

More constructing pairing-friendly elliptic curves for cryptography

Tanaka Satoru and Nakamula Ken

Department of Mathematics and Information Sciences, Tokyo Metropolitan University[†] email: {satoru,nakamula}@tnt.math.metro-u.ac.jp

Overview

We study the problem of computing suitable parameters of "pairing- In this case, we have friendly" elliptic curves, finding a polynomial u(x) by the method of indeterminate coefficients so that $u(a) = \zeta_k$ for some $a \in \mathbf{Q}(\zeta_k)$ as in [5] to construct new families of curves in the framework defined by Freeman, VScott and Teske [4].

Example for
$$k = 8$$

$$Y = \begin{pmatrix} 1 & a_0 & a_0^2 - a_2^2 - 2a_1a_3 & a_0^3 - 3a_2(a_0a_2 + a_1^2 - a_3^2) - 6a_0a_1a_3 \\ 0 & a_1 & 2a_0a_1 - 2a_2a_3 & a_3^3 - 3a_1(a_1a_3 + a_2^2 - a_0^2) - 6a_0a_2a_3 \\ 0 & a_2 & a_1^2 - a_3^2 + 2a_0a_2 & -a_2^3 + 3a_0(a_0a_2 + a_1^2 - a_3^2) - 6a_1a_2a_3 \end{pmatrix}$$

Elliptic curve and families

Let E be an elliptic curve defined over a finite field \mathbf{F}_q , and r be the largest prime dividing $\#E(\mathbf{F}_q) = q + 1 - t$, the order of the group of \mathbf{F}_q -rational points of E with the Frobenius trace t. We define the *embedding degree* as the smallest positive integer k such that r divides $q^k - 1$ when q is a prime. The parameters required to determine pairing-friendly elliptic curves are t, r, q, k and the CM discriminant D for the CM method to construct elliptic curves. To produce such integers q, r, t from given k, D, Freeman et al. If d is nonzero, then we can solve the system above. The solution is introduced families of polynomials q(x), r(x), t(x) over Q satisfying:

(1) $q(x) = p(x)^d$ for some $d \ge 1$ and p(x) that represents primes. (2) $r(x) = c \cdot \tilde{r}(x)$ with $c \in \mathbb{Z}_{>1}$ and $\tilde{r}(x)$ that represents primes. (3) $r(x) \mid q(x) + 1 - t(x)$. (4) $r(x) \mid \Phi_k(t(x) - 1)$, where Φ_k is the kth cyclotomic polynomial. (5) $4q(x) - t(x)^2 = Dy^2$ has infinitely many integer solutions (x, y).

One of the method constructing such family was proposed in [3]. Briefly speaking, the key point of this method is to find an algebraic number field $K \cong \mathbf{Q}[x]/(r(x))$ including $\sqrt{-D}$ and a primitive kth root ζ_k of 1. Once such an r(x) is found, there is a straightforward way to compute t(x) satis-

 $2a_1a_2 + 2a_0a_3 = a_1^3 - 3a_3(a_1a_3 + a_2^2 - a_0^2) + 6a_0a_1a_2$ 0 a_3 Let d and n_i be as follows:

$$d := (a_1^2 + a_3^2)((a_1 - a_3)^2 + 2a_2^2)((a_1 + a_3)^2 - 2a_2^2),$$

$$n_0 := -a_2(5a_1^4a_3 - 5a_1^3a_2^2 + 5a_1a_2^2a_3^2 - 2a_2^4a_3 + 3a_3^5),$$

$$n_1 := a_1^5 - 4a_1^3a_3^2 + 9a_1^2a_2^2a_3 + a_1(2a_2^4 + 3a_3^4) + 3a_2^2a_3^3,$$

$$n_2 := a_1^3a_2 + 3a_1a_2a_3^2 - 2a_2^3a_3,$$

$$n_3 := a_3^3 - a_1^2a_3 + 2a_1a_2^2.$$

$$\begin{cases} u_0 = -\left(n_3 a_0^3 + n_2 a_0^2 + n_1 a_0 - n_0\right)/d \\ u_1 = \left(3n_3 a_0^2 + 2n_2 a_0 + n_1\right)/d \\ u_2 = -\left(3n_3 a_0 + n_2\right)/d \\ u_3 = -n_3/d \end{cases}$$

New data for D = 1, k = 8

After the computation, we challenge to construct new families of curves of embedding degree 8 by the algorithm in [6].

$\operatorname{lc}\left(u ight)$	u(x)	t(x)	$\deg r(x)$	$\deg q(x)$	ho(t,r,q)
2	$2x^3 + 4x^2 + 6x + 3$	$\mathbf{u}(\mathbf{x})^3 + 1$	4	6	3/2
9	$9x^3 + 3x^2 + 2x + 1$	$u(x)^{5} + 1$	4	6	3/2
17	$17x^3 + 32x^2 + 24x + 6$	$u(x)^3 + 1$	4	6	3/2
18	$18x^3 + 39x^2 + 31x + 7$	$u(x)^3 + 1$	4	6	3/2
64	$64x^3 + 112x^2 + 75x + 18$	$u(x)^{5} + 1$	8	14	7/4
68	$68x^3 + 110x^2 + 65x + 15$	$u(x)^{5} + 1$	4	6	3/2
82	$82x^3 + 108x^2 + 54x + 9$	$\mathbf{u}(\mathbf{x})^{5} + 1$	4	6	3/2
144	$144x^3 + 480x^2 + 539x + 202$	$u(x)^{5} + 1$	8	14	7/4
144	$144x^3 + 96x^2 + 29x + 2$	$u(x)^{5} + 1$	8	14	7/4
257	$257x^3 + 256x^2 + 96x + 12$	$u(x)^3 + 1$	4	6	3/2
388	$388x^3 + 798x^2 + 561x + 134$	$u(x)^{5} + 1$		6	3/2
392	$392x^3 + 980x^2 + 821x + 231$	$u(x)^{5} + 1$	8	14	7/4
626				6	$\mathbf{3/2}$
738	$738x^3 + 1488x^2 + 1006x + 229$	$\mathbf{u}(\mathbf{x})^{5} + 1$	4	6	$\mathbf{3/2}$
800	$800x^3 + 9x$	$u(x)^{5} + 1$	8	14	7/4
873	$873x^3 + 969x^2 + 379x + 53$	$u(x)^7 + 1$	4	6	3/2

fying (4) and q(x) satisfying (3), (5).

Factorization of cyclotomic polynomial

Assume $\sqrt{-D} \in \mathbf{Q}(\zeta_k)$. If $\Phi_k(u(x))$ is reducible with a factor of degree $\varphi(k)$ for some $u(x) \in \mathbf{Q}[x]$, we can take r(x) to be one of its irreducible factor. To obtain such u(x), it is necessary and sufficient that

 $u(a(x)) \equiv x \pmod{\Phi_k(x)}$

for some $a(x) \in \mathbf{Q}[x]$. we consider the case

$$u(x) = \sum_{i=0}^{\varphi(k)-1} u_i x^i, \qquad a(x) = \sum_{i=0}^{\varphi(k)-1} a_i x^i.$$

Let v(x) be the polynomial of degree $\langle \varphi(k) \rangle$ such that $v(x) \equiv u(a(x))$ We succeeded to rediscover a family which has lc(u) = 9 by Freeman et al. (mod $\Phi_k(x)$). Then v(x) can be written in the form

$$v(x) = \sum_{i=0}^{\varphi(k)-1} \sum_{j=0}^{\varphi(k)-1} u_j v_{ij} x^i.$$

where v_{ij} are explicit polynomials of $a_0, \dots, a_{\varphi(k)-1}$ of degree $\langle \varphi(k)$. Therefore, from given $a_0, \dots, a_{\varphi(k)-1} \in \mathbf{Q}$, we should solve the linear equation

Conclusion

The method of the indeterminate coefficients and the factorization of cyclotomic polynomial gives us a chance to find more families of curves. Our experiments [1, 2] use the curves constructed from our results to assess the performance of several kinds of pairings.

References

where $V = (v_{ij})$ is a $\varphi(k) \times \varphi(k)$ matrix with entries in Q. It is well known that the general solution $u_0, \dots, u_{\varphi(k)-1}$ can be written as explicit rational functions of $a_0, \dots, a_{\varphi(k)-1}$. We now take an irreducible factor r(x) of $\Phi_k(u(x))$. The computation of u(x) and r(x) depends only on k. We can apply them for any D such that $\sqrt{-D} \in \mathbf{Q}(\zeta_k)$.

- [1] Antonio, C.A., Tanaka, S., Nakamula, K.: Comparing implementation efficiency of ordinary and squared pairings. Cryptology ePrint Archive: 2007/457 (2007). http://eprint.iacr.org/2007/457/.
- [2] Antonio, C.A., Tanaka, S., Nakamula, K.: Implementing cryptographic pairings over curves of embedding degrees 8 and 10. Cryptology ePrint Archive: 2007/426 (2007). http://eprint.iacr.org/2007/426/.
- [3] Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Designs, Code and Cryptography **37**(1) (2005) 133–141.
- [4] Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint Archive: 2006/372 (2006). http://eprint.iacr.org/2006/372/.
- [5] Galbraith, S., McKee, J., Valença, P.: Ordinary abelian varieties having small embedding degree. In: Workshop on Mathematical Problems and Techniques in Cryptology, Barcelona, CRM (2005) 29-45. [6] Tanaka, S., Nakamula, K.: More constructing pairing-friendly elliptic curves for cryptography. arXiv e-print report 0711.1942. http://arxiv.org/abs/0711.1942.