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Problem Statement

Modular Subset Sum (MSS) :
Given a1, . . . , an, t ∈ Z/mZ, find xi ∈ {0, 1} such that

n∑
i=1

aixi = t mod m

Random Modular Subset Sum (RMSS) :
n, t,m fixed, ai chosen uniformly at random from Z/mZ



Density

Definition
The density of an instance of MSS is given by n

log m

Intuitively, the map x = (x1, . . . , xn) 7→
∑n

i=1 aixi mod m is

1− 1 if density less than 1

onto if density greater than 1

We will focus on dense instances of RMSS, i.e. m < 2n

These instances should have many solutions



Birthday Problems

Definition (k-Set Birthday Problem)

Given k lists L1, . . . , Lk of elements drawn uniformly and
independently from Z/mZ, find `i ∈ Li for 1 ≤ i ≤ k such that

`1 + `2 + · · ·+ `k = 0 mod m .

Expect solution to exist if |Li | = m1/k

Wagner (2002): heuristic algorithm that expects to find solution if
|Li | = m1/ log k



Previous Solutions

General solutions:
time-space tradeoff: O(2n/2) time and space

dynamic-programming: O(n ·m) time and space

Schroeppel-Shamir (1981): O(2n/2) time, O(2n/4) space

Sparse case:
Lagarias-Odlyzko (1985): for almost all problems of density
d < 0.645, reduces to shortest vector problem

for almost all problems of density d < 1
n , poly time using LLL

Coster et. al. (1992): bound improved to d < 0.98



Previous Solutions

Dense case:
Chaimovich (1999) : n = (m log m)1/2, time O(n7/4/ log3/4 n)

Flaxman-Przydatek (2005) : m = 2O(log n)2 , time O(n3/2)

Lyubashevsky (2005) : m = 2nε
, ε < 1, time and space 2O(nε/ log n),

by solving birthday problem in Õ(m2/ log k).



New Results

Theorem (S, 2007)

Let lists L1, . . . , Lk each contain αm1/ log k elements drawn
independently and uniformly from Z/mZ. Assume that
α > max{1024, k} and log m > 7 log α log k. Then Wagner’s
algorithm has complexity Õ(kα ·m1/ log k) time and space and
outputs a solution with probability greater than 1−m1/ log ke−Ω(α).

Corollary

Let m = 2nε
, ε < 1 and assume that nε = Ω((log n)2). Then there

is an algorithm for RMSS that runs using time and space

Õ(2
nε

(1−ε) log n ) and finds a solution with probability greater than
1− 2−Ω(nε).
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Algorithm ListMerge

Input: parameter p < 1, lists L1, L2 of integers in interval

[−mpλ

2 , mpλ

2 )

Output: list L12 ⊂ L1 + L2 of integers in interval [−mpλ+1

2 , mpλ+1

2 ),
at most one element per b ∈ L1

1. sort L1, L2

2. for b ∈ L1 do

3. if there exists c ∈ L2 in interval [−b − mpλ+1

2 ,−b + mpλ+1

2 )
then add b + c to L12

Assume |L1| = |L2| = α
p . Then resource usage is O(α

p log α
p ) time

and space



k-set Birthday Algorithm

assume t = 0 (easy modifications for general t)

Input: parameter k < n, p = m−1/ log k , α = O(n)
Lists L1, . . . , Lk of size α/p of elements from Z/mZ

Output: `i ∈ Li such that `1 + · · ·+ `k = 0 mod m

1. treat list elements as integers in [−m
2 , m

2 )

2. for level λ = 0 to log k − 1 do

3. apply ListMerge to pairs of lists (keep track of partial sums)

4. if remaining list after level log k − 1 is nonempty

5. then output (`1, . . . , `k) else output “No Solution”



Running Time

Final list has integers in the range [−mplog k

2 , mplog k

2 ) = [−1
2 , 1

2)

Generating and storing initial k lists costs Õ(α/p) time and space

Applying ListMerge 2k times costs Õ(k · α/p) time and space

Total running time is Õ(kα ·m1/ log k)

Correctness: enough to show there is a c ∈ L in interval

[−b − mpλ+1

2 ,−b + mpλ+1

2 )



Row Distinct

Let L1, L2 be lists at some level of the algorithm.

Suppose we organize elements of L1 + L2 into a table, so that
` = b + c is in row corresponding to b and column corresponding
to c .

Call `1, . . . , `N row-distinct if each appears in a different row.



Correctness Proof Sketch

1. Show the distributions of elements of L1, L2 at level λ are
close to uniform.

2. Show that elements of L2 are close to independent, assuming
they were row distinct at the previous level.

3. Apply a martingale tail bound theorem to show that for fixed
b ∈ L1, there exists with high probability a c ∈ L2 so that

b + c ∈ [−mpλ+1

2 , mpλ+1

2 ).

4. Apply the union bound to prove that with high probability
each row has at least one element in the restricted interval.
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Close to Uniform

Let U be the uniform distribution on Z/mZ

Let X be the distribution given by X (x) =
∑n

i=1 aixi mod m

The statistical difference is defined by

∆(X ,U) =
1

2

∑
a∈Z/mZ

|Pr[X = a]− Pr[U = a]|

Let m = 2cn, c < 1. Call a = (a1, . . . , an) well-distributed if

∆(X ,U) ≤ 2−
(1−c)n

4

Theorem (Impagliazzo, Naor)

The probability that a is not well-distributed is less than 2−
(1−c)n

4 .



k-set Algorithm for RMSS

Input: a1, . . . , an from Z/mZ, target 0

Output: x ∈ {0, 1}n such that
∑n

i=1 aixi = 0 mod m

1. Partition indices {1, . . . , n} into k sets I1, . . . , Ik

2. Generate lists L1, . . . , Lk of n ·m1/ log k elements. For each
element of Lj , generate random bits xi and store

∑
i∈Ij

aixi

along with bits

3. Apply k-set birthday algorithm to L1, . . . , Lk

Choosing m = 2nε
, k = 1

2n1−ε gives corollary
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Applications

1. Wagner’s list of cryptographic applications has theoretical
foundation

2. New message attacks on knapsack cryptosystems

3. Finding Carmichael numbers with large number of prime
factors
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