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. Motivations

e Number Theory:
» computing algebraic integrals: AGM, etc.
» classification of curves into isogeny classes (e.g., over a
finite field, two curves have the same cardinality).
» etc.

e Computational Number Theory:
» g=1

> First life (1985-1997): crucial role in point counting in
Schoof-Elkie-Atkin (SEA), Couveignes, Lercier; still needed
for p large; AGM for p small (p-adic methods a la Mestre,
Satoh, Kedlaya).

» Second life (1996-): Kohel, Fouquet/M. (cycles and
volcanoes); Couveignes/Henocq, Broker and Stevenhagen
(CM curves using p-adic method).

» g > 2: try to extend these previous successes (e.g.,
modular polynomials).
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Motivations (cont’'d): cryptologic applications

e g=1(1999-):

» speedup for computing [K|P when an “easy”
endomorphism is known (Koblitz;
Gallant/Lambert/Vanstone + several followers).

> Special purposes: Smart; Brier & Joye.

» isogeny graph: (Ej,Ey) € & iff E; and E; are isogenous

» Galbraith: finding a path between two curves seems
difficult;

» Jao/Miller/Venkatesan: the graph is an expander graph;

» Galbraith/Hess/Smart: send DL from a hard curve to a
weak one;

» cryptosystems: Teske (hide an easy DLP among harder
ones); Rostovtsev/Stolbunov; etc.

» hash function: Charles/Goren/Lauter use graph of
2-isogenies of supersingular elliptic curves.

¢ g>2

» speedups in exponentiations: Kohel/Smith, Takashima,
Galbraith/Lin/Scott, etc.

» g=3: sending DL on Jad¢H) to a weaker one on JagQ)
(Smith).
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Il. Isogenies in theory

Def. An isogeny is a surjective homomorphism of finite kernel
between two abelian varieties: ¢ : &/ — &7’.

Right away, we will concentrate on jacobians of curves; for
simplicity, g < 3.

Endomorphism: Ja¢ = Jac
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Thecaseg=1

Thm. If F is a finite subgroup of E(K), then there exists | and
Es.t.
|:E—E=E/F, kerl)=F.

Thm. (dual isogeny) There is a unique | : E — E, ¢ = ded s.t.

m

= | is a factor of [¢], hence | can provide factors of g
= key to SEA.
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Higher genus

g=2: JadH)/F — JadH’) or E; x E, (cannot be determined by
looking at F only?).

g=3: JadH)/F — JadH’) or JacC) or E; x E; x Es.

If F has suitable properties, then (*) stands also for some /.
Typical example is ¢ prime and F ~ (Z/{Z)9.
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First examples and illustrations

1. Separable:

Kxy) = (Lfif/@

where yx is some division polynomial (i.e., coding the
k-torsion). Generalized to division ideals in higher genus.

2. Complex multiplication: [i](x,y) = (—x,iy) on E:y? = x3 —x.
Every integer k can be written as k= ky + Ik; where

12=—1 modp and |ko|, |ki| ~ /P

= fast way of evaluating [k|P.

3. Inseparable: ¢(x,y) = (xP,yP), K =TF,.

In the sequel: only separable isogenies.
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The classical case: isogenies for curves over C

If E=C/L and E' = C/L’ and there exists an a s.t. al’ C L,
then E and E’ are isogenous.

Modular polynomial:  there exists a bivariate polynomial
®n(X,Y) € Z[X,Y] such that if L /L’ is cyclic of index mthen

Pm(j(L),i(L)) = Pm(i(E),J(E")) =0.
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Examples

Ex. E:Y2=X3+DbX, F=((0,0)); E: Y2 = X3 —4bX,

_ XB+bx x2—b
I'(X7y)'_> T?)’T .

- X% —4b
I(X)_ X Y
A X — 252h+ b?
__92[9] _
fol =22[2] = 0P 5D)

Later on: how we can effectively compute such formulas.

A typical isogeny pair: E = C/(w//, ;) is (-isogenous to

E=C/(wn,w). Take as finite subgroup:

F={Og}U {(D(rwl/f), %D’(rwl/ﬁ)),l <r</{- 1} )

[remember that Weierstrass [J parametrizes E.]
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Complex multiplication
E = C/L(1, 1) with quadratic T in some K = Q(+/—D).

For a an integer in K, Weierstrass [J gives:

O(az) =

with degN) = degD) +1 = Norm(a).
TakeD=7and E:Y2=X3-35X-98 w= (—1++/-7)/2

(X + (4+ W)X+ 21lw+7) (—1+ w)

@) = S .

CM generalizes to other genera: theory ok, computations
doable in genus 2.
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Two strategies for building isogenies

Starting from a kernel:

e given JagC) and F, find the module(s) of
JaqC’) =Jad¢C)/F, and then C' [this could be non-trivial];

e compute I.

Using modular polynomials:  try to mimic the classical case
of

e find the roots {j'} of ®,(X,j(E)) =0;

e for each j’, find E’ of invariant j’;

e compute I.

En route: examine each of these, starting from the (easy)
case ofg= 1.
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[1l. Computing modular polynomials
A)wheng=1

Traditionnal modular polynomial:  constructed via lattices
and curves over C (plus modular forms and functions).
Remember that

. 1

j(@==+744+y cug.

q n>1

Then @] (X,Y) is such that @] (j(q),j(q’)) vanishes identically.
This polynomial has a lot of properties: symmetrical Z[X,Y],

degree in X and Y is £+ 1 (hence (¢ + 1)? coefficients), etc.
and moreover

Thm. [P. Cohen] the height of ®](X,Y) is O((¢+1)log¥).
= total size is O(3).

Example:

®F(X,Y) = X3+ X2 (42 +1488Y — 16200() +X (1488‘(2 440773375 + 8748000009

3 > 14/31
+Y? —162000v“ 4874800000 — 157464000000000



Choosing another modular equation

Why? Always good to have the smallest polynomial so as not
to fill the disks too rapidly...

Key point: any function on o(¢) (or ['o(€)/{w;)) will do. In
particular, if

f(@) =a™+--
then there will exist a polynomial @,[f](X,Y) s.t.

@ [f](j(a),f(a))

This polynomial will have (v+1)(¢+ 1) coefficients, and height
O(vlog¥), still in O(¢3).

0.
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Choosing f
Atkin:
« canonical choice f(q) using some power of n(q)/n(q’)
where n(q) = q¥/?*M-1(1—q"). E.g.
P®5(J,F) = F>+ 48F2 + 768 — JF + 4096
e a difficult method (the laundry method) for finding

(conjecturally) the f with smallest v (that can rewritten as
6-functions with characters).

Muller: for (small) integer r, use
T (nne)

nne
where T, is the Hecke operator

(Telf)(T) = f(rT +1r2:f <T+k>

Alternatively. one may use some linear algebra on functions

obtained via Hecke operators. 1631



Computing ®,[f] given f

e Atkin (analysis by Elkies): use g-expansion of j and f with
O(v¢) terms, compute power sums of roots of ®,[f], write
them as polynomials in J and go back to coefficients of
®,[f](X,J) via Newton’s formulas; use CRT on smalll
primes. O(¢3M(p)); used for ¢ < 1000fifteen years ago.

o Charles+Lauter (2005): compute ®] modulo p using
supersingular invariants mod p, Mestre méthode des
graphes, ¢ torsion points defined over F o) and
interpolation. O(¢*M(p))

 Enge (2004); Dupont (2004): use complex floating point
evaluation and interpolation. O(/2)
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Write ,
df (X, J) =X+ Z)cu(;l)x“
U=

where ¢,(J) € Z[J], degcy(J)) < £+ 1. All computations are
done using precision H = O(¢log/).

1. for ¢+ 1 values of z do:

1.1 Compute floating point approximations to the ¢+ 1 roots
fr(z) of ®,[f](X,j(z)) to precision H;

1.2 Build [IHH(X—f1(z)) = X4 51 _gcu(i(2))XY;
O(M(¢)log¥) ops.

2. Perform ¢+ 1 interpolations for the c,’'s: O((¢+ 1)M(¢)log¥)
ops.

All 1.2 + 2 has cost O(/M(¢)(log/)M(H)) = O(¢3).
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Examples

Data for T,(nn¢)/nn. (courtesy Enge)

1 r H |degJ) | eval(s) | interp(s) | tot (d) | Mb gz
3011| 5| 7560 200 368
3079| 97| 9018 254 7790 640 23 547
3527| 13| 9894 268 799 1440 3 746
3517| 97| 10746 290| 12400 1110 42 850
4003| 13| 11408 308| 1130 2320 4| 1127
5009| 5| 13349 334 880 3110 3| 1819
6029| 5| 16418 402| 1550 6370 7| 3251
7001| 519473 466 | 2440 11700 13| 5182
8009| 5| 22515 534| 3500 20000 22| 7905
9029| 5| 25507 602| 5030 33100 35| 11460
10079| 5| 28825 672| 7690 56300 61| 16152
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An algebraic alternative: Charlap/Coley/Robbins

Over some K, write

W)= [] X-O((rer+sw)/e).

1<r,s</-1

The factor we build is:

(X—0O(ren/t
1§r|;|€ . (ran/?))

and all its coefficients are in K[g] where o =5, 0(rwy/¢).

K/ (@)

If o is rational over K, then D(x) will have rational coefficients.
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CCR (contd)

Another modular equation:  Mg(x) = ®y(X,j(E)).

It has the same properties as the traditional one (e.g.,
factorization patterns) and can be used as is in SEA.

To find A and B, we need two more polynomials + some
tedious matching of roots.

The first values are:
Ua(X) = X%+ 2AX2 + 4BX — A?/3,

Va(X) = X4+ 84AX3 1 246A%X2 4 (—63756A% — 43200®B2)X

+576081A* + 388800@2A,
Ws(X) = X4+ 732BX3 4 (17153482 + 25083 X?
+(110095483 + 163072BA%)X — 29749350427A°
—437245478* — 13915059B2A%,

Us(X) = X®+20AX* + 160BX> — 80A?X? — 128ABX — 80B2.
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B) Modular polynomials when g=2

e Gaudry + Schost: the algebraic alternative is generic

(=0
» total degree is d = (¢*—1)/(¢—1);

» number of monomials is O(¢*?);

» can do ¢ = 3: 50k but a lot of computing time (weblink still
active);

» use its factorization patterns & la Atkin to speedup
cardinality computations.

e The classical modular approach:
» Poincaré — Siegel (dim 2g);
» replace j by (j1,j2,j3) = triplet of modular polynomials,
coefficients are rational fractions in j's;
» Dupont (experimental conjectures proven more recently
by Broker+Lauter): stuck at £ = 2 with 26.8 Mbgz (just the
beginning of ¢ = 3); uses evaluation/interpolation again.
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C) Modular polynomials when g=3

Gaudry + Schost = d = (29— 1)/(¢—1).

And then: ???7??
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V. Computing the isogeny

A) the case g = 1: Vélu's formulas

Vélu suggests to use

Xy =X+ Y (XprQ—XQ)
Qek+

and derives equations for E and | in terms of symmetric
functions in the Xg, the abscissas of points in F. (Plus more
properties, like the isogeny is strict.)
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How does an isogeny look like?
Extending Vélu, Dewaghe (for E : Y2 = X3+ AX + B):

D(X) = [ (x—x0) =X~ ox2
=[] - ox 2t

Fundamental proposition.  The isogeny | can be written as

[;((;() 2(:3 + Ax+B) (DD/(::)
%)

pd

X

()

—(X—0— 2\/x3+Ax+B(\/x3+Ax+B

N
g

=Ix—0— (3 +A)

)
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Elkies92

1. Compute the h;’s of

N(x)
bx <" 2%

in O(£?) operations using

(3 +A) <ggg)/+2(x3+Ax+B) (E'Eg) :3(3'83)24.

2. deduce power sums p; of D(x) in O(¢) operations using also
Aand B;

3. use fast Newton in O(M(¥¢)) to get D(x).
= very fast for small /’s.
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Bostan/M./Salvy/Schost
Prop. O(M(¢)) method to get the h’s given A, B, o.

Some ideas: there exists a series §(x) s.t.

Nix) 1
0 s(3)

S(x) = x+ A Asy B Bx7—|—O(x9) € X+ 3K [¥]

is such that

(BX®+ AX* +1)S'(x)2 = 1+ AS(x)* + BS(x)®.

Use fast algorithm for solving this differential equation.

Rem. See Math. Comp. paper that includes survey of known

methods for isogeny computations.
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The case of finite fields of small characteristic

 Couveignes: formal groups; Artin-Schreier towers; time
O(¢?) but bad dependancy on p (see on-going work of
L. De Feo).

e Lercier/Joux (2006): medium p using p-adic lifting.

e Lercier/Sirvent (2008): small p using p-adic lifting +
BMSS = complexity of O(M(¥¢)) in all cases.
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B) The case g=2

Probably not complete list:
e Gaudry+Schost: Ja¢C) — E; x E; for a (2,2)-isogeny of

kernel Z/27. x 7./ 27.
e (=2 (AGM): Richelot, Humbert.
e (> 3: Dolgachev/Lehavi; general result for F = (Z/(Z)?;

completely explicit for ¢ = 3; more work needed for ¢ > 3.
Some hope?
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C) And for g = 3?

Again, lack of general formulas:

e (=2 (AGM): Donagi/Livné (+ negative results for g > 3);
explicit methods by Lehavi + Ritzenthaler.

e Smith (Eurocrypt 2008):

» ¢ :JadH) — JaqC) where H is hyperelliptic and C smooth
plane quartic;

» intricate construction but relatively simple formulas in the
end: uses Recilla’s trigonal construction + theorem of
Donagi and Livné;

» works for 18.57% of smooth plane quartics;

» nice crypto application (DL in Ja¢C) easier than in JagH)).
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V. Conclusions

e g=1: morally solved.

e g>1
» scattered results;
» curves are not so frequent and/or easy in higher genus;
» objects are exponentially big: even with sophisticated
computer algebra techniques, this sounds difficult.
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