THE CARMICHAEL NUMBERS UP TO 10^{21}

RICHARD G.E. PINCH

1. INTRODUCTION

A Carmichael number N is a composite number N with the property that for every b prime to N we have $b^{N-1} \equiv 1 \mod N$. It follows that a Carmichael number N must be square-free, with at least three prime factors, and that $p-1|N-1$ for every prime p dividing N: conversely, any such N must be a Carmichael number.

For background on Carmichael numbers and details of previous computations we refer to our previous paper [2]: in that paper we described the computation of the Carmichael numbers up to 10^{15} and presented some statistics. These computations have since been extended to 10^{16} [3], 10^{17} [4], 10^{18} [5], 10^{20} [6] and now to 10^{21} , using similar techniques. We present further statistics and refine a conjecture on the asymptotic distribtion.

2. Organisation of the search

We used improved versions of strategies first described in [2].

The principal search was a depth-first back-tracking search over possible sequences of primes factors p_1, \ldots, p_d . Put $P_r = \prod_{i=1}^r p_i$, $Q_r = \prod_{i=r+1}^d p_i$ and $L_r = \text{lcm } \{p_i - 1 : i = 1, \ldots, r\}.$ We find that Q_r must satisfy the congruence $N = P_r Q_r \equiv 1 \mod L_r$ and so in particular $Q_d = p_d$ must satisfy a congruence modulo L_{d-1} : further $p_d - 1$ must be a factor of $P_{d-1} - 1$. We modified this to terminate the search early at some level r if the modulus L_r is large enough to limit the possible values of Q_r , which may then be factorised directly.

We also employed the variant based on proposition 2 of [2] which determines the finitely many possible pairs (p_{d-1}, p_d) from P_{d-2} . In practice this was useful only when $d = 3$ allowing us to determine the complete list of Carmichael numbers with three prime factors up to 10^{21} .

2.1. A large prime variation. Finally we employed a different search over large values of p_d , in the range 2.10⁶ < p_d < 10^{10.5}, using the property that $P_{d-1} \equiv$ 1 mod $(p_d - 1)$.

If q is a prime in this range, we let P run through the arithmetic progression $P \equiv 1 \mod q - 1$ in the range $q < P < X/q$ where $X = 10^{21}$. We first check whether $N = Pq$ satisfies $2^N \equiv 2 \mod N$: it is sufficient to test whether $2^N \equiv 2 \mod P$ since the congruence modulo q is necessarily satisfied. If this condition is satisfied we factorise P and test whether $N \equiv 1 \mod \lambda(N)$.

The approximate time taken for $X^t \le q < X^{1/2}$ is

$$
\sum_{X^t < q < X^{1/2}} \frac{X}{q^2} \approx X^{1-t}.
$$

Date: 4 Feb 2008.

2 RICHARD G.E. PINCH

3. STATISTICS

In the Table below we tabulate the function $k(X)$, defined by Pomerance, Selfridge and Wagstaff [7] by

$$
C(X) = X \exp\left(-k(X) \frac{\log X \log \log \log X}{\log \log X}\right)
$$

.

They proved that $\liminf k \geq 1$ and suggested that $\limsup k$ might be 2, although they also observed that within the range of their tables $k(X)$ is decreasing: Pomerance [8], [9] gave a heuristic argument suggesting that $\lim k = 1$. The decrease in k is reversed between 10^{13} and 10^{14} : see Figure 1. We find no clear support from our computations for any conjecture on a limiting value of k.

\boldsymbol{n}	$C\, (10^n$	$k\,(10^n$
3	1	
$\overline{4}$	7	2.19547
5	16	2.07632
6	43	1.97946
7	105	1.93388
8	255	1.90495
9	646	1.87989
10	1547	1.86870
11	3605	1.86421
12	8241	1.86377
13	19279	1.86240
14	44706	1.86293
15	105212	1.86301
16	246683	1.86406
17	585355	1.86472
18	1401644	1.86522
19	3381806	1.86565
20	8220777	1.86598
21	20138200	1.86619

TABLE 1. Distribution of Carmichael numbers up to 10^{21} .

REFERENCES

- [1] R.A. Mollin (ed.), Number theory and its applications, Dordrecht, Kluwer Academic, 1989, Proceedings of the NATO Advanced Study Institute on Number Theory and Applications.
- [2] Richard G.E. Pinch, *The Carmichael numbers up to* 10^{15} , Math. Comp. **61** (1993), 381–391, Lehmer memorial issue.
- [3] $\frac{1}{3}$, The Carmichael numbers up to 10^{16} , March 1998, arXiv:math.NT/9803082.
- [4] \ldots , The Carmichael numbers up to 10^{17} , April 2005, arXiv:math.NT/0504119.
- [5] \ldots , The Carmichael numbers up to 10^{18} , April 2006, arXiv:math.NT/0604376.
- [6] \ldots , The Carmichael numbers up to 10²⁰, July 2006, Poster for ANTS VII, Berlin.
- [7] C. Pomerance, J.L. Selfridge, and S.S. Wagstaff jr, *The pseudoprimes up to* 25.10⁹, Math. Comp. 35 (1980), no. 151, 1003–1026.
- [8] Carl Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.
- [9] , Two methods in elementary analytic number theory, in Mollin [1], Proceedings of the NATO Advanced Study Institute on Number Theory and Applications, pp. 136–161.

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K. E-mail address: rgep@chalcedon.demon.co.uk