
A Straight Line Program Computing the Integer

Greatest Common Divisor
Sidi Mohamed SEDJELMACI1

1Laboratoire d’Informatique de Paris Nord (LIPN CNRS UMR 7030), 99 Avenue Jean-Baptiste Clément, 93 430 Villetaneuse, France.

ABSTRACT

While NC algorithms have been discovered for the basic arithmetic op-
erations, the parallel complexity of some fundamental problems as integer
gcd is still open, since first being raised in a paper of Cook [2]. Many
authors attempt to design fast parallel integer GCD algorithms. Chor and
Goldreich [1] proposed O(n/ log n)ǫ parallel time with O(n1+ǫ) number of
processors, for any ǫ > 0. Sorenson [5] and the author [4] also suggest other
parallel algorithms with the same parallel performance. Since then, no major
improvements have been made.

In this paper, we propose a straight line program computing the integer GCD.
It has polynomial size, but the outputs are polynomials with exponential
degree. This work is a first attempt to improve the parallel complexity of
integer GCD, thanks to Valiant et al. [3] contraction method, and, as far as
we know, it is the first straight line program for computing the integer GCD.
Throuhough this paper, we represent the input integers as formal strings of
bits.

The main idea

• Find a simple Integer GCD without divisions or branching.

• Apply the contraction method of Valiant et al. (Theorem 2)

The Integer GCD Algorithm

Input: x, y ≥ 1, two odds integers of n bits ;
Output: gcd(x, y) ;
(

u
v

)

←

(

x
y

)

;

While (u 6= v)

(

u
v

)

←

(

v
(u + v)/2t

)

; s.t.: (u + v)/2t is odd.

EndWhile

Return u.

An example

Let (x, y) = (35, 19) we obtain in turn:
(

35
19

)

→

(

19
27

)

→

(

27
23

)

→

(

23
25

)

→

(

25
3

)

→

(

3
7

)

→

(

7
5

)

→

(

5
3

)

→

(

3
1

)

→

(

1
1

)

.

The Fixed Point Lemma

The following is a tool to avoid conditional loops:

Lemma: Let F be a discrete function defined on vectors (or a set of ordered
list) of n integers. We assume that, for a given such vector X of integers,
F (X) is computed by the following while loop (the repeat-until case is
similar) :

X ← X0 ;
While Condition(X) do

X ← F (X) ;
EndWhile

Return X .

If the final value X∗ is a fixed point of F , i.e.: F (X∗) = X∗, after
no more than Nmax = nO(1) iterations, then the computation of X∗ can
be done in a free conditional loop way (N is any integer such that N ≥ Nmax):

X ← X0 ;
For i = 1 to N ≥ Nmax do

X ← F (X) ;
EndFor

Return X .

Proof: If the while loop terminates with the value X∗ after N1 iterations
with N1 ≤ Nmax, so is in the for loop. The for loop continues and gives, in
the next iteration N1 + 1, the value F (X∗) = X∗, since X∗ is a fixed point of
F , and so on until iteration N , hence the result.

Theorem 1

Let u, v ≥ 1 be two odd integers of n bits, n ≥ 1, such that |u−v| = r2t > 1,
with r ≥ 1 odd, and t ≥ 1. Let (uk, vk) be the sequence of consecutive values
of u and v, obtained in the GCD algorithm. Then

i) max{ut+1, vt+1} < (3/4) max{u, v}.

ii) The algorithm terminates after at most n2/ log2(4/3) iterations and
returns gcd(u, v).

iii) The While u 6= v condition of the GCD algorithm can be replaced by
For i = 1 to 3n2.

Proof:

First we observe that the transformation (u, v) ← (v, (u + v)/2t)) pre-
serves the GCD since u and v are both odds and gcd(v, (u + v)/2t)) =
gcd(v, u + v) = gcd(u, v).

i) The case u = v is trivial. We assume that u 6= v and (u, v) = (v0 +r2t, v0),
with t even, the other cases (u, v) = (u0, u0 + r2t) and/or t odd are similar.
We have

(

u0 = v0 + r2t

v0

)

→

(

v0

v0 + r2t−1

)

→

(

v0 + r2t−1

v0 + r2t−2

)

· · · →

(

v0 + r2t−2 + . . . + 2r
1/2m{v0 + r2t−2 + . . . r}

)

.

After t iterations, the integer 2mvt = v0+r2t−2+. . . r is even. So vt < (1/2)u0

and ut < u0. Then, after t + 1 iterations, we have ut+1 = vt < (1/2)u0 and
vt+1 ≤ (1/2)(ut + vt) < (3/4)u0.

ii) Similarly, if ut+1 = vt+1, the algorithm stops and returns the result: ut+1 =
gcd(u, v). Otherwise |ut+1−vt+1| = r22

t2 > 1, then we repeat the same process
to the pair (ut+1, vt+1). Since t1 = t < n, t2 < n, . . . , tp < n, then after pn
iterations we have 1 ≤ max{upn, vpn} < (3/4)p max{u, v} < (3/4)p2n and
p < ⌊n/ log2(4/3)⌋.
Moreover, if (u, v) = (ad, bd) with a, b, d odds and gcd(a, b) = 1, then we
have

(

ad
bd

)

→

(

bd
(a+b

2t)d

)

→ · · · →

(

gcd(a, b) . d
gcd(a, b) . d

)

=

(

d
d

)

,

and the algorithm returns GCD(u, v).

iii) Let F (u, v) = (v, (u + v)/2t), such that (u + v)/2t) is odd. The output
vector X = (u, u) is a fixed point for F since F (u, u) = (u, u). The Fixed
Point Lemma applies.

Right shifts Without branching

We prove, in the following, how to compute rightshifts without division and
branching. Let A = (an, an−1, · · · , a1), and an+1 = 0) :

Input: A ≥ 1 represented by A = (an, an−1, · · · , a1) ;
Output: An integer A′ ≥ 1 such that A′ = A/2t is odd ;

For k = 1 to n − 1 Do
c = (1 − a1) ;
For i=1 to n Do ai = c . ai+1 + (1 − c) . ai

EndFor
Return A’=(an, an−1, · · · , a1).

The MakeOdd procedure

A Staight Line Program Computing the Integer GCD

Consequently we obtain the following Straight Line Program computing the
integer GCD:

Input: x, y ≥ 1, two odds integers of n bits ;
Output: gcd(x, y) ;
(

u
v

)

←

(

x
y

)

;

For i = 1 to 3n2 Do

(

u
v

)

←

(

v
MakeOdd(u + v)

)

;

EndFor

Return u.

Theorem 2 (Valiant-Skyum-Berkowitz-Rackoff [3])

Any sequential program computing a polynomial of degree < d with C steps
can be converted to a parallel program with parallel time O((log d) (log C +
log d)) using O((Cd)β) processors, for an appropriate β ≥ 1.

Theorem 3

The previous sraight line program has O(n4) size but the output polynomials
have exponential degrees.

Proof:

It is obvious that the size is O(n4). Moreover, let us denote by xn, xn−1, . . . , x1

and yn, yn−1, . . . , y1, the bits of respectively integers x and y. Let
gn, gn−1, . . . , g1 be the bits of g = gcd(x, y). Then each bit gk of g, for
k = 1, 2, . . . , n, is a formal multivariate polynomial of the input bit variables
xi and yj, i.e.:

∀k = 1, 2, . . . , n, gk ∈ Z[xn, xn−1, . . . , x1; yn, yn−1, . . . , y1].

When a program contains n multiplications (equivalant AND) gates in se-
quence, the degree of the formal expression computed by it is 2n in general.
In particular the formal expression corresponding to the previous straight line
program has exponential degree.

Another version:

Let xn, xn−1, . . . , x1 and yn, yn−1, . . . , y1, the bits of respectively two odd in-
tegers x and y. The right-shifting number t such that (x+y)/2t is odd can be
computed straightforward by the function t = ShiftNumber(x, y) defined
by:

t = 1 +
n

∑

i=2

Πi
j=1 (xj − yj)

2,

and the MakeOdd procedure can be replaced by RightShif(A, t) with the
following specification:
Input: A ≥ 1 represented by A = (an, an−1, · · · , a1) and 0 ≤ t ≤ n − 1
Output: A′ = A/2t represented by A′ = (0, · · · , 0, an, · · · , at+2, at+1) ;

Then an alternative version of the integer GCD is:

Input: x, y ≥ 1, two odds integers of n bits ;
Output: gcd(x, y) ;
(

u
v

)

←

(

x
y

)

;

For i = 1 to 3n2 Do
t = ShiftNumber(u, v) ;

(

u
v

)

←

(

v
RightShift(u + v, t)

)

;

EndFor

Return u.

Conclusion

• This work is a first attempt to improve the parallel complexity of integer
GCD, thanks to Valiant et al. [3] contraction method.

• Although the Valiant et al. [3] contraction method does not apply, because
of the exponential degree of the output computed polynomials, our algorithm
is, as far as we know, the first straight line program for computing the integer
GCD.

• There are different ways to solve this issue:
- Try to simplify the expression of our algorithm so that it gives rise to

polynomials of small degrees.
- Find other straight line programs computing the integer GCD.

References

[1] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD,
Algorithmica, 5 (1990).

[2] S. Cook, A Taxonomy of Problems with Fast Parallel Algorithms, Information and
Control, 64 (1985) 2–22.

[3] L.G. Valiant, S. Skyum, S. Berkowitz and C. Rackoff, Fast parallel com-
putation of polynomials using few processors, SIAM J. Computing, 12-4, (1983), 641–644.

[4] S.M. Sedjelmaci, On A Parallel Lehmer-Euclid GCD Algorithm in Proc. of the
International Symposium on Symbolic and Algebraic Computation (ISSAC’2001) 2001,
303-308.

[5] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, (1994) 110–144.

