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El Gamal Encryption

I Alice chooses cyclic group G = 〈g〉 with prime order p, and
x ∈ {0, 1, . . . , p − 1}.
Public Key: G , g , p, h = g x . Private Key: x .

I Bob converts message m into group element m ∈ G .
Chooses random y ∈ {0, 1, . . . , p − 1}.
Sends c1 = g y , c2 = m hy .

I Alice reads message m = c2 c−x
1 .
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Pollard’s Rho Algorithm

Sketch of Algorithm

I Given cyclic group G = 〈g〉.
For h ∈ G find x = logg h, i.e. solve g x = h.

I Pollard: Choose (ai , bi ) ∈ Z2
|G | until some gai hbi = gaj hbj .

I Collision: Then x = (ai − aj)(bj − bi )
−1 mod |G |.

I Birthday Paradox: Requires
√

π
2 |G | ≈ 1.25

√
|G | samples.
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The Algorithm

I Floyd’s: Fix random function f : Z2
|G | → Z2

|G |.

Let (ai+1, bi+1) = f (ai , bi ).
Then (ai , bi ) = (a2i , b2i ) in a few more steps.

I Pollard: Partition G into T1,T2,T3.
Let f (a, b) = (a + 1, b), (a, b + 1), or (2a, 2b)

if gahb ∈ T1 or T2 or T3 respectively.

I Teske: Fix (random) partition, random start → 1.6
√
|G |.

(ranges from 0.86
√
|G | to 2.8

√
|G |).

I Markov chain: Random partition → random walk
(until collision).
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Theoretical Results

General DLOG

I Pohlig-Helman (’78): Suffices to assume N = |G | prime.

I Shoup (’97): Generic algorithm requires Ω(
√

N) steps.

Pollard Rho specific

I Miller-Venkatesan (ANTS ’06): Random walk converges in
O(log3 N) and collision in O(

√
N(log3 N)).

I MV (PC): a.e. N, random start → non-degenerate 1− o(1).

I KMT (FOCS ’07): O(log N log log N) and
O(
√

N log N log log N).

I KMPT (ANTS ’08): Collision in (1 + o(1))52.5
√

N.
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Theoretical Results

Remarks

I Past heuristic: After a while the walk looks random so
Birthday Paradox applies; ignores dependencies between
states.

I KMPT (ANTS ’08): Assumes random partition; requires
O(N) memory. Should suffice to use some pseudo-random
partition (e.g. a hash function f : ZN → {1, 2, 3}).
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Birthday Paradox

Normal
N objects, choose with repetition → something twice in O(

√
N).

Markov
Uniform walk on KN has collision in O(

√
N).
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Birthday Paradox for Markov Chains: FOCS

Theorem
Finite, ergodic, uniform, 1/2

N ≤ PT (u, v) then collision in

2
√

2cTN

steps with prob 1− e−c .
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Birthday Paradox for Markov Chains: New

Theorem: Birthday Paradox for Markov Chains
Finite, ergodic, uniform, 1/2

N ≤ PT (u, v) ≤ 2
N , then collision in

2
√

N max{AT , A∗T}+ 2T

steps with prob 1/32.

AT = E (#collisions two iid walks, T steps, same start)
A∗T = same for P∗
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Outline
Discrete Logarithm

Method of Proof
Further Reading

Birthday Paradox for Markov Chains
Application to Rho Walk
Proving the Key Tools

Birthday Paradox for Markov Chains: New

Theorem: Birthday Paradox for Markov Chains
Finite, ergodic, uniform, m

N ≤ PT (u, v) ≤ M
N , then collision in

2

√
2N

M
max{AT , A∗T}+ 2T

steps with prob m2/2M2.

AT = E (#collisions two iid walks, T steps, same start)
A∗T = same for P∗

Kim, Montenegro, Peres, Tetali A Birthday paradox and Pollard’s Rho



Outline
Discrete Logarithm

Method of Proof
Further Reading

Birthday Paradox for Markov Chains
Application to Rho Walk
Proving the Key Tools

Application to Rho Walk

Block Walk

I Stop after (a, b) → (2a, 2b) step.

I T = log2 N + o(1) →

1− o(1)

N
≤ PT (u, v) ≤ 1 + o(1)

N
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Application to Rho Walk

Pre-Mixing

I AT ,A∗T small if walk diffuses quickly:

AT ,A∗T ≤ 2
T∑

j=0

(j + 1) max
u,v

P j(u, v)

I Large “tree-like” spanning subgraph

P j(u, v) ≤

{
(2/3)j j ≤ blog2 Nc

3/2

N1−log2 3 ≤
3/2√

N
otherwise

Kim, Montenegro, Peres, Tetali A Birthday paradox and Pollard’s Rho
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Application to Rho Walk

Collision Time

I Block: AT ,A∗T ≤ (1 + o(1)) 18.

I Block: (1 + o(1))24
√

N; Rho: (1 + o(1))72
√

N.

I Improved proof → Rho in (1 + o(1))52.5
√

N
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Proving the Key Tools

I Birthday Paradox:
Let S = #collisions ≥ 2T steps apart.

Then P(S > 0) ≥ E (S)2

E (S2)
, i.e. second moment.

I Mixing Time:
canonical paths, strong stationary time,
Fourier, character/quadratic form.

I Fast probability diffusion:
Early steps of a SST (a strong form of coupling),
or Fourier analysis.
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Open Question

When can we celebrate Birthday?

I Suppose P is reversible: π(x)P(x , y) = π(y)P(y , x),
for every pair of states x , y ∈ Ω.
If π: uniform over Ω, with |Ω| = N, then
do we have a collision in O(

√
N) whp?

I Not true in general: Nonreversibility requires an additional
assumption, such as ours.

Kim, Montenegro, Peres, Tetali A Birthday paradox and Pollard’s Rho
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Mixing Time

Canonical Paths

I Mihail, Fill: Mixing time upper bounded in terms of λ−1
PP∗ .

Reversal π(x)P∗(x , y) = π(y)P(y , x).
If lazy then λPP∗ ≥ λP .

I Sinclair, Diaconis & Strook: Spectral gap λP lower bounded
using paths along edges of P.
⇒ Mixing time bound using paths along edges of PP∗.

I Montenegro: Better path method when non-reversible,
non-lazy and minP(x ,y)>0 P(x , y) is small (non-constant);
based on Evolving Sets, a consequence of Diaconis-Fill.

Kim, Montenegro, Peres, Tetali A Birthday paradox and Pollard’s Rho
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Mixing Time

Canonical Paths
Finite, ergodic, πP = π, π(x)P∗(x , y) = π(y)P(y , x),

∀u 6= v ∈ Ω : path γuv along PP∗

Let

A = max
x 6=y :PP∗(x ,y) 6=0

1

π(x)PP∗(x , y)

∑
γab3(x ,y)

π(a)π(b)|γab| .

If π∗ = minv∈Ω π(v) then

T ≥ 2 A log
1

επ∗
⇒ π(v)(1− ε) ≤ PT (u, v) ≤ π(v)(1 + ε)
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Paths

I Observe BB∗(u, ·) is concentrated near u, u ± k, etc.

I Consider B1+δ = (1− δ)B + δB2 for small δ.

I B1+δB
∗
1+δ(u, 2u)

≥ B1+δ(u, 4u)B∗
1+δ(4u, 2u)

≥ δ

9

1− δ

3
≥ δ(1− δ)

81
I B1+δB

∗
1+δ(u, 2u + 1)

≥ B1+δ(u, 4u + 2)B∗
1+δ(4u + 2, 2u + 1)

≥ δ

27

1− δ

3
=

δ(1− δ)

81
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Proving the Key Tools

Mixing Time

Paths

I Paths from u → v : Set n = dlog2 Ne.

x = (v − 2n u) mod N = (x0x1 · · · xn−2xn−1)2.
Path u0 = u, ui+1 = 2ui + xi , so un ≡ 2n u + x ≡ v .

I Congestion: Edge (a, b) with b ≡ 2a + {0, 1} mod N.
(a, b) is ith edge of γuv for 2i−1 × 2n−i choices of u, v .
⇒ at most n 2n−1 ≤ n N paths include edge (a, b).

I Conclusion: If T ≥ 486
δ(1−δ) dlog2 Ne3 then

∀u, v ∈ ZN :
1

N
(1− 1/N2) ≤ BT

1+δ(u, v) ≤ 1

N
(1 + 1/N2)
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Further Reading

J.H. Kim, R. Montenegro, Y. Peres, P. Tetali.
A Birthday Paradox for Markov chains, with an optimal bound
for collision in the Pollard Rho Algorithm for Discrete
Logarithm.
http://www.ravimontenegro.com/research/prho.pdf
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