A survey on algorithms for computing isogenies on low genus curves

F. Morain

Laboratoire d'Informatique de l'École polytechnique

ANTS8, May 19th, 2008

Contents

I. Motivations.

II. Isogenies in theory.

III. Computing modular polynomials.

IV. Computing the isogeny.

V. Conclusions.

Acknowledgments: B. Smith.

I. Motivations

• **Number Theory:**

- \triangleright computing algebraic integrals: AGM, etc.
- ► classification of curves into isogeny classes (e.g., over a finite field, two curves have the same cardinality).
- \blacktriangleright etc.

• **Computational Number Theory:**

 \blacktriangleright *g* = 1:

- ► First life (1985–1997): crucial role in point counting in Schoof-Elkie-Atkin (SEA), Couveignes, Lercier; still needed for *p* large; AGM for *p* small (*p*-adic methods à la Mestre, Satoh, Kedlaya).
- ► Second life (1996–): Kohel, Fouquet/M. (cycles and volcanoes); Couveignes/Henocq, Bröker and Stevenhagen (CM curves using *p*-adic method).
- \blacktriangleright $g > 2$: try to extend these previous successes (e.g., modular polynomials).

Motivations (cont'd): cryptologic applications

- $g = 1$ (1999–):
	- \triangleright speedup for computing $[k]P$ when an "easy" endomorphism is known (Koblitz; Gallant/Lambert/Vanstone + several followers).
	- ▶ Special purposes: Smart; Brier & Joye.
	- ► isogeny graph: $(E_1, E_2) \in \mathscr{E}$ iff E_1 and E_2 are isogenous
		- \triangleright Galbraith: finding a path between two curves seems difficult;
		- ► Jao/Miller/Venkatesan: the graph is an expander graph;
		- ▶ Galbraith/Hess/Smart: send DL from a hard curve to a weak one;
		- ► cryptosystems: Teske (hide an easy DLP among harder ones); Rostovtsev/Stolbunov; etc.
		- ▶ hash function: Charles/Goren/Lauter use graph of 2-isogenies of supersingular elliptic curves.
- $g \geq 2$:
	- ▶ speedups in exponentiations: Kohel/Smith, Takashima, Galbraith/Lin/Scott, etc.
	- \blacktriangleright $g = 3$: sending DL on Jac(*H*) to a weaker one on Jac(*Q*) (Smith).

II. Isogenies in theory

Def. An isogeny is a surjective homomorphism of finite kernel between two abelian varieties: $\varphi: \mathscr{A} \rightarrow \mathscr{A}'.$

Right away, we will concentrate on jacobians of curves; for simplicity, $g < 3$.

Endomorphism: Jac′ = Jac.

The case $g = 1$

Thm. If *F* is a finite subgroup of $E(\overline{K})$, then there exists *I* and \tilde{E} s.t.

$$
I: E \to \tilde{E} = E/F, \quad \ker(I) = F.
$$

Thm. (dual isogeny) There is a unique $\hat{I}: \tilde{E} \to E$, $\ell = \text{deg}I$ s.t.

$$
(*) \qquad \hat{I} \circ I = [\ell]
$$

 \Rightarrow *I* is a factor of [ℓ], hence *I* can provide factors of ψ_{ℓ} \Rightarrow key to SEA.

Higher genus

 $g=2$: Jac $(H)/F \to \mathrm{Jac}(H')$ or $E_1\times E_2$ (cannot be determined by looking at *F* only?).

 $g = 3$: $Jac(H)/F \to Jac(H')$ or $Jac(C)$ or $E_1 \times E_2 \times E_3$.

If F has suitable properties, then $(*)$ stands also for some ℓ . Typical example is ℓ prime and $F \sim (\mathbb{Z}/\ell\mathbb{Z})^g$.

First examples and illustrations

1. Separable:

$$
[k](x, y) = \left(\frac{\phi_k}{\psi_k^2}, \frac{\omega_k}{\psi_k^3}\right)
$$

where ψ_k is some division polynomial (i.e., coding the *k*-torsion). Generalized to division ideals in higher genus.

2. Complex multiplication: $[i](x, y) = (-x, iy)$ on $E: y^2 = x^3 - x$. Every integer *k* can be written as $k = k_0 + Ik_1$ where $I^2 \equiv -1 \mod p$ and $|k_0|, |k_1| \approx \sqrt{p}$ \Rightarrow fast way of evaluating $[k]P$.

3. Inseparable: $\varphi(x, y) = (x^p, y^p)$, $\mathbf{K} = \mathbb{F}_p$.

In the sequel: only separable isogenies.

The classical case: isogenies for curves over C

If $E = \mathbb{C}/L$ and $E' = \mathbb{C}/L'$ and there exists an α s.t. α $L' \subset L$, then *E* and *E* ′ are isogenous.

Modular polynomial: there exists a bivariate polynomial $\Phi_m(X,Y) \in \mathbb{Z}[X,Y]$ such that if L/L' is cyclic of index *m* then

$$
\Phi_m(j(L),j(L')) = \Phi_m(j(E),j(E')) = 0.
$$

Examples

Ex.
$$
E: Y^2 = X^3 + bX
$$
, $F = \langle (0,0) \rangle$; $\tilde{E}: Y^2 = X^3 - 4bX$,
\n
$$
I: (x,y) \mapsto \left(\frac{x^3 + bx}{x^2}, y\frac{x^2 - b}{x^2}\right).
$$
\n
$$
\hat{I}(x) = \frac{x^2 - 4b}{x},
$$
\n
$$
\hat{I} \circ I = 2^2[2] = \frac{x^4 - 2x^2b + b^2}{x(x^2 + b)}.
$$

Later on: how we can effectively compute such formulas.

A typical isogeny pair: $\tilde{E} = \mathbb{C}/(\omega_1/\ell, \omega_2)$ is ℓ -isogenous to $E = \mathbb{C}/(\omega_1, \omega_2)$. Take as finite subgroup:

$$
F = \{O_E\} \cup \left\{ (\wp(r\omega_1/\ell), \frac{1}{2}\wp(r\omega_1/\ell)), 1 \leq r \leq \ell - 1 \right\}.
$$

[remember that Weierstrass ℘ parametrizes *E*.]

Complex multiplication

 $E = \mathbb{C}/L(1, \tau)$ with quadratic τ in some $\mathbf{K} = \mathbb{Q}(\sqrt{-D}).$

For α an integer in **K**, Weierstrass \wp gives:

$$
\wp(\alpha z) = \frac{N(\wp(z))}{D(\wp(z))}
$$

with $deg(N) = deg(D) + 1 = Norm(\alpha)$.

Take $D = 7$ and $E: Y^2 = X^3 - 35X - 98$, $\omega = (-1 + \sqrt{-7})/2$:

$$
[\omega](x) = \frac{(x^2 + (4+\omega)x + 21\omega + 7)(-1+\omega)}{4x + 16 + 4\omega}.
$$

CM generalizes to other genera: theory ok, computations doable in genus 2.

Two strategies for building isogenies

Starting from a kernel:

- given $Jac(C)$ and F, find the module(s) of $\operatorname{Jac}(C')=\operatorname{Jac}(C)/F,$ and then C' [this could be non-trivial];
- compute *I*.

Using modular polynomials: try to mimic the classical case of

- find the roots $\{j'\}$ of $\Phi_{\ell}(X,j(E)) = 0;$
- for each j' , find E' of invariant j' ;
- compute *I*.

En route: examine each of these, starting from the (easy) case of $g = 1$.

III. Computing modular polynomials A) when $g = 1$

Traditionnal modular polynomial: constructed via lattices and curves over $\mathbb C$ (plus modular forms and functions). Remember that

$$
j(q) = \frac{1}{q} + 744 + \sum_{n \ge 1} c_n q^n.
$$

Then $\Phi_{\ell}^{T}(X,Y)$ is such that $\Phi_{\ell}^{T}(j(q),j(q^{\ell}))$ vanishes identically. This polynomial has a lot of properties: symmetrical $\mathbb{Z}[X, Y]$, degree in *X* and *Y* is $\ell + 1$ (hence $(\ell + 1)^2$ coefficients), etc. and moreover

Thm. [P. Cohen] the height of $\Phi_{\ell}^T(X,Y)$ is $O((\ell+1)\log \ell)$. \Rightarrow total size is $\tilde{O}(\ell^3)$.

Example:

$$
\begin{split} \Phi_{2}^{T}(X,Y)=&X^3+X^2\left(-Y^2+1488\,Y-162000\right)+X\left(1488\,Y^2+40773375\,Y+8748000000\right)\\ &\qquad+Y^3-162000\,Y^2+8748000000\,Y-157464000000000. \end{split}
$$

Choosing another modular equation

Why? Always good to have the smallest polynomial so as not to fill the disks too rapidly...

Key point: any function on $\Gamma_0(\ell)$ (or $\Gamma_0(\ell)/\langle w_\ell \rangle$) will do. In particular, if

$$
f(q) = q^{-\nu} + \cdots
$$

then there will exist a polynomial $\Phi_{\ell}[f](X,Y)$ s.t.

 $\Phi_{\ell}[f](j(q), f(q)) \equiv 0.$

This polynomial will have $(v+1)(\ell+1)$ coefficients, and height $O(v \log \ell)$, still in $\tilde{O}(\ell^3)$.

Choosing *f*

Atkin:

- \bullet canonical choice $f(q)$ using some power of $\eta(q)/\eta(q^\ell)$ where $\eta(q) = q^{1/24} \prod_{n \geq 1} (1 - q^n)$. E.g. $\Phi_2^c(J, F) = F^3 + 48F^2 + 768F - JF + 4096.$
- a difficult method (the laundry method) for finding (conjecturally) the *f* with smallest *v* (that can rewritten as θ -functions with characters).

Müller: for (small) integer *r*, use

$$
\frac{T_r(\eta\eta_\ell)}{\eta\eta_\ell}
$$

where *T^r* is the Hecke operator

$$
(T_r|f)(\tau) = f(r\tau) + \frac{1}{r} \sum_{k=0}^{r-1} f\left(\frac{\tau+k}{r}\right).
$$

Alternatively: one may use some linear algebra on functions obtained via Hecke operators. The contract of the state of the sta

Computing Φ^ℓ [*f*] given *f*

- **Atkin** (analysis by Elkies): use *q*-expansion of *j* and *f* with $O(\nu\ell)$ terms, compute power sums of roots of $\Phi_{\ell}[f]$, write them as polynomials in *J* and go back to coefficients of $\Phi_{\ell}[f](X,J)$ via Newton's formulas; use CRT on small primes. $\tilde{O}(\ell^3\mathsf{M}(p));$ used for $\ell \leq 1000$ fifteen years ago.
- Charles+Lauter (2005): compute Φ_{ℓ}^T modulo p using supersingular invariants mod *p*, Mestre méthode des *graphes,* ℓ *torsion points defined over* $\mathbb{F}_{p^{O(\ell)}}$ *and* interpolation. $\tilde{O}(\ell^4\mathsf{M}(p))$
- **Enge (2004); Dupont (2004):** use complex floating point evaluation and interpolation. $\tilde{O}(\ell^3)$

Write

$$
\Phi_{\ell}^{T}(X,J) = X^{\ell+1} + \sum_{u=0}^{\ell} c_{u}(J)X^{u}
$$

where $c_u(J) \in \mathbb{Z}[J]$, $deg(c_u(J)) \leq \ell+1$. All computations are done using precision $H = O(\ell \log \ell)$.

1. **for** $\ell + 1$ values of z_i **do**:

1.1 Compute floating point approximations to the $\ell+1$ roots $f_r(z_i)$ of $\Phi_{\ell}[f](X_jj(z_i))$ to precision H ;

1.2 Build $\prod_{r=1}^{\ell+1} (X - f_r(z_i)) = X^{\ell+1} + \sum_{u=0}^{\ell} c_u(j(z_i))X^u$; $O(M(\ell)\log \ell)$ ops.

2. Perform $\ell + 1$ interpolations for the c_u 's: $O((\ell+1)M(\ell)\log \ell)$ ops.

All 1.2 + 2 has cost $O(\ell \mathsf{M}(\ell)(\log \ell) \mathsf{M}(H)) = \tilde{O}(\ell^3)$.

Examples

Data for $T_r(\eta \eta_\ell)/\eta \eta_\ell$ (courtesy Enge)

An algebraic alternative: Charlap/Coley/Robbins

Over some **K**, write

$$
\psi_{\ell}(X)=\prod_{1\leq r,s\leq \ell-1}(X-\wp((r\omega_1+s\omega_2)/\ell)).
$$

The factor we build is:

$$
D(x) = \prod_{1 \le r \le \ell-1} (X - \wp(r\omega_1/\ell))
$$

and all its coefficients are in **K**[σ] where $\sigma = \sum_{r} \wp(r\omega_1/\ell)$.

$$
\begin{array}{c}\n\mathbf{K}[x]/(\psi_{\ell}(x)) \\
\mid \\
\mathbf{K}[x]/(M_{\sigma}(x)) \\
\mid \\
\mathbf{K}[x]\n\end{array}\n\qquad \ell+1
$$

If σ is rational over **K**, then $D(x)$ will have rational coefficients.

CCR (cont'd)

Another modular equation: $M_{\sigma}(x) = \Phi_{\ell}(x, j(E)).$ It has the same properties as the traditional one (e.g., factorization patterns) and can be used as is in SEA. To find \tilde{A} and \tilde{B} , we need two more polynomials + some tedious matching of roots.

The first values are:

 $U_3(X) = X^4 + 2AX^2 + 4BX - A^2/3,$ $V_3(X) = X^4 + 84AX^3 + 246A^2X^2 + (-63756A^3 - 432000B^2)X$ $+576081A^{4} + 3888000B^{2}A,$ $W_3(X) = X^4 + 732BX^3 + (171534B^2 + 25088A^3)X^2$ $+(11009548B³+1630720BA³)X-297493504/27A⁶$ $-437245479B^4 - 139150592B^2A^3$,

$$
U_5(X) = X^6 + 20AX^4 + 160BX^3 - 80A^2X^2 - 128ABX - 80B^2.
$$

B) Modular polynomials when $g = 2$

- **Gaudry + Schost:** the algebraic alternative is generic (Ξ_{ℓ})
	- ► total degree is $d = (\ell^4 1)/(\ell 1)$;
	- **•** number of monomials is $O(\ell^{12})$;
	- ighth can do $\ell = 3$: 50k but a lot of computing time (weblink still active);
	- ► use its factorization patterns à la Atkin to speedup cardinality computations.
- **The classical modular approach:**
	- Poincaré \rightarrow Siegel (dim 2g);
	- replace *j* by $(i_1, i_2, i_3) \Rightarrow$ triplet of modular polynomials, coefficients are rational fractions in *jⁱ* 's;
	- ▶ Dupont (experimental conjectures proven more recently by Bröker+Lauter): stuck at $\ell = 2$ with 26.8 Mbgz (just the beginning of $\ell = 3$; uses evaluation/interpolation again.

C) Modular polynomials when $g = 3$

Gaudry + Schost \Rightarrow $d = (\ell^{2g} - 1)/(\ell - 1)$.

And then: ?????

IV. Computing the isogeny

A) the case $g = 1$: Vélu's formulas

Vélu suggests to use

$$
x_{I(P)} = x_P + \sum_{Q \in F^*} (x_{P+Q} - x_Q)
$$

and derives equations for \tilde{E} and I in terms of symmetric functions in the x_O , the abscissas of points in *F*. (Plus more properties, like the isogeny is strict.)

How does an isogeny look like?

Extending Vélu, Dewaghe (for $E: Y^2 = X^3 + AX + B$):

$$
D(x) = \prod_{Q \in F^*} (x - x_Q) = x^{\ell - 1} - \sigma x^{\ell - 2} + \cdots
$$

Fundamental proposition. The isogeny *I* can be written as

$$
I(x,y) = \left(\frac{N(x)}{D(x)}, y\left(\frac{N(x)}{D(x)}\right)'\right),
$$

$$
\frac{N(x)}{D(x)} = \ell x - \sigma - (3x^2 + A)\frac{D'(x)}{D(x)} - 2(x^3 + Ax + B)\left(\frac{D'(x)}{D(x)}\right)'
$$

$$
= \ell x - \sigma - 2\sqrt{x^3 + Ax + B}\left(\sqrt{x^3 + Ax + B}\frac{D'(x)}{D(x)}\right)'
$$

1. Compute the *hⁱ* 's of

$$
\frac{N(x)}{D(x)} = x + \sum_{i \ge 1} \frac{h_i}{x^i}
$$

in $O(\ell^2)$ operations using

$$
(3x^2+A)\left(\frac{N(x)}{D(x)}\right)' + 2(x^3+Ax+B)\left(\frac{N(x)}{D(x)}\right)'' = 3\left(\frac{N(x)}{D(x)}\right)^2 + \tilde{A}.
$$

2. deduce power sums p_i of $D(x)$ in $O(\ell)$ operations using also \tilde{A} and \tilde{B} ;

- 3. use fast Newton in $O(M(\ell))$ to get $D(x)$.
- \Rightarrow very fast for small ℓ 's.

Bostan/M./Salvy/Schost

Prop. $O(M(\ell))$ method to get the h_i 's given \tilde{A} , \tilde{B} , σ.

Some ideas: there exists a series *S*(*x*) s.t.

$$
\frac{N(x)}{D(x)} = \frac{1}{S\left(\frac{1}{\sqrt{x}}\right)^2}.
$$

$$
S(x) = x + \frac{\tilde{A} - A}{10}x^5 + \frac{\tilde{B} - B}{14}x^7 + O(x^9) \in x + x^3 \mathbf{K}[[x^2]]
$$

is such that

$$
(Bx^{6} + Ax^{4} + 1) S'(x)^{2} = 1 + \tilde{A} S(x)^{4} + \tilde{B} S(x)^{6}.
$$

Use fast algorithm for solving this differential equation.

Rem. See Math. Comp. paper that includes survey of known methods for isogeny computations.

The case of finite fields of small characteristic

- **Couveignes:** formal groups; Artin-Schreier towers; time $\tilde{O}(\ell^2)$ but bad dependancy on p (see on-going work of L. De Feo).
- **Lercier/Joux** (2006): medium *p* using *p*-adic lifting.
- **Lercier/Sirvent** (2008): small *p* using *p*-adic lifting + BMSS \Rightarrow complexity of $O(M(\ell))$ in all cases.

B) The case
$$
g = 2
$$

Probably not complete list:

- Gaudry+Schost: $Jac(C) \to E_1 \times E_2$ for a $(2,2)$ -isogeny of kernel $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$.
- $\ell = 2$ (AGM): Richelot, Humbert.
- $\ell \geq 3$: Dolgachev/Lehavi; general result for $F = (\mathbb{Z}/\ell \mathbb{Z})^2$; completely explicit for $\ell = 3$; more work needed for $\ell > 3$. Some hope?

C) And for $g = 3$?

Again, lack of general formulas:

- $\ell = 2$ (AGM): Donagi/Livné (+ negative results for $g > 3$); explicit methods by Lehavi + Ritzenthaler.
- Smith (Eurocrypt 2008):
	- $\blacktriangleright \varphi : \text{Jac}(H) \to \text{Jac}(C)$ where *H* is hyperelliptic and *C* smooth plane quartic;
	- \triangleright intricate construction but relatively simple formulas in the end: uses Recilla's trigonal construction + theorem of Donagi and Livné;
	- \triangleright works for 18.57% of smooth plane quartics;
	- ightharpoonup ince crypto application (DL in Jac(*C*) easier than in Jac(*H*)).

V. Conclusions

- $g = 1$: morally solved.
- $g > 1$:
	- \blacktriangleright scattered results;
	- ► curves are not so frequent and/or easy in higher genus;
	- ▶ objects are exponentially big: even with sophisticated computer algebra techniques, this sounds difficult.