Introdution Addition Comparison

Efficient Hyperelliptic Arithmetic Using Balanced Representation for Divisors

Steven Galbraith¹ Mike Harrison² David Mireles¹

¹Royal Holloway, University of London

²University of Sydney

May 22, 2008

Introdution Addition Comparison

Arithmetic on Hyperelliptic Curves

< ロ > < (回 > < (回 >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=

Plane Models

We will consider a genus g hyperelliptic curve C defined over a field k with $char(k) \neq 2$. We can assume that C is given by a plane model

$$C: y^2 = F(x),$$

where *F* is a polynomial in k[x] with no repeated roots. If P = (x, y) is a point on the curve, then $\overline{P} = (x, -y)$ also lies on the curve and is called hyperelliptic conjugate of *P*.

Taxonomy

- If deg(*F*) is 2*g* + 1, this is an imaginary model. *C* will have 1 point at infinity.
- If deg(*F*) is 2*g* + 2, this is a real model. *C* will have 2 points at infinity.

イロト イボト イヨト イヨト

The divisor class group

- The group of divisors on *C* is the group of finite formal sums $D = \sum n_i P_i$, for integers n_i and points P_i on $C(\overline{k})$. $\deg(D) = \sum n_i$.
- To every rational function f in $C(\overline{k})^*$, one can associate a divisor

$$\operatorname{div}(f) = \sum_{P \in C(\overline{k})} \operatorname{ord}_P(f).$$

The set of divisors associated to all the functions in $C(\overline{k})^*$ forms the subgroup of principal divisors.

• The divisor class group of *C* is the quotient group of the group of divisors modulo the subgroup of principal divisors. The class of *D* will be denoted [*D*].

The divisor class group

- The group of divisors on *C* is the group of finite formal sums $D = \sum n_i P_i$, for integers n_i and points P_i on $C(\overline{k})$. $\deg(D) = \sum n_i$.
- To every rational function f in $C(\overline{k})^*$, one can associate a divisor

$$\operatorname{div}(f) = \sum_{P \in C(\overline{k})} \operatorname{ord}_P(f).$$

The set of divisors associated to all the functions in $C(\overline{k})^*$ forms the subgroup of principal divisors.

• The divisor class group of *C* is the quotient group of the group of divisors modulo the subgroup of principal divisors. The class of *D* will be denoted [*D*].

The divisor class group

- The group of divisors on *C* is the group of finite formal sums $D = \sum n_i P_i$, for integers n_i and points P_i on $C(\overline{k})$. $\deg(D) = \sum n_i$.
- To every rational function f in $C(\overline{k})^*$, one can associate a divisor

$$\operatorname{div}(f) = \sum_{P \in C(\overline{k})} \operatorname{ord}_P(f).$$

The set of divisors associated to all the functions in $C(\overline{k})^*$ forms the subgroup of principal divisors.

• The divisor class group of *C* is the quotient group of the group of divisors modulo the subgroup of principal divisors. The class of *D* will be denoted [*D*].

$$\operatorname{div}\left(\frac{l}{v}\right) = P + Q - R - \infty,$$
$$[P - \infty] + [Q - \infty] = [R - \infty]$$

$$\operatorname{div}\left(\frac{l}{v}\right) = P + Q - R - \infty,$$
$$[P - \infty] + [Q - \infty] = [R - \infty]$$

ヘロン 人間 とくほど 人間と

æ

$$\operatorname{div}\left(\frac{l}{v}\right) = P + Q - R - \infty,$$
$$[P - \infty] + [Q - \infty] = [R - \infty]$$

æ

div
$$\left(\frac{y-p(x)}{v_1v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - 2\infty,$$

 $[P_1 + P_2 - 2\infty] + [Q_1 + Q_2 - 2\infty] = [R_1 + R_2 - 2\infty].$

div
$$\left(\frac{y-p(x)}{v_1v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - 2\infty,$$

 $[P_1 + P_2 - 2\infty] + [Q_1 + Q_2 - 2\infty] = [R_1 + R_2 - 2\infty].$

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注

div
$$\left(\frac{y-p(x)}{v_1v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - 2\infty,$$

 $[P_1 + P_2 - 2\infty] + [Q_1 + Q_2 - 2\infty] = [R_1 + R_2 - 2\infty].$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

$$\operatorname{div}\left(\frac{y-p(x)}{v_1v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - \infty^+ - \infty^-,$$
$$P_1 + P_2 - \infty^+ - \infty^-] + [Q_1 + Q_2 - \infty^+ - \infty^-] = [R_1 + R_2 - \infty^+ - \infty^-].$$

div
$$\left(\frac{y-p(x)}{v_1v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - \infty^+ - \infty^-,$$

 $P_1 + P_2 - \infty^+ - \infty^-] + [Q_1 + Q_2 - \infty^+ - \infty^-] = [R_1 + R_2 - \infty^+ - \infty^-].$

▲ロト ▲御 と ▲注 と ▲注 と 三注

$$\operatorname{div}\left(\frac{y-p(x)}{v_1v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - \infty^+ - \infty^-,$$
$$[P_1 + P_2 - \infty^+ - \infty^-] + [Q_1 + Q_2 - \infty^+ - \infty^-] = [R_1 + R_2 - \infty^+ - \infty^-].$$

(日)

æ

Definition

A divisor $D = \sum n_i P_i$ is said to be *effective* if every coefficient n_i is non-negative.

Definition

We say that an effective divisor $D = \sum_{i} P_i$ on a hyperelliptic curve C is *semi-reduced* if $i \neq j$ implies $P_i \neq \overline{P_j}$. If the hyperelliptic curve C has genus g, we say that a divisor D on C is *reduced* if it is semi-reduced, and has degree $d \leq g$. We will denote the degree of a divisor D_i as d_i .

• □ > • □ > • □ > •

Definition

A divisor $D = \sum n_i P_i$ is said to be *effective* if every coefficient n_i is non-negative.

Definition

We say that an effective divisor $D = \sum_{i} P_i$ on a hyperelliptic curve C is *semi-reduced* if $i \neq j$ implies $P_i \neq \overline{P_j}$. If the hyperelliptic curve C has genus g, we say that a divisor D on C is *reduced* if it is semi-reduced, and has degree $d \leq g$. We will denote the degree of a divisor D_i as d_i .

• □ ▶ • • □ ▶ • □ ▶

Theorem

Let D_{∞} be a k-rational degree g divisor, and let $D \in \text{Div}^{0}(C)$ be a k-rational divisor on the hyperelliptic curve C. Then [D] has a unique representative in $\text{Cl}^{0}(C)$ of the form $[D_{0} - D_{\infty}]$, where D_{0} is an effective k-rational divisor of degree g whose affine part is reduced.

The base divisor

- If *C* is given by an imaginary model, then $D_{\infty} = g\infty$.
- If C is given by a real model denote its points at infinity as ∞⁺ and ∞⁻. Then

•
$$D_{\infty} = \frac{g}{2}(\infty^+ + \infty^-)$$
 if g is even.

•
$$D_{\infty} = \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-$$
 if g is odd.

Mumford's Representation

To every pair of polynomials (u(x), v(x)) such that

$$u(x)$$
 divides $F(x) - v(x)^2$, (1)

we associate a divisor as follows

If
$$u(x) = \prod_i (x - r_i)$$
, then $(u(x), v(x)) \mapsto \sum_i (r_i, v(r_i))$.

We say that the polynomials (u, v) are the Mumford representation of D, and denote this as $D = \operatorname{div}(u, v)$. Every affine semi-reduced divisor has a Mumford representation.

Problem

Fix a degree g divisor D_{∞} . Given two effective degree g divisors with reduced affine part D_1 and D_2 , find an effective degree g divisor D_3 with reduced affine part such that

$$[D_1 - D_\infty] + [D_2 - D_\infty] = [D_3 - D_\infty].$$

Equivalently

To add the divisor classes $[D_1 - D_\infty]$ and $[D_2 - D_\infty]$, one calculates D_3 satisfying

$$[D_1 + D_2] = [D_3 + D_\infty].$$

- Given the Mumford representation of D_1 and D_2 , find the Mumford representation of $D_1 + D_2$.
- Solution From the Mumford representation of $D_1 + D_2$, find the appropriate D_3 . This is done using the reduction algorithms.

Reduction

Let $D_0 = \operatorname{div}(u_0, v_0)$ be a divisor of degree $d_0 \ge g + 2$ ($d_0 \ge g + 1$). By definition of the Mumford representation, the divisor of $y - v_0(x)$ has (generically) the form

$$\operatorname{div}(y - v_0(x)) = D_0 + D_1 - \frac{d_0 + d_1}{2}(\infty^+ + \infty^-),$$

where D_1 is an affine semi-reduced divisor. This implies

$$[D_0] = [\overline{D}_1 + \frac{d_0 - d_1}{2}(\infty^+ + \infty^-)].$$

The affine zeros of $y - v_0(x)$ are found solving $v_0(x)^2 - F(x) = 0$.

(日)

Composition and reduction

- If the divisor D = div(u, v) has degree at most g + 1, then reduction using y − v(x) does not work.
- For instance if *D* has degree g + 1, then deg(v) ≤ g, so v² − F will have 2g + 2 affine zeros, and we get another divisor of degree g + 1.
- We have cancelation in $v^2 F$ if and only if the leading term of *p* is $F_{2g+2}^{1/2} x^{g+1}$.
- The function y − p(x) has different order at ∞⁺ and ∞⁻ if and only if the leading term of p is F^{1/2}_{2g+2}x^{g+1}.

/□ ▶ ◀ ⋽ ▶ ◀

Composition and reduction

- If the divisor D = div(u, v) has degree at most g + 1, then reduction using y − v(x) does not work.
- For instance if *D* has degree g + 1, then deg(v) ≤ g, so v² − F will have 2g + 2 affine zeros, and we get another divisor of degree g + 1.
- We have cancelation in $v^2 F$ if and only if the leading term of p is $F_{2g+2}^{1/2} x^{g+1}$.
- The function y − p(x) has different order at ∞⁺ and ∞⁻ if and only if the leading term of p is F^{1/2}_{2g+2}x^{g+1}.

< 日 > < 同 > < 三 > < 三

Composition and reduction

- If the divisor D = div(u, v) has degree at most g + 1, then reduction using y − v(x) does not work.
- For instance if *D* has degree g + 1, then deg(v) ≤ g, so v² − F will have 2g + 2 affine zeros, and we get another divisor of degree g + 1.
- We have cancelation in $v^2 F$ if and only if the leading term of p is $F_{2g+2}^{1/2} x^{g+1}$.
- The function y p(x) has different order at ∞^+ and ∞^- if and only if the leading term of *p* is $F_{2g+2}^{1/2} x^{g+1}$.

(日)

Let $H^+(x)$ be the polynomial with leading term $F_{2g+2}^{1/2}x^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \operatorname{div}(u, v)$ of degree at most g + 1, use the polynomial

$$p(x) = H^+ + (v - H^+ \mod u)$$

to perform a reduction (This is a red $_{\infty}$ step).

Generically

- If D_0 has degree g, then typically $[D_0] = [D_1 + (\infty^+ \infty^-)]$.
- If D_0 has degree g + 1, then typically $[D_0] = [D_1 + \infty^+]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $H^+(x)$ be the polynomial with leading term $F_{2g+2}^{1/2}x^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \operatorname{div}(u, v)$ of degree at most g + 1, use the polynomial

$$p(x) = H^+ + (v - H^+ \mod u)$$

to perform a reduction (This is a red $_{\infty}$ step).

Generically

If D₀ has degree g, then typically [D₀] = [D₁ + (∞⁺ − ∞⁻)].
If D₀ has degree g + 1, then typically [D₀] = [D₁ + ∞⁺].

Let $H^+(x)$ be the polynomial with leading term $F_{2g+2}^{1/2}x^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \operatorname{div}(u, v)$ of degree at most g + 1, use the polynomial

$$p(x) = H^+ + (v - H^+ \mod u)$$

to perform a reduction (This is a red $_{\infty}$ step).

Generically

• If D_0 has degree g, then typically $[D_0] = [D_1 + (\infty^+ - \infty^-)].$

• If D_0 has degree g + 1, then typically $[D_0] = [D_1 + \infty^+]$.

Let $H^+(x)$ be the polynomial with leading term $F_{2g+2}^{1/2}x^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \operatorname{div}(u, v)$ of degree at most g + 1, use the polynomial

$$p(x) = H^+ + (v - H^+ \mod u)$$

to perform a reduction (This is a red $_{\infty}$ step).

Generically

- If D_0 has degree g, then typically $[D_0] = [D_1 + (\infty^+ \infty^-)]$.
- If D_0 has degree g + 1, then typically $[D_0] = [D_1 + \infty^+]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generical addition for even genus

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D_3 + (g/2)(\infty^+ + \infty^-)].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Generical addition for even genus

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D_3 + (g/2)(\infty^+ + \infty^-)].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

ヘロア 人間 アメヨア 人間アー

Generical addition for even genus

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D_3 + (g/2)(\infty^+ + \infty^-)].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

<ロ> < 四 > < 団 > < 団 > < 豆 > 、

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g 1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get $[D'_3] = [D_3 + \infty^+]$.
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

伺き くほき くほう

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g 1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get $[D'_3] = [D_3 + \infty^+]$.
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g 1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get $[D'_3] = [D_3 + \infty^+]$.
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

- Given $[D_1 D_\infty]$ and $[D_2 D_\infty]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g 1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get $[D'_3] = [D_3 + \infty^+]$.
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_\infty] + [D_2 D_\infty] = [D_3 D_\infty].$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

In the olden days

Previous authors used the base divisor $D_{\infty} = g \infty^+$ instead of the "balanced" divisor we proposed. We will show that this is slower than our approach.

In the even genus case

Using a a balanced representation, we finished when we found D_4 such that

$$D_1 + D_2 \equiv D_4 + \frac{g}{2}(\infty^+ + \infty^-).$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$[D_1 - D_\infty] + [D_2 - D_\infty] = [D_4 - D_\infty] + \frac{g}{2}(\infty^- - \infty^+),$$

so g/2 extra red_{∞} steps are needed to finish.

< ロ > < 同 > < 回 > <

In the even genus case

Using a balanced representation, we finished when we found D_4 such that

$$D_1 + D_2 \equiv D_4 + \frac{g}{2}(\infty^+ + \infty^-).$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$[D_1 - D_\infty] + [D_2 - D_\infty] = [D_4 - D_\infty] + \frac{g}{2}(\infty^- - \infty^+),$$

so g/2 extra red $_{\infty}$ steps are needed to finish.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the even genus case

Using a balanced representation, we finished when we found D_4 such that

$$D_1 + D_2 \equiv D_4 + \frac{g}{2}(\infty^+ + \infty^-).$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$[D_1 - D_\infty] + [D_2 - D_\infty] = [D_4 - D_\infty] + rac{g}{2}(\infty^- - \infty^+),$$

so g/2 extra red_{∞} steps are needed to finish.

In the odd genus case

Using a balanced representation, we finished when we found D_4 such that

$$D_1 + D_2 \equiv D_4 + \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g - 1}{2}(\infty^- - \infty^+),$$

so (g-1)/2 extra red_{∞} steps are needed to finish.

In the odd genus case

Using a balanced representation, we finished when we found D_4 such that

$$D_1 + D_2 \equiv D_4 + \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-.$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$[D_1 - D_\infty] + [D_2 - D_\infty] = [D_4 - D_\infty] + \frac{g - 1}{2}(\infty^- - \infty^+),$$

so (g-1)/2 extra red_{∞} steps are needed to finish.

(日)

In the odd genus case

Using a balanced representation, we finished when we found D_4 such that

$$D_1 + D_2 \equiv D_4 + \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-.$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$[D_1 - D_\infty] + [D_2 - D_\infty] = [D_4 - D_\infty] + \frac{g - 1}{2}(\infty^- - \infty^+),$$

so (g-1)/2 extra red_{∞} steps are needed to finish.

Divisor inversion

It is important to be able to invert elements in a group (window methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 red $_{\infty}$ steps.

- If the genus is even, then $D_{\infty} = \overline{D_{\infty}}$.
- If the genus is odd, then $D_{\infty} = \overline{D_{\infty}} + (\infty^+ \infty^-)$.

Using $g\infty^+$ as base divisor, it takes g applications of red_{∞}.

• If $D_{\infty} = g\infty^+$, then $D_{\infty} = \overline{D_{\infty}} + g(\infty^+ - \infty^-)$.

□ ▶ < □ ▶ < □</p>

Divisor inversion

It is important to be able to invert elements in a group (window methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 red $_{\infty}$ steps.

- If the genus is even, then $D_{\infty} = \overline{D_{\infty}}$.
- If the genus is odd, then $D_{\infty} = \overline{D_{\infty}} + (\infty^+ \infty^-)$.

Using $g\infty^+$ as base divisor, it takes g applications of red_{∞}.

• If $D_{\infty} = g\infty^+$, then $D_{\infty} = \overline{D_{\infty}} + g(\infty^+ - \infty^-)$.

日本・日本・日

Divisor inversion

It is important to be able to invert elements in a group (window methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 red $_{\infty}$ steps.

- If the genus is even, then $D_{\infty} = \overline{D_{\infty}}$.
- If the genus is odd, then $D_{\infty} = \overline{D_{\infty}} + (\infty^+ \infty^-)$.

Using $g\infty^+$ as base divisor, it takes g applications of red_{∞}.

• If
$$D_{\infty} = g\infty^+$$
, then $D_{\infty} = \overline{D_{\infty}} + g(\infty^+ - \infty^-)$.

Comparison

In a genus 2 curve if S = M and I = 4M then balanced

representations give a saving of around 15% for addition and 13% for doubling (if I = 30M the savings become 62% and 58% respectively).

	Imaginary	Balanced	Non-balanced
Addition	1I, 2S, 22M	1I, 2S, 26M	2I, 4S, 30M
Doubling	1I, 5S, 22M	1I, 4S, 28M	2I, 6S, 32M
Inversion	0	0	2I, 4S, 8M

Table: Operation counts for genus 2 arithmetic.

Arithmetic on Hyperelliptic Curves

< □ > < 同 >

- The analogue of a baby-step in the imaginary model is addition of $P \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

→ Ξ →

- The analogue of a baby-step in the imaginary model is addition of $P \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

< ロ > < 同 > < 回 > <

- The analogue of a baby-step in the imaginary model is addition of $P \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

< ロ > < 同 > < 回 > <

- The analogue of a baby-step in the imaginary model is addition of $P \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

< ロ > < 同 > < 回 >

Introdution Addition Comparison

Questions?

Thank you for your attention

Arithmetic on Hyperelliptic Curves

-

Э