A Birthday paradox for Markov Chains and an optimal bound for Pollard's Rho to solve discrete log

Jeong Han Kim¹ Ravi Montenegro² Yuval Peres³ Prasad Tetali⁴

> ¹Yonsei University ²University of Massachusetts at Lowell ³Microsoft Research and UC Berkeley ⁴Georgia Institute of Technology

ANTS 2008

Discrete Logarithm

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Method of Proof

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Further Reading

Outline

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Discrete Logarithm

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Method of Proof

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Further Reading

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Crypto and Discrete Log

El Gamal Encryption

Alice chooses cyclic group G = ⟨g⟩ with prime order p, and x ∈ {0, 1, ..., p − 1}.
 Public Key: G,g,p,h = g^x. Private Key: x.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Crypto and Discrete Log

El Gamal Encryption

- Alice chooses cyclic group G = ⟨g⟩ with prime order p, and x ∈ {0,1,...,p-1}.
 Public Key: G,g,p,h = g^x. Private Key: x.
- ▶ Bob converts message *m* into group element *m* ∈ *G*. Chooses random *y* ∈ {0, 1, ..., *p* − 1}. Sends *c*₁ = *g^y*, *c*₂ = *m h^y*.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Crypto and Discrete Log

El Gamal Encryption

- Alice chooses cyclic group G = ⟨g⟩ with prime order p, and x ∈ {0,1,...,p-1}.
 Public Key: G,g,p,h = g^x. Private Key: x.
- ▶ Bob converts message *m* into group element *m* ∈ *G*. Chooses random *y* ∈ {0, 1, ..., *p* − 1}. Sends *c*₁ = *g^y*, *c*₂ = *m h^y*.

• Alice reads message
$$m = c_2 c_1^{-x}$$
.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

Sketch of Algorithm

Given cyclic group G = ⟨g⟩.
 For h ∈ G find x = log_g h, i.e. solve g^x = h.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

Sketch of Algorithm

- Given cyclic group $G = \langle g \rangle$. For $h \in G$ find $x = \log_g h$, i.e. solve $g^x = h$.
- ▶ Pollard: Choose $(a_i, b_i) \in \mathbb{Z}^2_{|G|}$ until some $g^{a_i} h^{b_i} = g^{a_j} h^{b_j}$.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

Sketch of Algorithm

- Given cyclic group $G = \langle g \rangle$. For $h \in G$ find $x = \log_g h$, i.e. solve $g^x = h$.
- ▶ Pollard: Choose $(a_i, b_i) \in \mathbb{Z}^2_{|G|}$ until some $g^{a_i} h^{b_i} = g^{a_j} h^{b_j}$.
- Collision: Then $x = (a_i a_j)(b_j b_i)^{-1} \mod |G|$.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

Sketch of Algorithm

- Given cyclic group $G = \langle g \rangle$. For $h \in G$ find $x = \log_g h$, i.e. solve $g^x = h$.
- ▶ Pollard: Choose $(a_i, b_i) \in \mathbb{Z}^2_{|G|}$ until some $g^{a_i} h^{b_i} = g^{a_j} h^{b_j}$.
- Collision: Then $x = (a_i a_j)(b_j b_i)^{-1} \mod |G|$.
- Birthday Paradox: Requires $\sqrt{\frac{\pi}{2}|G|} \approx 1.25\sqrt{|G|}$ samples.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

The Algorithm

► Floyd's: Fix random function $f : \mathbb{Z}^2_{|G|} \to \mathbb{Z}^2_{|G|}$. Let $(a_{i+1}, b_{i+1}) = f(a_i, b_i)$. Then $(a_i, b_i) = (a_{2i}, b_{2i})$ in a few more steps.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

The Algorithm

 Floyd's: Fix random function f : Z²_{|G|} → Z²_{|G|}. Let (a_{i+1}, b_{i+1}) = f(a_i, b_i). Then (a_i, b_i) = (a_{2i}, b_{2i}) in a few more steps.
 Pollard: Partition G into T₁, T₂, T₃. Let f(a, b) = (a + 1, b), (a, b + 1), or (2a, 2b) if g^ah^b ∈ T₁ or T₂ or T₃ respectively.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

The Algorithm

- ► Floyd's: Fix random function $f : \mathbb{Z}^2_{|G|} \to \mathbb{Z}^2_{|G|}$. Let $(a_{i+1}, b_{i+1}) = f(a_i, b_i)$. Then $(a_i, b_i) = (a_{2i}, b_{2i})$ in a few more steps.
- ▶ Pollard: Partition G into T_1, T_2, T_3 . Let f(a, b) = (a + 1, b), (a, b + 1), or (2a, 2b)if $g^a h^b \in T_1$ or T_2 or T_3 respectively.
- Teske: Fix (random) partition, random start $\rightarrow 1.6\sqrt{|G|}$. (ranges from $0.86\sqrt{|G|}$ to $2.8\sqrt{|G|}$).

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Pollard's Rho Algorithm

The Algorithm

- ► Floyd's: Fix random function $f : \mathbb{Z}^2_{|G|} \to \mathbb{Z}^2_{|G|}$. Let $(a_{i+1}, b_{i+1}) = f(a_i, b_i)$. Then $(a_i, b_i) = (a_{2i}, b_{2i})$ in a few more steps.
- ▶ Pollard: Partition G into T_1, T_2, T_3 . Let f(a, b) = (a + 1, b), (a, b + 1), or (2a, 2b)if $g^a h^b \in T_1$ or T_2 or T_3 respectively.
- ► Teske: Fix (random) partition, random start $\rightarrow 1.6\sqrt{|G|}$. (ranges from $0.86\sqrt{|G|}$ to $2.8\sqrt{|G|}$).
- ► Markov chain: Random partition → random walk (until collision).

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

General DLOG

- ▶ Pohlig-Helman ('78): Suffices to assume N = |G| prime.
- Shoup ('97): Generic algorithm requires $\Omega(\sqrt{N})$ steps.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

General DLOG

- Pohlig-Helman ('78): Suffices to assume N = |G| prime.
- Shoup ('97): Generic algorithm requires $\Omega(\sqrt{N})$ steps.

Pollard Rho specific

► Miller-Venkatesan (ANTS '06): Random walk converges in O(log³ N) and collision in O(√N(log³ N)).

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

General DLOG

- Pohlig-Helman ('78): Suffices to assume N = |G| prime.
- Shoup ('97): Generic algorithm requires $\Omega(\sqrt{N})$ steps.

Pollard Rho specific

- ► Miller-Venkatesan (ANTS '06): Random walk converges in O(log³ N) and collision in O(√N(log³ N)).
- *MV (PC):* a.e. *N*, random start \rightarrow non-degenerate 1 o(1).

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

General DLOG

- Pohlig-Helman ('78): Suffices to assume N = |G| prime.
- Shoup ('97): Generic algorithm requires $\Omega(\sqrt{N})$ steps.

Pollard Rho specific

• $KMT (FOCS '07): O(\log N \log \log N)$ and $O(\sqrt{N \log N \log \log N}).$

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

General DLOG

- Pohlig-Helman ('78): Suffices to assume N = |G| prime.
- Shoup ('97): Generic algorithm requires $\Omega(\sqrt{N})$ steps.

Pollard Rho specific

• KMPT (ANTS '08): Collision in $(1 + o(1))52.5\sqrt{N}$.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

General DLOG

- Pohlig-Helman ('78): Suffices to assume N = |G| prime.
- Shoup ('97): Generic algorithm requires $\Omega(\sqrt{N})$ steps.

Pollard Rho specific

• MV(PC): a.e. N, random start \rightarrow non-degenerate 1 - o(1).

• KMPT (ANTS '08): Collision in $(1 + o(1))52.5\sqrt{N}$.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

Remarks

 Past heuristic: After a while the walk looks random so Birthday Paradox applies; ignores dependencies between states.

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Theoretical Results

Remarks

▶ *KMPT (ANTS '08):* Assumes random partition; requires O(N) memory. Should suffice to use some pseudo-random partition (e.g. a hash function $f : \mathbb{Z}_N \to \{1, 2, 3\}$).

Outline Discrete Logarithm Method of Proof Further Reading	Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools
---	--

Outline

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Discrete Logarithm

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Method of Proof

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Further Reading

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Birthday Paradox

Normal

N objects, choose with repetition \rightarrow something twice in $O(\sqrt{N})$.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Birthday Paradox

Normal

N objects, choose with repetition \rightarrow something twice in $O(\sqrt{N})$.

Markov

Uniform walk on K_N has collision in $O(\sqrt{N})$.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Birthday Paradox for Markov Chains: FOCS

Theorem Finite, ergodic, uniform, $\frac{1/2}{N} \leq P^T(u, v)$ then collision in $2\sqrt{2cTN}$

steps with prob $1 - e^{-c}$.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Birthday Paradox for Markov Chains: New

Theorem: Birthday Paradox for Markov Chains Finite, ergodic, uniform, $\frac{1/2}{N} \leq P^{T}(u, v) \leq \frac{2}{N}$, then collision in

$$2\sqrt{N}\max\{A_T, A_T^*\}+2T$$

steps with prob 1/32.

 $A_T = E(\#$ collisions two iid walks, T steps, same start) $A_T^* =$ same for P^*

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Birthday Paradox for Markov Chains: New

Theorem: Birthday Paradox for Markov Chains Finite, ergodic, uniform, $\frac{m}{N} \leq P^{T}(u, v) \leq \frac{M}{N}$, then collision in

$$2\sqrt{\frac{2N}{M}\max\{A_{T}, A_{T}^{*}\}} + 2T$$

steps with prob $m^2/2M^2$.

 $A_T = E(\#$ collisions two iid walks, T steps, same start) $A_T^* =$ same for P^*

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Application to Rho Walk

Block Walk

• Stop after $(a, b) \rightarrow (2a, 2b)$ step.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Application to Rho Walk

Block Walk

Stop after
$$(a, b) \rightarrow (2a, 2b)$$
 step.

►
$$T = \log^2 N + o(1) \rightarrow$$

 $\frac{1 - o(1)}{N} \le P^T(u, v) \le \frac{1 + o(1)}{N}$

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Application to Rho Walk

Pre-Mixing

• A_T, A_T^* small if walk diffuses quickly:

$$A_T, A_T^* \le 2 \sum_{j=0}^T (j+1) \max_{u,v} P^j(u,v)$$

Application to Rho Walk

Pre-Mixing

• A_T, A_T^* small if walk diffuses quickly:

$$A_T, A_T^* \le 2 \sum_{j=0}^T (j+1) \max_{u,v} P^j(u,v)$$

Large "tree-like" spanning subgraph

$$P^{j}(u,v) \leq egin{cases} (2/3)^{j} & j \leq \lfloor \log_{2} N
ight] \ rac{3/2}{N^{1-\log_{2}3}} \leq rac{3/2}{\sqrt{N}} & otherwise \end{cases}$$

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Application to Rho Walk

Collision Time

• Block: $A_T, A_T^* \leq (1 + o(1)) 18$.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Application to Rho Walk

Collision Time

- Block: $A_T, A_T^* \leq (1 + o(1)) 18$.
- Block: $(1 + o(1))24\sqrt{N}$; Rho: $(1 + o(1))72\sqrt{N}$.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Application to Rho Walk

Collision Time

- Block: $A_T, A_T^* \leq (1 + o(1)) 18$.
- Block: $(1 + o(1))24\sqrt{N}$; Rho: $(1 + o(1))72\sqrt{N}$.
- Improved proof \rightarrow Rho in $(1 + o(1))52.5\sqrt{N}$

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Proving the Key Tools

► Birthday Paradox: Let S = #collisions $\ge 2T$ steps apart. Then $P(S > 0) \ge \frac{E(S)^2}{E(S^2)}$, i.e. second moment.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Proving the Key Tools

► Birthday Paradox: Let S = #collisions $\ge 2T$ steps apart. Then $P(S > 0) \ge \frac{E(S)^2}{E(S^2)}$, i.e. second moment.

Mixing Time:

canonical paths, strong stationary time, Fourier, character/quadratic form.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Proving the Key Tools

► Birthday Paradox: Let S = #collisions $\ge 2T$ steps apart. Then $P(S > 0) \ge \frac{E(S)^2}{E(S^2)}$, i.e. second moment.

Mixing Time:

canonical paths, strong stationary time, Fourier, character/quadratic form.

• Fast probability diffusion:

Early steps of a SST (a strong form of coupling), or Fourier analysis.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Open Question

When can we celebrate Birthday?

Suppose P is reversible: π(x)P(x, y) = π(y)P(y, x), for every pair of states x, y ∈ Ω.
 If π: uniform over Ω, with |Ω| = N, then do we have a collision in O(√N) whp?

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Open Question

When can we celebrate Birthday?

- Suppose P is reversible: π(x)P(x, y) = π(y)P(y, x), for every pair of states x, y ∈ Ω.
 If π: uniform over Ω, with |Ω| = N, then do we have a collision in O(√N) whp?
- Not true in general: Nonreversibility requires an additional assumption, such as ours.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Mixing Time

Canonical Paths

 Mihail, Fill: Mixing time upper bounded in terms of λ⁻¹_{PP*}. Reversal π(x)P*(x, y) = π(y)P(y, x). If lazy then λ_{PP*} ≥ λ_P.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Mixing Time

- Mihail, Fill: Mixing time upper bounded in terms of λ⁻¹_{PP*}. Reversal π(x)P*(x, y) = π(y)P(y, x). If lazy then λ_{PP*} ≥ λ_P.
- Sinclair, Diaconis & Strook: Spectral gap λ_P lower bounded using paths along edges of P.

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Mixing Time

- Mihail, Fill: Mixing time upper bounded in terms of λ⁻¹_{PP*}. Reversal π(x)P*(x, y) = π(y)P(y, x). If lazy then λ_{PP*} ≥ λ_P.
- Sinclair, Diaconis & Strook: Spectral gap λ_P lower bounded using paths along edges of P.
 - \Rightarrow Mixing time bound using paths along edges of PP^* .

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Mixing Time

- Mihail, Fill: Mixing time upper bounded in terms of λ⁻¹_{PP*}. Reversal π(x)P*(x, y) = π(y)P(y, x). If lazy then λ_{PP*} ≥ λ_P.
- Sinclair, Diaconis & Strook: Spectral gap λ_P lower bounded using paths along edges of P.
 - \Rightarrow Mixing time bound using paths along edges of PP^* .
- ► Montenegro: Better path method when non-reversible, non-lazy and min_{P(x,y)>0} P(x, y) is small (non-constant); based on Evolving Sets, a consequence of Diaconis-Fill.

Mixing Time

Canonical Paths Finite, ergodic, $\pi P = \pi$, $\pi(x)P^*(x, y) = \pi(y)P(y, x)$,

 $\forall u \neq v \in \Omega$: path γ_{uv} along PP^*

Mixing Time

Canonical Paths

Let

$$A = \max_{x \neq y: PP^*(x,y) \neq 0} \frac{1}{\pi(x) PP^*(x,y)} \sum_{\gamma_{ab} \ni (x,y)} \pi(a) \pi(b) |\gamma_{ab}|.$$

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Mixing Time

If
$$\pi_* = \min_{v \in \Omega} \pi(v)$$
 then
 $T \ge 2A \log \frac{1}{\epsilon \pi_*} \implies \pi(v)(1-\epsilon) \le P^T(u,v) \le \pi(v)(1+\epsilon)$

Mixing Time

Canonical Paths Finite, ergodic, $\pi P = \pi$, $\pi(x)P^*(x, y) = \pi(y)P(y, x)$,

 $\forall u \neq v \in \Omega$: path γ_{uv} along PP^*

Let

$$A = \max_{x \neq y: PP^*(x,y) \neq 0} \frac{1}{\pi(x) PP^*(x,y)} \sum_{\gamma_{ab} \ni (x,y)} \pi(a) \pi(b) |\gamma_{ab}|.$$

If $\pi_* = \min_{\nu \in \Omega} \pi(\nu)$ then

$$T \geq 2 \, A \, \log rac{1}{\epsilon \pi_*} \quad \Rightarrow \quad \pi(v)(1-\epsilon) \leq {P}^{T}(u,v) \leq \pi(v)(1+\epsilon)$$

Mixing Time

Paths

• Observe $BB^*(u, \cdot)$ is concentrated near $u, u \pm k, etc$.

Mixing Time

Paths

• Consider $B_{1+\delta} = (1-\delta)B + \delta B^2$ for small δ .

Mixing Time

Paths

• Consider
$$B_{1+\delta} = (1-\delta)B + \delta B^2$$
 for small δ .
• $B_{1+\delta}B_{1+\delta}^*(u, 2u)$
 $\geq B_{1+\delta}(u, 4u)B_{1+\delta}^*(4u, 2u)$
 $\geq \frac{\delta}{9}\frac{1-\delta}{3} \geq \frac{\delta(1-\delta)}{81}$

Mixing Time

Paths

► Consider
$$B_{1+\delta} = (1-\delta)B + \delta B^2$$
 for small δ .
► $B_{1+\delta}B_{1+\delta}^*(u, 2u)$
 $\geq B_{1+\delta}(u, 4u)B_{1+\delta}^*(4u, 2u)$
 $\geq \frac{\delta}{9}\frac{1-\delta}{3} \geq \frac{\delta(1-\delta)}{81}$
► $B_{1+\delta}B_{1+\delta}^*(u, 2u+1)$
 $\geq B_{1+\delta}(u, 4u+2)B_{1+\delta}^*(4u+2, 2u+1)$
 $\geq \frac{\delta}{27}\frac{1-\delta}{3} = \frac{\delta(1-\delta)}{81}$

Mixing Time

Paths

▶ Observe $RR^*(u, \cdot)$ is at $u, u + 1 - k, u + k - 1, 2u - 1, 2u - k, \frac{u}{2} + \frac{1}{2}, \frac{u}{2} + \frac{k}{2}.$ ▶ Consider $R^2R^{*2}(u, \cdot).$

Mixing Time

Paths

• Paths from $u \rightarrow v$: Set $n = \lceil \log_2 N \rceil$.

Mixing Time

Paths

$$x = (v - 2^n u) \mod N = (x_0 x_1 \cdots x_{n-2} x_{n-1})_2.$$

Mixing Time

 Paths

Path
$$u_0 = u$$
, $u_{i+1} = 2u_i + x_i$, so $u_n \equiv 2^n u + x \equiv v$.

Mixing Time

Paths

▶ Paths from
$$u \rightarrow v$$
: Set $n = \lceil \log_2 N \rceil$.
 $x = (v - 2^n u) \mod N = (x_0 x_1 \cdots x_{n-2} x_{n-1})_2$.
Path $u_0 = u$, $u_{i+1} = 2u_i + x_i$, so $u_n \equiv 2^n u + x \equiv v$.

Mixing Time

Paths

► Congestion: Edge (a, b) with $b \equiv 2a + \{0, 1\} \mod N$. (a, b) is *i*th edge of γ_{uv} for $2^{i-1} \times 2^{n-i}$ choices of u, v. \Rightarrow at most $n 2^{n-1} \le n N$ paths include edge (a, b).

Mixing Time

Paths

• Conclusion: If
$$T \ge \frac{486}{\delta(1-\delta)} \lceil \log_2 N \rceil^3$$
 then
 $\forall u, v \in \mathbb{Z}_N : \frac{1}{N} (1 - 1/N^2) \le B_{1+\delta}^T (u, v) \le \frac{1}{N} (1 + 1/N^2)$

Outline

Discrete Logarithm

Crypto and Discrete Log Pollard's Rho Algorithm Theoretical Results

Method of Proof

Birthday Paradox for Markov Chains Application to Rho Walk Proving the Key Tools

Further Reading

Further Reading

 J.H. Kim, R. Montenegro, Y. Peres, P. Tetali.
 A Birthday Paradox for Markov chains, with an optimal bound for collision in the Pollard Rho Algorithm for Discrete Logarithm.
 http://www.ravimontenegro.com/research/prho.pdf