
A Straight Line Program Computing the Integer

Greatest Common Divisor

S. M. Sedjelmaci
LIPN, CNRS UPRES-A 7030

Université Paris-Nord,
Av. J.B.-Clément, 93430 Villetaneuse, France.

sms@lipn.univ-paris13.fr

Extended Abstract

While NC algorithms have been discovered for the basic arithmetic operations, the parallel complexity
of some fundamental problems as integer gcd is still open, since first being raised in a paper of
Cook [2]. Many authors attempt to design fast parallel integer GCD algorithms. Chor and Goldreich
[1] proposed O(n/ log n)ε parallel time with O(n1+ε) number of processors, for any ε > 0. Sorenson [4]
and the author [3] also suggest other parallel algorithms with the same parallel performance. Since
then, no major improvements have been made. In this paper, we propose a straight line program
computing the integer GCD. It has polynomial size, but the outputs are polynomials with exponential
degree. This work is a first attempt to improve the parallel complexity of integer GCD, thanks to
Valiant et al. [5] contraction method, and, as far as we know, it is the first straight line program for
computing the integer GCD. Throuhough this paper, we represent the input integers as formal strings
of bits.

The Integer GCD Algorithm

Input: x, y > 0 odds ;
Output: gcd(x, y) ;(

u
v

)
←

(
x
y

)
;

While (u 6= v)(
u
v

)
←

(
v

(u + v)/2t

)
; s.t.: (u + v)/2t is odd.

EndWhile

Return u.

Example: Let (x, y) = (35, 19) we obtain in turn:(
35
19

)
→

(
19
27

)
→

(
27
23

)
→

(
23
25

)
→

(
25
3

)
→

(
3
7

)
→

(
7
5

)
→

(
5
3

)
→

(
3
1

)
→

(
1
1

)
.

1

Theorem 0.1 : Let u, v ≥ 1 be two odd integers of n bits, n ≥ 1, such that |u − v| = r2t > 1, with
r ≥ 1 odd, and t ≥ 1. Let (uk, vk) be the sequence of consecutive values of u and v, obtained in the
GCD algorithm. Then

i) max{ut+1, vt+1} < (3/4) max{u, v}.
ii) The algorithm terminates after at most n2/ log2(4/3) iterations and returns gcd(u, v).
iii) The (While u 6= v) condition can be replaced by (For i = 1 to 3n2) in the GCD algorithm.

Proof: The case u = v is trivial. We assume that t ≥ 3, u 6= v and (u, v) = (v0 + r2t, v0), the case
(u, v) = (u0, u0 + r2t) is similar. The t first iterations give in turn(

u0 = v0 + r2t

v0

)
→

(
v0

v0 + r2t−1

)
→

(
v0 + r2t−1

v0 + r2t−2

)
· · · →

(
v0 + r2t−2 + . . . + 2r
1/2m{v0 + r2t−2 + . . . + r}

)
After t iterations, the integer 2mvt = v0 + r2t−2 + . . . r is even. So vt < (1/2)u0 and ut < u0. Then,
after t + 1 iterations, we have ut+1 = vt < (1/2)u0 and vt+1 ≤ (1/2)(ut + vt) < (3/4)u0. Similarly, if
ut+1 = vt+1, it stops and returns the result: ut+1 = gcd(u, v). Otherwise |ut+1 − vt+1| = r22t2 > 1,
then we repeat the same process to the pair (ut+1, vt+1). Since t1 = t < n, t2 < n, . . . , tp < n, then
after pn iterations we have 1 ≤ max{upn, vpn} < (3/4)p max{u, v} < (3/4)p2n. Moreover, the For and
the While versions of the algorithm give the same pair (ui, vi) until we reach a pair (uk, vk) such that
uk = vk, with k ≤ pn < bn2/ log2(4/3)c. At this point, the While version of the algorithm terminates
and returns uk, and the For algorithm loops with the same consecutive pair (uk, vk), with vk = uk,
until the (3n2)th iteration. The cases t = 1 or t = 2 are trivial. Hence the result.

While the addition of two n bits is trivial, the instruction A → A/2t, A > 0, can be done as
follows (we set A = (an, an−1, · · · , a1), and an+1 = 0) :

For k = 1 to n− 1 Do
c = (1− a1) ;
For i = 1 to n Do ai = c . ai+1 + (1− c) . ai

EndFor
Return A′ = (an, an−1, · · · , a1).

The For version of the GCD algorithm is clearly a straight-line program using only the ring
operations +,−, and × on bits with O(n4) steps, however the degree of the polynomials generated by
the program is exponential.

References

[1] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica. 5 (1990).

[2] S. Cook, A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control. 64 (1985)
2–22.

[3] M.S. Sedjelmaci, On a Parallel Lehmer-Euclid GCD Algorithm, Proceedings of the International Symposium
on Symbolic and Algebraic Computation ISSAC’2001 (2001) 303–308.

[4] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms 16 (1994) 110–144.

[5] L.G. Valiant, S. Skyum, S. Berkowitz and C. Rackoff, Fast parallel computation of polynomials using few
processors, SIAM J.Computing 12 No.4 (1983) 641–644.

2

