

More constructing pairing-friendly elliptic curves for cryptography

Tanaka Satoru and Nakamula Ken

Department of Mathematics and Information Sciences, Tokyo Metropolitan University † email: {satoru,nakamula}@tnt.math.metro-u.ac.jp

Overview

We study the problem of computing suitable parameters of "pairing- In this case, we have friendly" elliptic curves, finding a polynomial $u(x)$ by the method of indeterminate coefficients so that $u(a) = \zeta_k$ for some $a \in \mathbb{Q}(\zeta_k)$ as in [5] to construct new families of curves in the framework defined by Freeman, $V =$ Scott and Teske [4].

Elliptic curve and families

Let E be an elliptic curve defined over a finite field \mathbf{F}_q , and r be the largest prime dividing $\#E(\mathbf{F}_q) = q + 1 - t$, the order of the group of \mathbf{F}_q -rational points of E with the Frobenius trace t. We define the *embedding degree* as the smallest positive integer k such that r divides $q^k - 1$ when q is a prime. The parameters required to determine pairing-friendly elliptic curves are t, r, q, k and the CM discriminant D for the CM method to construct elliptic curves. To produce such integers q, r, t from given k, D , Freeman et al. If d is nonzero, then we can solve the system above. The solution is introduced families of polynomials $q(x)$, $r(x)$, $t(x)$ over Q satisfying:

 $(1) q(x) = p(x)^d$ for some $d \ge 1$ and $p(x)$ that represents primes. $(2) r(x) = c \cdot \tilde{r}(x)$ with $c \in \mathbb{Z}_{\geq 1}$ and $\tilde{r}(x)$ that represents primes. $(3) r(x) | q(x) + 1 - t(x).$ (4) $r(x) | \Phi_k(t(x) - 1)$, where Φ_k is the kth cyclotomic polynomial. (5) $4q(x) - t(x)^2 = Dy^2$ has infinitely many integer solutions (x, y) .

One of the method constructing such family was proposed in [3]. Briefly speaking, the key point of this method is to find an algebraic number field $K \cong \mathbf{Q}[x]/(r(x))$ including $\sqrt{2}$ $-D$ and a primitive kth root ζ_k of 1. Once such an $r(x)$ is found, there is a straightforward way to compute $t(x)$ satis-

0 a_3 $2a_1a_2 + 2a_0a_3$ $a_1^3 - 3a_3(a_1a_3 + a_2^2 - a_0^2) + 6a_0a_1a_2$ $\begin{array}{c} \hline \end{array}$ Let d and n_i be as follows:

Assume [√] $-D \in \mathbf{Q}(\zeta_k)$. If $\Phi_k(u(x))$ is reducible with a factor of degree $\varphi(k)$ for some $u(x) \in \mathbf{Q}[x]$, we can take $r(x)$ to be one of its irreducible factor. To obtain such $u(x)$, it is necessary and sufficient that

 $u(a(x)) \equiv x \pmod{\Phi_k(x)}$

for some $a(x) \in \mathbf{Q}[x]$. we consider the case

where v_{ij} are explicit polynomials of $a_0, \dots, a_{\varphi(k)-1}$ of degree $\langle \varphi(k) \rangle$. Therefore, from given $a_0, \dots, a_{\varphi(k)-1} \in \mathbb{Q}$, we should solve the linear equation

Factorization of cyclotomic polynomial

$$
u(x) = \sum_{i=0}^{\varphi(k)-1} u_i x^i, \qquad a(x) = \sum_{i=0}^{\varphi(k)-1} a_i x^i.
$$

Let $v(x)$ be the polynomial of degree $\langle \varphi(k) \rangle$ such that $v(x) \equiv u(a(x))$ We succeeded to rediscover a family which has $\ln(u) = 9$ by Freeman et al. (mod $\Phi_k(x)$). Then $v(x)$ can be written in the form

$$
\upsilon(x)=\sum_{i=0}^{\varphi(k)-1}\sum_{j=0}^{\varphi(k)-1}u_j\upsilon_{ij}x^i.
$$

where $V = (v_{ij})$ is a $\varphi(k) \times \varphi(k)$ matrix with entries in Q. It is well known that the general solution $u_0, \dots, u_{\varphi(k)-1}$ can be written as explicit rational functions of $a_0, \dots, a_{\varphi(k)-1}$. We now take an irreducible factor $r(x)$ of $\Phi_k(u(x))$. The computation of $u(x)$ and $r(x)$ depends only on k. We can apply them for any D such that $\sqrt{\frac{2}{\pi}}$ $-D \in \mathbf{Q}(\zeta_k).$

Example for
$$
k = 8
$$

$$
V = \begin{pmatrix} 1 & a_0 & a_0^2 - a_2^2 - 2a_1a_3 & a_0^3 - 3a_2(a_0a_2 + a_1^2 - a_3^2) - 6a_0a_1a_3 \\ 0 & a_1 & 2a_0a_1 - 2a_2a_3 & a_3^3 - 3a_1(a_1a_3 + a_2^2 - a_0^2) - 6a_0a_2a_3 \\ 0 & a_2 & a_1^2 - a_3^2 + 2a_0a_2 & -a_2^3 + 3a_0(a_0a_2 + a_1^2 - a_3^2) - 6a_1a_2a_3 \\ 0 & a_2 & 2a_1a_2 + 2a_0a_2 & a_3^3 - 3a_2(a_1a_2 + a_3^2 - a_3^2) + 6a_0a_1a_2 \end{pmatrix}
$$

.

$$
d := (a_1^2 + a_3^2)((a_1 - a_3)^2 + 2a_2^2)((a_1 + a_3)^2 - 2a_2^2),
$$

\n
$$
n_0 := -a_2(5a_1^4a_3 - 5a_1^3a_2^2 + 5a_1a_2^2a_3^2 - 2a_2^4a_3 + 3a_3^5),
$$

\n
$$
n_1 := a_1^5 - 4a_1^3a_3^2 + 9a_1^2a_2^2a_3 + a_1(2a_2^4 + 3a_3^4) + 3a_2^2a_3^3,
$$

\n
$$
n_2 := a_1^3a_2 + 3a_1a_2a_3^2 - 2a_2^3a_3,
$$

\n
$$
n_3 := a_3^3 - a_1^2a_3 + 2a_1a_2^2.
$$

$$
\begin{cases}\nu_0 = -\left(n_3a_0^3 + n_2a_0^2 + n_1a_0 - n_0\right)/d \\
u_1 = \left(3n_3a_0^2 + 2n_2a_0 + n_1\right)/d \\
u_2 = -\left(3n_3a_0 + n_2\right)/d \\
u_3 = -n_3/d\n\end{cases}
$$

.

New data for $D = 1, k = 8$

After the computation, we challenge to construct new families of curves of embedding degree 8 by the algorithm in [6].

fying (4) and $q(x)$ satisfying (3), (5).

Conclusion

The method of the indeterminate coefficients and the factorization of cyclotomic polynomial gives us a chance to find more families of curves. Our experiments [1, 2] use the curves constructed from our results to assess the performance of several kinds of pairings.

References

- [1] Antonio, C.A., Tanaka, S., Nakamula, K.: Comparing implementation efficiency of ordinary and squared pairings. Cryptology ePrint Archive: 2007/457 (2007). http://eprint.iacr.org/2007/457/.
- [2] Antonio, C.A., Tanaka, S., Nakamula, K.: Implementing cryptographic pairings over curves of embedding degrees 8 and 10. Cryptology ePrint Archive: 2007/426 (2007). http://eprint.iacr.org/2007/426/.
- [3] Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Designs, Code and Cryptography **37**(1) (2005) 133–141.
- [4] Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint Archive: 2006/372 (2006). http://eprint.iacr.org/2006/372/.
- [5] Galbraith, S., McKee, J., Valença, P.: Ordinary abelian varieties having small embedding degree. In: Workshop on Mathematical Problems and Techniques in Cryptology, Barcelona, CRM (2005) 29–45. [6] Tanaka, S., Nakamula, K.: More constructing pairing-friendly elliptic curves for cryptography. arXiv e-print report 0711.1942. http://arxiv.org/abs/0711.1942.