Computing Hilbert class polynomials

Juliana Belding, University of Maryland Reinier Bröker, Microsoft Research Andreas Enge, Ecole Polytechnique ´ Kristin Lauter, Microsoft Research

> ANTS VIII, Banff May 2008

Hilbert class polynomial

Throughout this talk, $D < 0$ is a discriminant. Let \mathcal{O}_D be the imaginary quadratic order of discriminant D.

The quotient \mathbf{C}/\mathcal{O}_D has a natural structure of an *elliptic curve*.

The Hilbert class polynomial P_D is the minimal polynomial over Q of the *j*-value $j(\mathbf{C}/\mathcal{O}_D)$. It defines the *ring class field* H of \mathcal{O}_D .

Non-trivial fact: $P_D \in \mathbf{Z}[X]$.

Example.

 $P_{-23} = X^3 + 3491750 X^2 - 5151296875 X + 12771880859375.$

Classical algorithm to compute P_D

- list reduced binary quadratic forms $aX^2+bXY+cY^2$ of discriminant $b^2-4ac=D$
- compute

$$
P_D = \prod_{[a,b,c]} \left(X - j \left(\frac{-b + \sqrt{D}}{2a} \right) \right) \in \mathbf{Z}[X].
$$

Here j is the complex analytic modular function $\mathbf{H} \to \mathbf{C}$ with Fourier $\text{expansion}\,\,j(z) = 1/q + 744 + 196884q + \dots\text{ in }\, q = \exp(2\pi i z).$

We compute $j(\frac{-b+\sqrt{D}}{2a})$ $\frac{+\sqrt{D}}{2a}) \in \mathbf{C}$ with high enough accuracy to be able to round the coefficients of the expanded product to the nearest integer.

Run time (Enge): $\widetilde{O}(|D|)$. Rounding errors might occur.

Second approach

 p -adic approach (Couveignes-Henocq (2002), Bröker (2006))

- 1. Find a small prime p that splits in H .
- 2. Find an elliptic curve E/\mathbf{F}_p with $\text{End}(E) = \mathcal{O}_D$.
- **3.** Lift $j(E) \in \mathbf{F}_p$ to its canonical lift $j(E) \in \mathbf{Q}_p$. We have] $P_D(j(E))=0.$ \sim
- **4.** Compute the Galois conjugates of $j(E)$.

5. Expand
$$
P_D = \prod_{\mathfrak{a} \in \mathrm{Cl}(\mathcal{O}_D)} (X - \widetilde{j(E)}^{\mathfrak{a}}) \in \mathbf{Z}[X].
$$

Run time: $\widetilde{O}(|D|)$ under GRH. No rigorous bound.

Third approach

If we have bounds on an integer $x \in \mathbb{Z}$, we can 'reconstruct' it using the Chinese remainder theorem.

Example: only positive integer $x \leq 1000$ with $x \equiv 5 \mod 7$, $x \equiv 5 \mod 7$ 8 mod 11 and $x \equiv 0 \mod 13$ is $x = 481$.

Idea is used in Schoof's point counting algorithm.

Lauter et al.: compute $P_D \in \mathbf{F}_p[X]$ for various primes p, and then apply Chinese remaindering.

Their run time: $O(|D|^{3/2+o(1)})$.

Today. Change their algorithm to obtain $\widetilde{O}(|D|)$ as well. Analyze the log-factors.

Size of the output

The degree of P_D equals the class number $h(D)$.

For z in the fundamental domain of $SL_2(\mathbb{Z})\backslash\mathbb{H}$, we have $|j(z) - q^{-1}| \le 2150$. Hence: $j(z) \approx q^{-1}$.

The largest coefficient of P_D has size bounded by

$$
3h(D) + \pi \sqrt{|D|} \sum_{[a,b,c]} \frac{1}{a}.
$$

Unconditional bound (Schur, 1918): $h(D) = O(|D|^{1/2} \log |D|)$. GRH bound (Littlewood, 1928): $h(D) = O(|D|^{1/2} \log \log |D|)$.

Size of the output

'Classical' bound (Schoof, 1991): $\sum_{[a,b,c]} 1/a = O((\log |D|)^2)$.

New technique (based on idea of Granville and Stark):

$$
\sum_{[a,b,c]} 1/a \leq \sum_{a \leq \sqrt{|D|}} \frac{\prod_{p|a} \left(1 + \left(\frac{D}{p}\right)\right)}{a}.
$$

Take the Euler product to get the bound

$$
\prod_{p\leq \sqrt{|D|}}\left(1+\frac{1}{p}\right)\left(1+\frac{\left(\frac{D}{p}\right)}{p}\right)\leq c\log |D|\prod_{p\leq \sqrt{|D|}}\frac{1}{1-\left(\frac{D}{p}\right)/p}.
$$

GRH-bound: $\sum_{[a,b,c]} 1/a = O(\log |D| \log \log |D|).$

Size of the primes

Bound on size of largest coefficient of P_D is

$$
B_D = O(|D|^{1/2}\log|D|\log\log|D|).
$$

We can use a prime p if and only if p splits completely in H .

Need many primes p, the product should exceed B_D .

Effective Chebotarev. (under GRH) For the smallest p we have

 $p = O(|D|(\log |D|)^4).$

All the $O(|D|^{1/2} \log \log |D|)$ primes we need satisfy this bound.

Computing $P_D \in \mathbf{F}_p[X]$

Fix a prime p that splits completely in the ring class field H .

Step 1. Find a curve E/\mathbf{F}_p with $\text{End}(E) = \mathcal{O}_D$.

Step 2. Compute the Galois conjugates $j(E)^{\mathfrak{a}}$ for $\mathfrak{a} \in \mathrm{Cl}(\mathcal{O}_D)$.

Step 3. Return $P_D \mod p = \prod (X - j(E)^{\mathfrak{a}}) \in \mathbf{F}_p[X]$. $\mathfrak{a} \in \mathrm{Cl}(\mathcal{O}_D)$

Step 1: find ^a curve with the right endomorphism ring

Write $4p = x^2 - Dy^2$. The curves we are looking for have

 $p+1\pm x$

points over \mathbf{F}_p . Reason: $\mathcal{O}_{x^2-4p} \subseteq \mathcal{O}_D$.

Naïve algorithm

Find a curve E/\mathbf{F}_p with $p+1 \pm x$ points by *trying random* curves. Count the number of points of each 'test curve'.

This suffices for the overall $\widetilde{O}(|D|)$ runtime. However: point counting has the 'slow' runtime $\widetilde{O}((\log p)^5)$.

Step 1a: instead of counting points

Pick a random point $P \in E(\mathbf{F}_p)$ and see if $(p+1\pm x)P$ holds. If not, try the 'next' curve.

Select a few random points on E and its quadratic twist E' and compute their orders assuming they divide $p+1 \pm x$. If this fails, try the 'next' curve.

We have $E(\mathbf{F}_p) \cong \mathbf{Z}/n_1\mathbf{Z} \times \mathbf{Z}/n_2\mathbf{Z}$ with $n_1 \mid n_2$. A fraction $\varphi(n_2)/n_2$ of all points have *maximal order*. We quickly find points P, P' of maximal order.

Mestre: for $p > 457$ either $\text{ord}(P) \geq 4\sqrt{p}$ or $\text{ord}(P') \geq 4\sqrt{p}$.

Runtime drops to $\widetilde{O}((\log p)^3)$.

Step 1: finding ^a curve with the right endomorphism ring

Let E/\mathbf{F}_p have $p+1 \pm x$ points.

Compute $\text{End}(E) = \mathcal{O}_{Dn^2}$ using Kohel's algorithm.

If $\text{End}(E) = \mathcal{O}$, we are done. Otherwise: find another random curve with $p + 1 \pm x$ points.

Run time. Domininated by the first step.

GRH \implies $O((p/h(D))(\log p)^{3+o(1)}) = O(|D|^{1/2}(\log |D|)^{7+o(1)})$.

Step 2: computing the Galois conjugates

The class group $Cl(\mathcal{O}_D)$ acts on the set of elliptic curves with endomorphism ring \mathcal{O}_D via

$$
j(E) \mapsto j(E)^I \stackrel{\text{def}}{=} j(E/E[I]) \qquad \text{for } [I] \in \text{Cl}(\mathcal{O}_D).
$$

The value $j(E)^{I}$ is a root of $\Phi_{l}(j(E), X) \in \mathbf{F}_{p}[X]$ for I of prime norm *l*. Here: Φ_l is the *l*-th modular polynomial.

Can prove: under 'harmless assumptions': only two roots in \mathbf{F}_p :

$$
j(E)^{I}
$$
 and $j(E)^{I}$.

We need both.

Step 2: computing the Galois conjugates

 $\it (Bach\ bound\ / \ effective\ Chebotarev).$ GRH \Longrightarrow Cl(\mathcal{O}_D) is generated by ideals of norm $O((\log |D|)^2)$.

Finding a Galois conjugate of $j(E)$ takes time $\widetilde{O}((\log |D|)^5)$. There are $h(D) \stackrel{\text{GRH}}{=} O(|D|^{1/2} \log \log |D|)$ conjugates.

Time to find all Galois conjugates is $O(|D|^{1/2}(\log |D|)^{5+o(1)})$.

Total time spent so far:

 $O(|D|^{1/2}(\log|D|)^{7+o(1)}).$

This dominates Step 3: expanding the product.

Computing P_D , conclusion

Time per prime p: $O(|D|^{1/2}(\log |D|)^{7+o(1)})$.

We need $O(|D|^{1/2} \log \log |D|)$ primes. Total time:

 $O(|D|(\log |D|)^{7+o(1)}).$

Recombining using 'classical' Chinese remaindering would take too much time.

Fast Chinese remaindering ('fancy product trees') takes time $O(|D|^{1/2}(\log|D|)^{3+o(1)})$ per coefficient.

We have $h(D) \stackrel{\text{GRH}}{=} O(|D|^{1/2} \log \log |D|)$ coefficients.

Run time for entire algorithm: $O(|D|(\log |D|)^{7+o(1)})$, under GRH.

Comparison

Complex analytic. possible rounding errors

$$
O(|D|(\log|D|)^{5+o(1)}) \quad rigorous
$$

$$
O(|D|(\log|D|)^{3+o(1)}) \quad GRH
$$

 p -adic.

$$
O(|D|(\log |D|)^{6+o(1)}) \qquad GRH
$$

$$
O(|D|(\log |D|)^{3+o(1)}) \quad heuristic
$$

CRT.
$$
O(|D|(\log |D|)^{7+o(1)})
$$
 GRH
?\n*heuristic*

Heuristics for CRT

Size of primes p is 'pessimistic'.

We look for solutions to $x^2 - Dy^2 = 4p$. Reason: p splits completely in H iff p splits in principal primes in \mathcal{O}_D .

To find solutions, let x, y range over $1, 2, \ldots$ until we find a solution with p prime.

Heuristics: one out of every $log |D|$ integers around $|D|$ is prime.

Size of primes becomes: $O(|D| \log |D|)$ instead of $O(|D| (\log |D|)^4)$.

Heuristics for CRT

Bottlenecks in run time: finding E/\mathbf{F}_p with $p+1 \pm x$ points and size of generators of $Cl(\mathcal{O}_D)$.

1. Instead of computing *orders* of random points P, only check if $(p+1\pm x)P=0_E$ holds.

2. People 'believe': $Cl(\mathcal{O}_D)$ is generated by primes of size $\widetilde{O}(\log |D|)$.

Heuristic run time becomes: $O(|D|(\log |D|)^{3+o(1)})$.

One of the bottlenecks is now Chinese remaindering!

Comparison

Complex analytic. possible rounding errors

$$
O(|D|(\log|D|)^{5+o(1)}) \quad rigorous
$$

$$
O(|D|(\log|D|)^{3+o(1)}) \quad GRH
$$

p-adic. $O(|D|(\log |D|)^{6+o(1)})$ *GRH* $O(|D|(\log |D|)^{3+o(1)})$ heuristic

CRT. $O(|D|(\log |D|)^{7+o(1)})$ *GRH* $O(|D|(\log |D|)^{3+o(1)})$ heuristic

Practical performance

CRT-approach appears to be slow in practice. Reason: we need many 'large' primes.

To speed it up: use *inert* primes.

Easiest case: $D \equiv 5 \mod 8 \Longrightarrow P_D \mod 2 = X^{h(D)}$.

We can compute P_D mod p for any inert prime, see ANTS-article.

Run time is very bad with respect to p . Needs to be analyzed how much this will speed up the method.

As it stands now: the complex analytic method is the fastest in practice.

Proving the exponent 3?

We probably cannot do better than $O(|D|(\log |D|)^{3+o(1)})$: this is the We probably cannot do better than
time it takes to expand $\prod_j (X - j)$.

Question. Can we prove (under GRH) this run time without the rounding error problem?

Answer? Use *p*-adic lifting for an *inert* prime *p*.

See ANTS-article for the $p \equiv 1 \mod 12$ algorithm and the PhD-thesis of Juliana Belding for general p .

Run time analysis: ≥ 2008 .