The Carmichael numbers up to σ 10²¹ *Richard G.E. Pinch*

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K. rgep@chalcedon.demon.co.uk

Introduction

We extend our previous computations to show that there are 20138200Carmichael numbers up to 10^{21} . As before, the numbers were generated by ^a back-tracking search for possible prime factorisations together with ^a "large prime variation". We presen^t further statistics on the distribution of Carmichaelnumbers.

Organisation of the search

We used improved versions of strategies first described in [2].

Finally we employed ^a different search over large values of *^pd*, in the range $2.10^6 < p_d < 10^{9.5}$, using the property that $P_{d-1} \equiv 1 \mod (p_d-1)$.

If *q* is ^a prime in this range, we let *^P* run through the arithmetic progression $P \equiv 1 \mod q - 1$ in the range $q < P < X/q$ where $X = 10^{21}$. We first check whether $N = Pq$ satisfies $2^N \equiv 2 \mod N$: it is sufficient to test whether $2^N \equiv 2 \mod P$ since the congruence modulo *q* is necessarily satisfied. If this condition is satisfied we factorise *P* and test whether $N \equiv 1 \mod \lambda(N)$. The approximate time taken for $X^t \le q < X^{1/2}$ is

The principal search was ^a depth-first back-tracking search over possible sequences of primes factors p_1, \ldots, p_d . Put $P_r = \prod_{i=1}^r p_i$, $Q_r = \prod_{i=r+1}^d p_i$ and $L_r = \text{lcm}\{p_i - 1 : i = 1, \ldots, r\}$. We find that Q_r must satisfy the congruence $N = P_r Q_r \equiv 1 \text{ mod } L_r$ and so in particular $Q_d = p_d$ must satisfy a congruence modulo *^Ld*−1: further *^p^d* [−]¹ must be ^a factor of *^Pd*−¹ [−]1. We modified this to terminate the search early at some level *^r* if the modulus *^L^r* is large enoug^h tolimit the possible values of *Q^r*, which may then be factorised directly.

We also employed the variant based on proposition 2 of [2] which determines the finitely many possible pairs (p_{d-1}, p_d) from P_{d-2} . In practice this was useful only when $d = 3$ allowing us to determine the complete list of Carmichael numbers with three prime factors up to 10^{21} .

A large prime variation

$$
\sum_{X^t < q < X^{1/2}} \frac{X}{q^2} \approx X^{1-t}.
$$

Statistics

n

They proved that $\liminf k \ge 1$ and suggested that $\limsup k \text{ might be 2, although}$ they also observed that within the range of their tables *^k*(*X*) is decreasing: Pomerance [4], [5] gave a heuristic argument suggesting that $\lim k = 1$. The decrease in *k* is reversed between 10^{13} and 10^{14} : see Figure 1. We find no clear suppor^t from our computations for any conjecture on ^a limiting value of *^k*.

X

Values of $C(X)$ and $C_d(X)$ for X in powers of 10 up to 10^{21} .

We have shown that there are 20138200 Carmichael numbers up to 10^{21} , all with at most 12 prime factors. We let *^C*(*X*) denote the number of Carmichael numbers less than *X* and $C(d, X)$ denote the number with exactly *d* prime factors. Table 1 gives the values of *^C*(*X*) and Table ² the values of *^C*(*^d*,*^X*) for *^X*in powers of 10 up to 10^{21} .

 $k(X)$ *versus* $\log_{10} X.$

 $C(X) =$ $=X \exp\left(-k(X) \frac{\log X \log \log \log X}{\log \log X}\right)$.

21

In Table 3 and Figure 1 we tabulate the function *^k*(*X*), defined by Pomerance, Selfridge and Wagstaff [3] by

n	$\log C (10^n) / (n \log 10)$	$C(10^n)/C(10^{n-1})$	$k(10^n)$
4	0.21127	7.000	2.19547
5	0.24082	2.286	2.07632
6	0.27224	2.688	1.97946
7	0.28874	2.441	1.93388
8	0.30082	2.429	1.90495
9	0.31225	2.533	1.87989
10	0.31895	2.396	1.86870
11	0.32336	2.330	1.86421
12	0.32633	2.286	1.86377
13	0.32962	2.339	1.86240
14	0.33217	2.319	1.86293
15	0.33480	2.353	1.86301
16	0.33700	2.335	1.86406
17	0.33926	2.373	1.86472
18	0.34148	2.394	1.86522
19	0.34363	2.413	1.86565
20	0.34574	2.431	1.86598
21	0.34781	2.450	1.86619

Conclusion

We consider that there is no clear evidence that *^k*(*x*) approaches any limit.

References

[1] R.A. Mollin (ed.), *Number theory and its applications*, Dordrecht, KluwerAcademic, 1989, Proceedings of the NATO Advanced Study Institute on

[2] Richard G.E. Pinch, *The Carmichael numbers up to* ¹⁰¹⁵, Math. Comp. **⁶¹**

[3] C. Pomerance, J.L. Selfridge, and S.S. Wagstaff jr, *The pseudoprimes up to*²⁵.10⁹, Math. Comp. **³⁵** (1980), no. 151, 1003–1026.

- Number Theory and Applications.
- (1993), 381–391, Lehmer memorial issue.
-
- (1981), 587–593.
- $[5]$ Applications, pp. 136–161.

[4] Carl Pomerance, *On the distribution of pseudoprimes*, Math. Comp. **37**

 , *Two methods in elementary analytic number theory*, in Mollin [1], Proceedings of the NATO Advanced Study Institute on Number Theory and