
References
[1] Claus Diem. Index calculus in class groups of plane curves of small degree. In Proceedings of

Algorithm Number Theory Symposium - ANTS VII, volume 4076 of Springer-Verlag LNCS, pages
543–557. Springer-Verlag, 2006.

[2] Noam D. Elkies. Elliptic and modular curves over finite fields and related computational issues.
In D.A. Buell and J.T. Teitelbaum, editors, Computational Perspectives on Number Theory: Pro-
ceedings of a Conference in Honor of A.O.L. Atkin, volume 7 of Studies in Advanced Mathematics,
pages 21–76. American Mathematical Society, International Press, 1998.

[3] Dino Lorenzini. An invitation to arithmetic geometry, volume 9 of Graduate Studies in Mathemat-
ics. 1996.

[4] Andrew V. Sutherland. A generic approach to searching for jacobians. to appear in Mathematics
of Computation, 2007.

[5] André Weil. Numbers of solutions of equations in finite fields. Bulletin of the American Mathe-
matical Society, 55:497–508, 1949.

Algorithm: Stage 2

We now know L(1) and a1. Taking the genus 4 case first, from Theorem 1 we can
rewrite L(−1) in two ways

L(−1) = 2(1 + q4)− L(1) + a2(1 + q2) + a4, (3)
L(−1) = L(1)− 2a1(1 + q3)− 2a3(1 + q). (4)

Using a similar technique to Sutherland in [4] we let D2 be a random divisor rep-
resenting an element of JC(Fq2) and let D2L be the L(1)th power of D2 (i.e. D2L =
L(1) ∗ D2). We can find the coefficient a3 using a BSGS strategy based on the con-
dition that L(−1) ∗D2L = 0 in time Õ(q3/4). This still leaves coefficients a2 and a4.
However as we now know L(−1), using equation (3) we can rewrite a4 in terms of
a2. Working in JC(Fq3) which has order #JC(Fq3) = L(1) · L(ω3) · L(ω2

3) we can
use BSGS again to find a2 and therefore a4 in time Õ(q1/2). Both of these running
times are less than the running time in Stage 1 so Stage 1 dominates and Theorem 2
is proved for genus 4.

For genus 5 we apply a very similar method but finding L(−1) requires more work.
In this case we have

a2 =
L(1)− (1 + q5)− a1(1 + q4)− a3(1 + q2)− a4(1 + q)− a5

1 + q3
, (5)

L(−1) = 2(1 + q5)− L(1) + 2a2(1 + q3) + 2a4(1 + q), (6)
L(−1) = L(1)− 2a1(1 + q4)− 2a3(1 + q2)− 2a5. (7)

Using equation (5) and ideas of Sutherland [4], we get a restricted bound for a2. We
can put this into equation (6) which gives

L(−1) = K + 2x(1 + q3) + 2a4(1 + q), (8)

where K is a known constant, 0 ≤ x ≤ 240q1/2 (approximately) and the bounds on
a4 are given in part (3) of theorem 1. We can then use BSGS to find the correct value
of L(−1) and therefore the values of a2 and a4 in time Õ(q5/4). Again we have to
do more work to find a3 and a5 by doing BSGS in JC(Fq3) which takes time Õ(q3/4).
Both of these times are dominated by Stage 1 and therefore Theorem 2 is proved for
genus 5.

Algorithm: Stage 1

The first stage of the algorithm is to compute #JC(Fq) = L(1). We use a variant of
Diem’s discrete logarithm algorithm in [1] to do this.

Input: An affine, plane model C̃ of degree d of a curve C. Denote C̃ns to be the
non-singular part of C̃. Also define a fixed point P0 ∈ C̃ns(Fq) (used to represent the
elements in JC(Fq)). Let r < 1 be a positive rational number defined in [1].
Output: A positive integer equal to #JC(Fq) and therefore L(1).

1. Calculate a random divisor D which represents an element of JC(Fq) where D
splits completely over points in C̃ns(Fq).

2. Fix a ‘factor-base’ F ⊂ C̃ns(Fq) such that #F = dqre and F contains the points
in D. (If no such set exists, output ”failure” and terminate.)

3. From step 1 store the relation as a row in a matrix M . Each column of M rep-
resents the points in F so each row will represent the multiplicities of the corre-
sponding points.

4. Go through all pairs of points in F , Fi and Fj where 1 ≤ i, j ≤ #F and form
a line through each pair of points. Compute the intersection of the line and C̃, as
described in [1]. If all the intersection points are in C̃ns(Fq) add a row to M as
described in the previous step.

5. Calculate a number of random vectors vk ∈ ker(M t) for 0 < k < dim(ker(M t))

6. Calculate the greatest common divisor of {v11, v21, . . . , vk1}. This is a multiple
of the order of D. From this the exact order of D can be obtained and using the
Weil interval, (2), we have a set of possibilities for L(1) which can be checked by
simple trial and error.

N.B. When implementing step 6 of the algorithm more often than not the greatest
common divisor of {v11, v21, . . . , vk1} is equal to L(1) rather than being a multiple of
L(1).
The overall running time is Õ(q2) for a curve of any degree but the running time
is Õ(q4/3) when we have a degree 5, genus 4 or 5 curve. We can calculate N1 the
number of Fq-rational points on C using the naive method in time Õ(q). (As there
may be singular points on C̃ and points at infinity extra care will need to be taken
when calculating N1.) From N1 we have the first non-trivial coefficient of the L-
polynomial

a1 = q + 1−N1.

Main Theorem

Theorem 2. For a genus 4 or 5 non-hyperelliptic curve there exists an algorithm to
compute all the coefficients of the L-polynomial of the curve in time Õ(q2) in the
worst case but in time Õ(q4/3) when the plane model is of degree 5.

Stage 1 is the dominant part of the algorithm and determines the best and worst case
running time.

Background

Let C be a non-singular, projective, non-hyperelliptic curve over a finite field Fq of
genus g. Let C̃ be an affine, plane model of degree d of the curve C. When dealing
with curves of genus 4 and 5, C̃ can have singular points. This affects parts of the
algorithm as we shall see. We are interested in using the cardinality of the group of
Fq-rational points on the Jacobian variety of C, JC(Fq), to help find the L-polynomial
of the given curve.

For a given positive integer k, let Nk be the number of Fqk-rational points on C. The
Zeta function of C is then the formal power series

Z(t) = exp

(∞∑
k=1

Nkt
k

k

)
=

L(t)

(1− t)(1− qt)
(1)

where the L-polynomial L(t) =
∑2g

i=0 ait
i. The well-known theorem of Weil [5]

provides us with many of the facts that we require.

Theorem 1 (Weil). Let C be a genus g curve defined over Fq. For k ≥ 1 we let
JC(Fqk) denote the group of Fqk-rational points on the Jacobian variety of C.

1. The L-polynomial has integer coefficients satisfying a0 = 1 and a2g−i = qg−iai,
for 0 ≤ i < g.

2. L(t) =
∏2g

i=1(1− αit), with |αi| =
√

q.

3. |ai| ≤
(

2g
i

)
qi/2.

4. Nk = qk + 1−
∑2g

i=1 αk
i .

5. #JC(Fqk) =
∏k

j=1 L(ωj
k) =

∏2g
i=1(1− αk

i),

where ωk is a principal kth root of unity.

In particular #JC(Fq) = L(1) so by applying part (2) of Theorem 1 we obtain the
Weil interval

(
√

q − 1)2g ≤ #JC(Fq) ≤ (
√

q + 1)2g. (2)

A proof of Theorem 1 can be found in chapters 8 and 10 of [3].

Currently there are no fast algorithms which can compute the L-polynomial of a gen-
eral non-hyperelliptic curve over Fq where q is a large prime (as opposed to a large
power of a small prime). The first basic method would be to use a Baby-Step Giant-
Step (BSGS) approach to compute #JC(Fq), #JC(Fq2), . . . , #JC(Fqg) and then by
simple algebra solve for the coefficients of the L-polynomial. This would have run-
ning time of Õ(qg2/2). Another basic method would be to just count the Fqk-rational
points on C (i.e. Nk) for 1 ≤ k ≤ g and from point (4) of Theorem 1 we can compute
the coefficients of the L-polynomial. This has running time Õ(qg) which is faster than
the first method for genus g ≥ 2. Elkies in [2] describes a method which has a similar
second stage to the algorithm presented here. In genus 4 the L-polynomial of a curve
is recovered in time Õ(q3/2) and for genus 5 in time Õ(q2). We improve on this for
curves of low degree.

Raminder Singh Ruprai, Steven D. Galbraith
Information Security Group, Royal Holloway University of London, Egham, Surrey, UK

Computing L-polynomials of Non-Hyperelliptic Genus 4 and 5 curves

