An Improved Multi-Set Algorithm for the Dense Subset Sum Problem

Andrew Shallue

University of Calgary

May 19, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion

Problem Statement

Modular Subset Sum (MSS) : Given $a_1, \ldots, a_n, t \in \mathbb{Z}/m\mathbb{Z}$, find $x_i \in \{0, 1\}$ such that

$$\sum_{i=1}^n a_i x_i = t \mod m$$

Random Modular Subset Sum (RMSS) :

n, t, m fixed, a_i chosen uniformly at random from $\mathbb{Z}/m\mathbb{Z}$

Density

Definition

The *density* of an instance of MSS is given by $\frac{n}{\log m}$

Intuitively, the map $\mathbf{x} = (x_1, \dots, x_n) \mapsto \sum_{i=1}^n a_i x_i \mod m$ is

1-1 if density less than 1 onto if density greater than 1

We will focus on dense instances of RMSS, i.e. $m < 2^n$ These instances should have many solutions

Birthday Problems

Definition (k-Set Birthday Problem)

Given k lists L_1, \ldots, L_k of elements drawn uniformly and independently from $\mathbb{Z}/m\mathbb{Z}$, find $\ell_i \in L_i$ for $1 \le i \le k$ such that

$$\ell_1 + \ell_2 + \dots + \ell_k = 0 \mod m$$
 .

Expect solution to exist if $|L_i| = m^{1/k}$

Wagner (2002): heuristic algorithm that expects to find solution if $|L_i| = m^{1/\log k}$

Previous Solutions

General solutions: time-space tradeoff: $O(2^{n/2})$ time and space

dynamic-programming: $O(n \cdot m)$ time and space

Schroeppel-Shamir (1981): $O(2^{n/2})$ time, $O(2^{n/4})$ space

Sparse case:

Lagarias-Odlyzko (1985): for almost all problems of density d < 0.645, reduces to shortest vector problem

for almost all problems of density $d < \frac{1}{n}$, poly time using LLL

Coster et. al. (1992): bound improved to d < 0.98

Previous Solutions

Dense case: Chaimovich (1999) : $n = (m \log m)^{1/2}$, time $O(n^{7/4} / \log^{3/4} n)$

Flaxman-Przydatek (2005) : $m = 2^{O(\log n)^2}$, time $O(n^{3/2})$

Lyubashevsky (2005) : $m = 2^{n^{\epsilon}}$, $\epsilon < 1$, time and space $2^{O(n^{\epsilon}/\log n)}$, by solving birthday problem in $\widetilde{O}(m^{2/\log k})$.

New Results

Theorem (S, 2007)

Let lists L_1, \ldots, L_k each contain $\alpha m^{1/\log k}$ elements drawn independently and uniformly from $\mathbb{Z}/m\mathbb{Z}$. Assume that $\alpha > \max\{1024, k\}$ and $\log m > 7 \log \alpha \log k$. Then Wagner's algorithm has complexity $\widetilde{O}(k\alpha \cdot m^{1/\log k})$ time and space and outputs a solution with probability greater than $1 - m^{1/\log k} e^{-\Omega(\alpha)}$.

Corollary

Let $m = 2^{n^{\epsilon}}$, $\epsilon < 1$ and assume that $n^{\epsilon} = \Omega((\log n)^2)$. Then there is an algorithm for RMSS that runs using time and space $\widetilde{O}(2^{\frac{n^{\epsilon}}{(1-\epsilon)\log n}})$ and finds a solution with probability greater than $1 - 2^{-\Omega(n^{\epsilon})}$.

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion

Algorithm ListMerge

Input: parameter p < 1, lists L_1 , L_2 of integers in interval $\left[-\frac{mp^{\lambda}}{2}, \frac{mp^{\lambda}}{2}\right)$

Output: list $L_{12} \subset L_1 + L_2$ of integers in interval $\left[-\frac{mp^{\lambda+1}}{2}, \frac{mp^{\lambda+1}}{2}\right)$, at most one element per $b \in L_1$

- 1. sort L_1 , L_2
- 2. for $b \in L_1$ do

3. if there exists $c \in L_2$ in interval $\left[-b - \frac{mp^{\lambda+1}}{2}, -b + \frac{mp^{\lambda+1}}{2}\right)$ then add b + c to L_{12}

Assume $|L_1| = |L_2| = \frac{\alpha}{p}$. Then resource usage is $O(\frac{\alpha}{p} \log \frac{\alpha}{p})$ time and space

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

k-set Birthday Algorithm

assume t = 0 (easy modifications for general t)

Input: parameter k < n, $p = m^{-1/\log k}$, $\alpha = O(n)$ Lists L_1, \ldots, L_k of size α/p of elements from $\mathbb{Z}/m\mathbb{Z}$

Output: $\ell_i \in L_i$ such that $\ell_1 + \cdots + \ell_k = 0 \mod m$

- 1. treat list elements as integers in $\left[-\frac{m}{2}, \frac{m}{2}\right)$
- 2. for level $\lambda = 0$ to log k 1 do
- 3. apply ListMerge to pairs of lists (keep track of partial sums)
- 4. if remaining list after level log k 1 is nonempty
- 5. then output (ℓ_1, \ldots, ℓ_k) else output "No Solution"

Running Time

Final list has integers in the range $\left[-\frac{mp^{\log k}}{2}, \frac{mp^{\log k}}{2}\right] = \left[-\frac{1}{2}, \frac{1}{2}\right]$ Generating and storing initial k lists costs $\widetilde{O}(\alpha/p)$ time and space Applying ListMerge 2k times costs $\widetilde{O}(k \cdot \alpha/p)$ time and space

Total running time is $\widetilde{O}(k\alpha \cdot m^{1/\log k})$

Correctness: enough to show there is a $c \in L$ in interval $[-b - \frac{mp^{\lambda+1}}{2}, -b + \frac{mp^{\lambda+1}}{2})$

Let L_1, L_2 be lists at some level of the algorithm.

Suppose we organize elements of $L_1 + L_2$ into a table, so that $\ell = b + c$ is in row corresponding to b and column corresponding to c.

Call ℓ_1, \ldots, ℓ_N row-distinct if each appears in a different row.

Correctness Proof Sketch

- 1. Show the distributions of elements of L_1, L_2 at level λ are close to uniform.
- 2. Show that elements of L_2 are close to independent, assuming they were row distinct at the previous level.
- 3. Apply a martingale tail bound theorem to show that for fixed $b \in L_1$, there exists with high probability a $c \in L_2$ so that $b + c \in \left[-\frac{mp^{\lambda+1}}{2}, \frac{mp^{\lambda+1}}{2}\right]$.
- 4. Apply the union bound to prove that with high probability each row has at least one element in the restricted interval.

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion

★□> <圖> < E> < E> E のQ@

Close to Uniform

Let U be the uniform distribution on $\mathbb{Z}/m\mathbb{Z}$

Let X be the distribution given by $X(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i \mod m$

The statistical difference is defined by

$$\Delta(X, U) = \frac{1}{2} \sum_{a \in \mathbb{Z}/m\mathbb{Z}} |\Pr[X = a] - \Pr[U = a]|$$

Let $m = 2^{cn}$, c < 1. Call $\mathbf{a} = (a_1, \dots, a_n)$ well-distributed if $\Delta(X, U) \le 2^{-\frac{(1-c)n}{4}}$

Theorem (Impagliazzo, Naor)

The probability that **a** is not well-distributed is less than $2^{-\frac{(1-c)n}{4}}$.

k-set Algorithm for RMSS

Input: a_1, \ldots, a_n from $\mathbb{Z}/m\mathbb{Z}$, target 0

Output: $\mathbf{x} \in \{0,1\}^n$ such that $\sum_{i=1}^n a_i x_i = 0 \mod m$

- 1. Partition indices $\{1, \ldots, n\}$ into k sets I_1, \ldots, I_k
- 2. Generate lists L_1, \ldots, L_k of $n \cdot m^{1/\log k}$ elements. For each element of L_j , generate random bits x_i and store $\sum_{i \in I_j} a_i x_i$ along with bits

3. Apply k-set birthday algorithm to L_1, \ldots, L_k

Choosing $m = 2^{n^{\epsilon}}$, $k = \frac{1}{2}n^{1-\epsilon}$ gives corollary

The k-Set Algorithm

RMSS as a Birthday Problem

Conclusion

★□> <圖> < E> < E> E のQ@

Applications

1. Wagner's list of cryptographic applications has theoretical foundation

2. New message attacks on knapsack cryptosystems

3. Finding Carmichael numbers with large number of prime factors