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Hilbert class polynomial

Throughout this talk, D < 0 is a discriminant. Let OD be the

imaginary quadratic order of discriminant D.

The quotient C/OD has a natural structure of an elliptic curve.

The Hilbert class polynomial PD is the minimal polynomial over Q

of the j-value j(C/OD). It defines the ring class field H of OD.

Non-trivial fact: PD ∈ Z[X].

Example.

P−23 = X3 + 3491750X2 − 5151296875X + 12771880859375.



Classical algorithm to compute PD

• list reduced binary quadratic forms aX2+bXY +cY 2 of discriminant
b2 − 4ac = D

• compute

PD =
∏

[a,b,c]

(
X − j

(
−b +

√
D

2a

))
∈ Z[X].

Here j is the complex analytic modular function H → C with Fourier
expansion j(z) = 1/q + 744 + 196884q + . . . in q = exp(2πiz).

We compute j(−b+
√

D
2a ) ∈ C with high enough accuracy to be able to

round the coefficients of the expanded product to the nearest integer.

Run time (Enge): Õ(|D|). Rounding errors might occur.



Second approach

p-adic approach (Couveignes-Henocq (2002), Bröker (2006))

1. Find a small prime p that splits in H .

2. Find an elliptic curve E/Fp with End(E) = OD.

3. Lift j(E) ∈ Fp to its canonical lift j̃(E) ∈ Qp. We have

PD(j̃(E)) = 0.

4. Compute the Galois conjugates of j̃(E).

5. Expand PD =
∏

a∈Cl(OD)

(X − j̃(E)
a

) ∈ Z[X].

Run time: Õ(|D|) under GRH. No rigorous bound.



Third approach

If we have bounds on an integer x ∈ Z, we can ‘reconstruct’ it using
the Chinese remainder theorem.

Example: only positive integer x ≤ 1000 with x ≡ 5 mod 7, x ≡
8 mod 11 and x ≡ 0 mod 13 is x = 481.

Idea is used in Schoof’s point counting algorithm.

Lauter et al.: compute PD ∈ Fp[X] for various primes p, and then
apply Chinese remaindering.

Their run time: O(|D|3/2+o(1)).

Today. Change their algorithm to obtain Õ(|D|) as well. Analyze
the log-factors.



Size of the output

The degree of PD equals the class number h(D).

For z in the fundamental domain of SL2(Z)\H, we have
|j(z) − q−1| ≤ 2150. Hence: j(z) ≈ q−1.

The largest coefficient of PD has size bounded by

3h(D) + π
√

|D|
∑

[a,b,c]

1

a
.

Unconditional bound (Schur, 1918): h(D) = O(|D|1/2 log |D|).

GRH bound (Littlewood, 1928): h(D) = O(|D|1/2 log log |D|).



Size of the output

‘Classical’ bound (Schoof, 1991):
∑

[a,b,c] 1/a = O((log |D|)2).

New technique (based on idea of Granville and Stark):

∑

[a,b,c]

1/a ≤
∑

a≤
√

|D|

∏
p|a

(
1 +

(
D
p

))

a
.

Take the Euler product to get the bound

∏

p≤
√

|D|

(
1 +

1

p

)(
1 +

(
D
p

)

p

)
≤ c log |D|

∏

p≤
√

|D|

1

1 −
(

D
p

)
/p

.

GRH-bound:
∑

[a,b,c] 1/a = O(log |D| log log |D|).



Size of the primes

Bound on size of largest coefficient of PD is

BD = O(|D|1/2 log |D| log log |D|).

We can use a prime p if and only if p splits completely in H .

Need many primes p, the product should exceed BD.

Effective Chebotarev. (under GRH) For the smallest p we have

p = O(|D|(log |D|)4).

All the O(|D|1/2 log log |D|) primes we need satisfy this bound.



Computing PD ∈ Fp[X]

Fix a prime p that splits completely in the ring class field H .

Step 1. Find a curve E/Fp with End(E) = OD.

Step 2. Compute the Galois conjugates j(E)a for a ∈ Cl(OD).

Step 3. Return PD mod p =
∏

a∈Cl(OD)

(X − j(E)a) ∈ Fp[X].



Step 1: find a curve with the right endomorphism ring

Write 4p = x2 − Dy2. The curves we are looking for have

p + 1 ± x

points over Fp. Reason: Ox2−4p ⊆ OD.

Näıve algorithm

Find a curve E/Fp with p + 1 ± x points by trying random curves.
Count the number of points of each ‘test curve’.

This suffices for the overall Õ(|D|) runtime. However: point counting

has the ‘slow’ runtime Õ((log p)5).



Step 1a: instead of counting points

Pick a random point P ∈ E(Fp) and see if (p+1±x)P holds. If not,
try the ‘next’ curve.

Select a few random points on E and its quadratic twist E′ and
compute their orders assuming they divide p+1±x. If this fails, try
the ‘next’ curve.

We have E(Fp) ∼= Z/n1Z×Z/n2Z with n1 | n2. A fraction ϕ(n2)/n2

of all points have maximal order . We quickly find points P,P ′ of
maximal order.

Mestre: for p > 457 either ord(P ) ≥ 4
√

p or ord(P ′) ≥ 4
√

p.

Runtime drops to Õ((log p)3).



Step 1: finding a curve with the right endomorphism ring

Let E/Fp have p + 1 ± x points.

Compute End(E) = ODn2 using Kohel’s algorithm.

If End(E) = O, we are done. Otherwise: find another random curve
with p + 1 ± x points.

Run time. Domininated by the first step.

GRH =⇒ O((p/h(D))(log p)3+o(1)) = O(|D|1/2(log |D|)7+o(1)).



Step 2: computing the Galois conjugates

The class group Cl(OD) acts on the set of elliptic curves with
endomorphism ring OD via

j(E) 7→ j(E)I def
= j(E/E[I]) for [I] ∈ Cl(OD).

The value j(E)I is a root of Φl(j(E),X) ∈ Fp[X] for I of prime
norm l. Here: Φl is the l-th modular polynomial.

Can prove: under ‘harmless assumptions’: only two roots in Fp:

j(E)I and j(E)I .

We need both.



Step 2: computing the Galois conjugates

(Bach bound / effective Chebotarev):
GRH =⇒ Cl(OD) is generated by ideals of norm O((log |D|)2).

Finding a Galois conjugate of j(E) takes time Õ((log |D|)5).
There are h(D)

GRH
= O(|D|1/2 log log |D|) conjugates.

Time to find all Galois conjugates is O(|D|1/2(log |D|)5+o(1)).

Total time spent so far:

O(|D|1/2(log |D|)7+o(1)).

This dominates Step 3: expanding the product.



Computing PD, conclusion

Time per prime p: O(|D|1/2(log |D|)7+o(1)).

We need O(|D|1/2 log log |D|) primes. Total time:

O(|D|(log |D|)7+o(1)).

Recombining using ‘classical’ Chinese remaindering would take too
much time.

Fast Chinese remaindering (‘fancy product trees’) takes time
O(|D|1/2(log |D|)3+o(1)) per coefficient.

We have h(D)
GRH
= O(|D|1/2 log log |D|) coefficients.

Run time for entire algorithm: O(|D|(log |D|)7+o(1)), under GRH.



Comparison

Complex analytic. O(|D|(log |D|)5+o(1)) rigorous

possible rounding errors O(|D|(log |D|)3+o(1)) GRH

p-adic. O(|D|(log |D|)6+o(1)) GRH

O(|D|(log |D|)3+o(1)) heuristic

CRT. O(|D|(log |D|)7+o(1)) GRH

? heuristic



Heuristics for CRT

Size of primes p is ‘pessimistic’.

We look for solutions to x2 −Dy2 = 4p. Reason: p splits completely
in H iff p splits in principal primes in OD.

To find solutions, let x, y range over 1, 2, . . . until we find a solution
with p prime.

Heuristics: one out of every log |D| integers around |D| is prime.

Size of primes becomes: O(|D| log |D|) instead of O(|D|(log |D|)4).



Heuristics for CRT

Bottlenecks in run time: finding E/Fp with p+1±x points and size
of generators of Cl(OD).

1. Instead of computing orders of random points P , only check if
(p + 1 ± x)P = 0E holds.

2. People ‘believe’: Cl(OD) is generated by primes of size Õ(log |D|).

Heuristic run time becomes: O(|D|(log |D|)3+o(1)).

One of the bottlenecks is now Chinese remaindering!



Comparison

Complex analytic. O(|D|(log |D|)5+o(1)) rigorous

possible rounding errors O(|D|(log |D|)3+o(1)) GRH

p-adic. O(|D|(log |D|)6+o(1)) GRH

O(|D|(log |D|)3+o(1)) heuristic

CRT. O(|D|(log |D|)7+o(1)) GRH

O(|D|(log |D|)3+o(1)) heuristic



Practical performance

CRT-approach appears to be slow in practice. Reason: we need many
‘large’ primes.

To speed it up: use inert primes.

Easiest case: D ≡ 5 mod 8 =⇒ PD mod 2 = Xh(D).

We can compute PD mod p for any inert prime, see ANTS-article.

Run time is very bad with respect to p. Needs to be analyzed how
much this will speed up the method.

As it stands now: the complex analytic method is the fastest in
practice.



Proving the exponent 3?

We probably cannot do better than O(|D|(log |D|)3+o(1)): this is the
time it takes to expand

∏
j(X − j).

Question. Can we prove (under GRH) this run time without the
rounding error problem?

Answer? Use p-adic lifting for an inert prime p.

See ANTS-article for the p ≡ 1 mod 12 algorithm and the PhD-thesis
of Juliana Belding for general p.

Run time analysis: ≥ 2008.


