ, find `i ∈ Li for 1 ≤ i ≤ k such that

`1 + `2 + · · ·+ `k = 0 mod m .

Expect solution to exist if |Li | = m1/k

Wagner (2002): heuristic algorithm that expects to find solution if
|Li | = m1/ log k



Previous Solutions

General solutions:
time-space tradeoff: O(2n/2) time and space

dynamic-programming: O(n ·m) time and space

Schroeppel-Shamir (1981): O(2n/2) time, O(2n/4) space

Sparse case:
Lagarias-Odlyzko (1985): for almost all problems of density
d < 0.645, reduces to shortest vector problem

for almost all problems of density d < 1
n , poly time using LLL

Coster et. al. (1992): bound improved to d < 0.98



Previous Solutions

Dense case:
Chaimovich (1999) : n = (m log m)1/2, time O(n7/4/ log3/4 n)

Flaxman-Przydatek (2005) : m = 2O(log n)2 , time O(n3/2)

Lyubashevsky (2005) : m = 2nε
, ε < 1, time and space 2O(nε/ log n),

by solving birthday problem in Õ(m2/ log k).



New Results

Theorem (S, 2007)

Let lists L1, . . . , Lk each contain αm1/ log k elements drawn
independently and uniformly from Z/mZ. Assume that
α > max{1024, k} and log m > 7 log α log k. Then Wagner’s
algorithm has complexity Õ(kα ·m1/ log k) time and space and
outputs a solution with probability greater than 1−m1/ log ke−Ω(α).

Corollary

Let m = 2nε
, ε < 1 and assume that nε = Ω((log n)2). Then there

is an algorithm for RMSS that runs using time and space

Õ(2
nε

(1−ε) log n ) and finds a solution with probability greater than
1− 2−Ω(nε).



Outline

Random Modular Subset Sum

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion



Algorithm ListMerge

Input: parameter p < 1, lists L1, L2 of integers in interval

[−mpλ

2 , mpλ

2 )

Output: list L12 ⊂ L1 + L2 of integers in interval [−mpλ+1

2 , mpλ+1

2 ),
at most one element per b ∈ L1

1. sort L1, L2

2. for b ∈ L1 do

3. if there exists c ∈ L2 in interval [−b − mpλ+1

2 ,−b + mpλ+1

2 )
then add b + c to L12

Assume |L1| = |L2| = α
p . Then resource usage is O(α

p log α
p ) time

and space



k-set Birthday Algorithm

assume t = 0 (easy modifications for general t)

Input: parameter k < n, p = m−1/ log k , α = O(n)
Lists L1, . . . , Lk of size α/p of elements from Z/mZ

Output: `i ∈ Li such that `1 + · · ·+ `k = 0 mod m

1. treat list elements as integers in [−m
2 , m

2 )

2. for level λ = 0 to log k − 1 do

3. apply ListMerge to pairs of lists (keep track of partial sums)

4. if remaining list after level log k − 1 is nonempty

5. then output (`1, . . . , `k) else output “No Solution”



Running Time

Final list has integers in the range [−mplog k

2 , mplog k

2 ) = [−1
2 , 1

2)

Generating and storing initial k lists costs Õ(α/p) time and space

Applying ListMerge 2k times costs Õ(k · α/p) time and space

Total running time is Õ(kα ·m1/ log k)

Correctness: enough to show there is a c ∈ L in interval

[−b − mpλ+1

2 ,−b + mpλ+1

2 )



Row Distinct

Let L1, L2 be lists at some level of the algorithm.

Suppose we organize elements of L1 + L2 into a table, so that
` = b + c is in row corresponding to b and column corresponding
to c .

Call `1, . . . , `N row-distinct if each appears in a different row.



Correctness Proof Sketch

1. Show the distributions of elements of L1, L2 at level λ are
close to uniform.

2. Show that elements of L2 are close to independent, assuming
they were row distinct at the previous level.

3. Apply a martingale tail bound theorem to show that for fixed
b ∈ L1, there exists with high probability a c ∈ L2 so that

b + c ∈ [−mpλ+1

2 , mpλ+1

2 ).

4. Apply the union bound to prove that with high probability
each row has at least one element in the restricted interval.



Outline

Random Modular Subset Sum

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion



Close to Uniform

Let U be the uniform distribution on Z/mZ

Let X be the distribution given by X (x) =
∑n

i=1 aixi mod m

The statistical difference is defined by

∆(X ,U) =
1

2

∑
a∈Z/mZ

|Pr[X = a]− Pr[U = a]|

Let m = 2cn, c < 1. Call a = (a1, . . . , an) well-distributed if

∆(X ,U) ≤ 2−
(1−c)n

4

Theorem (Impagliazzo, Naor)

The probability that a is not well-distributed is less than 2−
(1−c)n

4 .



k-set Algorithm for RMSS

Input: a1, . . . , an from Z/mZ, target 0

Output: x ∈ {0, 1}n such that
∑n

i=1 aixi = 0 mod m

1. Partition indices {1, . . . , n} into k sets I1, . . . , Ik

2. Generate lists L1, . . . , Lk of n ·m1/ log k elements. For each
element of Lj , generate random bits xi and store

∑
i∈Ij

aixi

along with bits

3. Apply k-set birthday algorithm to L1, . . . , Lk

Choosing m = 2nε
, k = 1

2n1−ε gives corollary



Outline

Random Modular Subset Sum

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion



Applications

1. Wagner’s list of cryptographic applications has theoretical
foundation

2. New message attacks on knapsack cryptosystems

3. Finding Carmichael numbers with large number of prime
factors


	Random Modular Subset Sum
	The k-Set Algorithm
	RMSS as a Birthday Problem
	Conclusion

