
A survey on algorithms for computing
isogenies on low genus curves

F. Morain

Laboratoire d’Informatique de l’École polytechnique

POLYTECHNIQUEECOLE

ANTS8, May 19th, 2008

1/31

2/31

Contents

I. Motivations.

II. Isogenies in theory.

III. Computing modular polynomials.

IV. Computing the isogeny.

V. Conclusions.

Acknowledgments: B. Smith.

3/31

I. Motivations

• Number Theory:
◮ computing algebraic integrals: AGM, etc.
◮ classification of curves into isogeny classes (e.g., over a

finite field, two curves have the same cardinality).
◮ etc.

• Computational Number Theory:
◮ g = 1:

◮ First life (1985–1997): crucial role in point counting in
Schoof-Elkie-Atkin (SEA), Couveignes, Lercier; still needed
for p large; AGM for p small (p-adic methods à la Mestre,
Satoh, Kedlaya).

◮ Second life (1996–): Kohel, Fouquet/M. (cycles and
volcanoes); Couveignes/Henocq, Bröker and Stevenhagen
(CM curves using p-adic method).

◮ g ≥ 2: try to extend these previous successes (e.g.,
modular polynomials).

4/31

Motivations (cont’d): cryptologic applications
• g = 1 (1999–):

◮ speedup for computing [k]P when an “easy”
endomorphism is known (Koblitz;
Gallant/Lambert/Vanstone + several followers).

◮ Special purposes: Smart; Brier & Joye.
◮ isogeny graph: (E1,E2) ∈ E iff E1 and E2 are isogenous

◮ Galbraith: finding a path between two curves seems
difficult;

◮ Jao/Miller/Venkatesan: the graph is an expander graph;
◮ Galbraith/Hess/Smart: send DL from a hard curve to a

weak one;
◮ cryptosystems: Teske (hide an easy DLP among harder

ones); Rostovtsev/Stolbunov; etc.
◮ hash function: Charles/Goren/Lauter use graph of

2-isogenies of supersingular elliptic curves.
• g ≥ 2:

◮ speedups in exponentiations: Kohel/Smith, Takashima,
Galbraith/Lin/Scott, etc.

◮ g = 3: sending DL on Jac(H) to a weaker one on Jac(Q)
(Smith).

5/31

II. Isogenies in theory

Def. An isogeny is a surjective homomorphism of finite kernel
between two abelian varieties: ϕ : A → A

′.

Right away, we will concentrate on jacobians of curves; for
simplicity, g ≤ 3.

Endomorphism: Jac′ = Jac.

6/31

The case g = 1

Thm. If F is a finite subgroup of E(K), then there exists I and
Ẽ s.t.

I : E → Ẽ = E/F, ker(I) = F.

Thm. (dual isogeny) There is a unique Î : Ẽ → E, ℓ = degI s.t.

(∗) Î ◦ I = [ℓ]

E -I
Ẽ

E
?
Î

@
@

@@R
[ℓ]

⇒ I is a factor of [ℓ], hence I can provide factors of ψℓ

⇒ key to SEA.
7/31

Higher genus

g = 2: Jac(H)/F → Jac(H′) or E1×E2 (cannot be determined by
looking at F only?).

g = 3: Jac(H)/F → Jac(H′) or Jac(C) or E1×E2×E3.

If F has suitable properties, then (*) stands also for some ℓ.
Typical example is ℓ prime and F ∼ (Z/ℓZ)g.

8/31

First examples and illustrations

1. Separable:

[k](x,y) =

(

φk

ψ2
k

,
ωk

ψ3
k

)

where ψk is some division polynomial (i.e., coding the
k-torsion). Generalized to division ideals in higher genus.

2. Complex multiplication: [i](x,y) = (−x, iy) on E : y2 = x3− x.
Every integer k can be written as k = k0 + Ik1 where
I2 ≡−1 modp and |k0|, |k1| ≈

√
p

⇒ fast way of evaluating [k]P.

3. Inseparable: ϕ(x,y) = (xp,yp), K = Fp.

In the sequel: only separable isogenies.

9/31

The classical case: isogenies for curves over C

O
ω 2

ω 1

If E = C/L and E′ = C/L′ and there exists an α s.t. αL′ ⊂ L,
then E and E′ are isogenous.

Modular polynomial: there exists a bivariate polynomial
Φm(X,Y) ∈ Z[X,Y] such that if L/L′ is cyclic of index m then

Φm(j(L), j(L′)) = Φm(j(E), j(E′)) = 0.

10/31

Examples
Ex. E : Y2 = X3 +bX, F = 〈(0,0)〉; Ẽ : Y2 = X3−4bX,

I : (x,y) 7→
(

x3 +bx
x2 ,y

x2−b
x2

)

.

Î(x) =
x2−4b

x
,

Î ◦ I = 22[2] =
x4−2x2b+b2

x(x2 +b)
.

Later on: how we can effectively compute such formulas.

A typical isogeny pair: Ẽ = C/(ω1/ℓ,ω2) is ℓ-isogenous to
E = C/(ω1,ω2). Take as finite subgroup:

F = {OE}∪
{

(℘(rω1/ℓ),
1
2

℘′(rω1/ℓ)),1≤ r ≤ ℓ−1

}

.

[remember that Weierstrass ℘ parametrizes E.]
11/31

Complex multiplication

E = C/L(1,τ) with quadratic τ in some K = Q(
√
−D).

For α an integer in K, Weierstrass ℘ gives:

℘(αz) =
N(℘(z))
D(℘(z))

with deg(N) = deg(D)+1 = Norm(α).

Take D = 7 and E : Y2 = X3−35X−98, ω = (−1+
√
−7)/2:

[ω](x) =

(

x2 +(4+ω)x+21ω +7
)

(−1+ω)

4x+16+4ω
.

CM generalizes to other genera: theory ok, computations
doable in genus 2.

12/31

Two strategies for building isogenies

Starting from a kernel:
• given Jac(C) and F, find the module(s) of

Jac(C′) = Jac(C)/F, and then C′ [this could be non-trivial];

• compute I.

Using modular polynomials: try to mimic the classical case
of

• find the roots {j′} of Φℓ(X, j(E)) = 0;

• for each j′, find E′ of invariant j′;

• compute I.

En route: examine each of these, starting from the (easy)
case of g = 1.

13/31

III. Computing modular polynomials
A) when g = 1

Traditionnal modular polynomial: constructed via lattices
and curves over C (plus modular forms and functions).
Remember that

j(q) =
1
q

+744+ ∑
n≥1

cnqn.

Then ΦT
ℓ (X,Y) is such that ΦT

ℓ (j(q), j(qℓ)) vanishes identically.
This polynomial has a lot of properties: symmetrical Z[X,Y],
degree in X and Y is ℓ+1 (hence (ℓ+1)2 coefficients), etc.
and moreover

Thm. [P. Cohen] the height of ΦT
ℓ (X,Y) is O((ℓ+1) logℓ).

⇒ total size is Õ(ℓ3).

Example:
ΦT

2 (X,Y) = X3 +X2
(

−Y2 +1488Y −162000
)

+X
(

1488Y2 +40773375Y +8748000000
)

+Y3−162000Y2 +8748000000Y −157464000000000.
14/31

Choosing another modular equation

Why? Always good to have the smallest polynomial so as not
to fill the disks too rapidly...

Key point: any function on Γ0(ℓ) (or Γ0(ℓ)/〈wℓ〉) will do. In
particular, if

f (q) = q−v + · · ·
then there will exist a polynomial Φℓ[f](X,Y) s.t.

Φℓ[f](j(q), f (q)) ≡ 0.

This polynomial will have (v+1)(ℓ+1) coefficients, and height
O(v logℓ), still in Õ(ℓ3).

15/31

Choosing f
Atkin:

• canonical choice f (q) using some power of η(q)/η(qℓ)
where η(q) = q1/24∏n≥1(1−qn). E.g.

Φc
2(J,F) = F3 +48F2 +768F− JF +4096.

• a difficult method (the laundry method) for finding
(conjecturally) the f with smallest v (that can rewritten as
θ -functions with characters).

Müller: for (small) integer r, use

Tr(ηηℓ)

ηηℓ

where Tr is the Hecke operator

(Tr|f)(τ) = f (rτ)+
1
r

r−1

∑
k=0

f

(

τ + k
r

)

.

Alternatively: one may use some linear algebra on functions
obtained via Hecke operators. 16/31

Computing Φℓ[f] given f

• Atkin (analysis by Elkies): use q-expansion of j and f with
O(vℓ) terms, compute power sums of roots of Φℓ[f], write
them as polynomials in J and go back to coefficients of
Φℓ[f](X,J) via Newton’s formulas; use CRT on small
primes. Õ(ℓ3M(p)); used for ℓ ≤ 1000fifteen years ago.

• Charles+Lauter (2005): compute ΦT
ℓ modulo p using

supersingular invariants mod p, Mestre méthode des
graphes, ℓ torsion points defined over FpO(ℓ) and
interpolation. Õ(ℓ4M(p))

• Enge (2004); Dupont (2004): use complex floating point
evaluation and interpolation. Õ(ℓ3)

17/31

Write

ΦT
ℓ (X,J) = Xℓ+1 +

ℓ

∑
u=0

cu(J)Xu

where cu(J) ∈ Z[J], deg(cu(J)) ≤ ℓ+1. All computations are
done using precision H = O(ℓ logℓ).

1. for ℓ+1 values of zi do :

1.1 Compute floating point approximations to the ℓ+1 roots
fr(zi) of Φℓ[f](X, j(zi)) to precision H;

1.2 Build ∏ℓ+1
r=1(X− fr(zi)) = Xℓ+1 +∑ℓ

u=0 cu(j(zi))Xu;
O(M(ℓ) logℓ) ops.

2. Perform ℓ+1 interpolations for the cu’s: O((ℓ+1)M(ℓ) logℓ)
ops.

All 1.2 + 2 has cost O(ℓM(ℓ)(logℓ)M(H)) = Õ(ℓ3).

18/31

Examples

Data for Tr(ηηℓ)/ηηℓ (courtesy Enge)

ℓ r H deg(J) eval(s) interp(s) tot (d) Mb gz
3011 5 7560 200 368
3079 97 9018 254 7790 640 23 547
3527 13 9894 268 799 1440 3 746
3517 97 10746 290 12400 1110 42 850
4003 13 11408 308 1130 2320 4 1127
5009 5 13349 334 880 3110 3 1819
6029 5 16418 402 1550 6370 7 3251
7001 5 19473 466 2440 11700 13 5182
8009 5 22515 534 3500 20000 22 7905
9029 5 25507 602 5030 33100 35 11460

10079 5 28825 672 7690 56300 61 16152

19/31

An algebraic alternative: Charlap/Coley/Robbins
Over some K, write

ψℓ(X) = ∏
1≤r,s≤ℓ−1

(X−℘((rω1 + sω2)/ℓ)).

The factor we build is:

D(x) = ∏
1≤r≤ℓ−1

(X−℘(rω1/ℓ))

and all its coefficients are in K[σ] where σ = ∑r℘(rω1/ℓ).

K[x]/(ψℓ(x))
| ℓ−1

K[x]/(Mσ (x))
| ℓ+1

K[x]

If σ is rational over K, then D(x) will have rational coefficients.
20/31

CCR (cont’d)
Another modular equation: Mσ (x) = Φℓ(x, j(E)).
It has the same properties as the traditional one (e.g.,
factorization patterns) and can be used as is in SEA.
To find Ã and B̃, we need two more polynomials + some
tedious matching of roots.

The first values are:

U3(X) = X4 +2AX2 +4BX−A2/3,

V3(X) = X4 +84AX3 +246A2X2 +(−63756A3−432000B2)X

+576081A4 +3888000B2A,

W3(X) = X4 +732BX3 +(171534B2 +25088A3)X2

+(11009548B3 +1630720BA3)X−297493504/27A6

−437245479B4−139150592B2A3,

U5(X) = X6 +20AX4 +160BX3−80A2X2−128ABX−80B2.
21/31

B) Modular polynomials when g = 2

• Gaudry + Schost: the algebraic alternative is generic
(Ξℓ)

◮ total degree is d = (ℓ4−1)/(ℓ−1);
◮ number of monomials is O(ℓ12);
◮ can do ℓ = 3: 50k but a lot of computing time (weblink still

active);
◮ use its factorization patterns à la Atkin to speedup

cardinality computations.

• The classical modular approach:
◮ Poincaré → Siegel (dim 2g);
◮ replace j by (j1, j2, j3) ⇒ triplet of modular polynomials,

coefficients are rational fractions in ji’s;
◮ Dupont (experimental conjectures proven more recently

by Bröker+Lauter): stuck at ℓ = 2 with 26.8 Mbgz (just the
beginning of ℓ = 3); uses evaluation/interpolation again.

22/31

C) Modular polynomials when g = 3

Gaudry + Schost ⇒ d = (ℓ2g −1)/(ℓ−1).

And then: ?????

23/31

IV. Computing the isogeny

A) the case g = 1: Vélu’s formulas

Vélu suggests to use

xI(P) = xP + ∑
Q∈F∗

(xP+Q − xQ)

and derives equations for Ẽ and I in terms of symmetric
functions in the xQ, the abscissas of points in F. (Plus more
properties, like the isogeny is strict.)

24/31

How does an isogeny look like?

Extending Vélu, Dewaghe (for E : Y2 = X3 +AX +B):

D(x) = ∏
Q∈F∗

(x− xQ) = xℓ−1−σxℓ−2 + · · · .

Fundamental proposition. The isogeny I can be written as

I(x,y) =

(

N(x)
D(x)

,y

(

N(x)
D(x)

)′)

,

N(x)
D(x)

= ℓx−σ − (3x2 +A)
D′(x)
D(x)

−2(x3 +Ax+B)

(

D′(x)
D(x)

)′

= ℓx−σ −2
√

x3 +Ax+B

(

√

x3 +Ax+B
D′(x)
D(x)

)′
.

25/31

Elkies92

1. Compute the hi’s of

N(x)
D(x)

= x+ ∑
i≥1

hi

xi

in O(ℓ2) operations using

(3x2 +A)

(

N(x)
D(x)

)′
+2(x3 +Ax+B)

(

N(x)
D(x)

)′′
= 3

(

N(x)
D(x)

)2

+ Ã.

2. deduce power sums pi of D(x) in O(ℓ) operations using also
Ã and B̃;

3. use fast Newton in O(M(ℓ)) to get D(x).

⇒ very fast for small ℓ’s.

26/31

Bostan/M./Salvy/Schost
Prop. O(M(ℓ)) method to get the hi’s given Ã, B̃, σ .

Some ideas: there exists a series S(x) s.t.

N(x)
D(x)

=
1

S
(

1√
x

)2 .

S(x) = x+
Ã−A

10
x5 +

B̃−B
14

x7 +O(x9) ∈ x+ x3K[[x2]]

is such that

(Bx6 +Ax4 +1)S ′(x)2 = 1+ ÃS(x)4 + B̃S(x)6.

Use fast algorithm for solving this differential equation.

Rem. See Math. Comp. paper that includes survey of known
methods for isogeny computations.

27/31

The case of finite fields of small characteristic

• Couveignes: formal groups; Artin-Schreier towers; time
Õ(ℓ2) but bad dependancy on p (see on-going work of
L. De Feo).

• Lercier/Joux (2006): medium p using p-adic lifting.

• Lercier/Sirvent (2008): small p using p-adic lifting +
BMSS ⇒ complexity of O(M(ℓ)) in all cases.

28/31

B) The case g = 2

Probably not complete list:

• Gaudry+Schost: Jac(C) → E1×E2 for a (2,2)-isogeny of
kernel Z/2Z×Z/2Z.

• ℓ = 2 (AGM): Richelot, Humbert.

• ℓ ≥ 3: Dolgachev/Lehavi; general result for F = (Z/ℓZ)2;
completely explicit for ℓ = 3; more work needed for ℓ > 3.
Some hope?

29/31

C) And for g = 3?

Again, lack of general formulas:

• ℓ = 2 (AGM): Donagi/Livné (+ negative results for g > 3);
explicit methods by Lehavi + Ritzenthaler.

• Smith (Eurocrypt 2008):
◮ ϕ : Jac(H) → Jac(C) where H is hyperelliptic and C smooth

plane quartic;

◮ intricate construction but relatively simple formulas in the
end: uses Recilla’s trigonal construction + theorem of
Donagi and Livné;

◮ works for 18.57% of smooth plane quartics;

◮ nice crypto application (DL in Jac(C) easier than in Jac(H)).

30/31

V. Conclusions

• g = 1: morally solved.

• g > 1:
◮ scattered results;
◮ curves are not so frequent and/or easy in higher genus;
◮ objects are exponentially big: even with sophisticated

computer algebra techniques, this sounds difficult.

31/31

