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Plane Models

We will consider a genusg hyperelliptic curveC defined over a fieldk
with char(k) 6= 2. We can assume thatC is given by a plane model

C : y2 = F(x),

whereF is a polynomial ink[x] with no repeated roots.
If P = (x, y) is a point on the curve, thenP = (x,−y) also lies on the
curve and is called hyperelliptic conjugate ofP.

Taxonomy

If deg(F) is 2g + 1, this is an imaginary model.C will have 1
point at infinity.

If deg(F) is 2g + 2, this is a real model.C will have 2 points at
infinity.
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The divisor class group

Thegroup of divisorson C is the group of finite formal sums
D =

∑

niPi, for integersni and pointsPi on C(k).
deg(D) =

∑

ni .

To every rational functionf in C(k)∗, one can associate a divisor

div(f ) =
∑

P∈C(k)

ordP(f ).

The set of divisors associated to all the functions inC(k)∗ forms
the subgroup of principal divisors.

The divisor class group ofC is the quotient group of the group of
divisors modulo the subgroup of principal divisors. The class of
D will be denoted[D].
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P
Q

div

(

l
v

)

= P + Q− R−∞,

[P−∞] + [Q−∞] = [R−∞]
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P1

P2 Q1

Q2

div

(

y− p(x)
v1v2

)

= P1 + P2 + P3 + P4 − R1 − R2 − 2∞,

[P1 + P2 − 2∞] + [Q1 + Q2 − 2∞] = [R1 + R2 − 2∞].
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Definition

A divisor D =
∑

niPi is said to beeffectiveif every coefficientni is
non-negative.

Definition

We say that an effective divisorD =
∑

i Pi on a hyperelliptic curveC
is semi-reducedif i 6= j impliesPi 6= Pj. If the hyperelliptic curveC
has genusg, we say that a divisorD on C is reducedif it is
semi-reduced, and has degreed ≤ g. We will denote the degree of a
divisor Di asdi .

Arithmetic on Hyperelliptic Curves



Introdution
Addition

Comparison

Definition

A divisor D =
∑

niPi is said to beeffectiveif every coefficientni is
non-negative.

Definition

We say that an effective divisorD =
∑

i Pi on a hyperelliptic curveC
is semi-reducedif i 6= j impliesPi 6= Pj. If the hyperelliptic curveC
has genusg, we say that a divisorD on C is reducedif it is
semi-reduced, and has degreed ≤ g. We will denote the degree of a
divisor Di asdi .

Arithmetic on Hyperelliptic Curves



Introdution
Addition

Comparison

Theorem

Let D∞ be a k-rational degree g divisor, and let D∈ Div0(C) be a
k-rational divisor on the hyperelliptic curve C. Then[D] has a unique
representative inCl0(C) of the form[D0 − D∞], where D0 is an
effective k-rational divisor of degree g whose affine part isreduced.

The base divisor

If C is given by an imaginary model, thenD∞ = g∞.
If C is given by a real model denote its points at infinity as∞+

and∞−. Then
D∞ = g

2(∞+ + ∞−) if g is even.
D∞ = g+1

2 ∞+ + g−1
2 ∞− if g is odd.
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Mumford’s Representation

To every pair of polynomials(u(x), v(x)) such that

u(x) divides F(x) − v(x)2, (1)

we associate a divisor as follows

If u(x) =
∏

i

(x− r i), then(u(x), v(x)) 7→
∑

i

(r i , v(r i)).

We say that the polynomials(u, v) are the Mumford representation of
D, and denote this asD = div(u, v). Every affine semi-reduced
divisor has a Mumford representation.
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Problem

Fix a degreeg divisor D∞. Given two effective degreeg divisors with
reduced affine partD1 andD2, find an effective degreeg divisor D3

with reduced affine part such that

[D1 − D∞] + [D2 − D∞] = [D3 − D∞].

Equivalently

To add the divisor classes[D1 − D∞] and[D2 − D∞], one calculates
D3 satisfying

[D1 + D2] = [D3 + D∞].

1 Given the Mumford representation ofD1 andD2, find the
Mumford representation ofD1 + D2.

2 From the Mumford representation ofD1 + D2, find the
appropriateD3. This is done using the reduction algorithms.
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Reduction

Let D0 = div(u0, v0) be a divisor of degreed0 ≥ g + 2 (d0 ≥ g + 1).
By definition of the Mumford representation, the divisor ofy− v0(x)
has (generically) the form

div(y− v0(x)) = D0 + D1 −
d0 + d1

2
(∞+ + ∞−),

whereD1 is an affine semi-reduced divisor. This implies

[D0] = [D1 +
d0 − d1

2
(∞+ + ∞−)].

The affine zeros ofy− v0(x) are found solvingv0(x)2 − F(x) = 0.
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Composition and reduction

If the divisorD = div(u, v) has degree at mostg + 1, then
reduction usingy− v(x) does not work.

For instance ifD has degreeg + 1, then deg(v) ≤ g, sov2 − F
will have 2g + 2 affine zeros, and we get another divisor of
degreeg + 1.

We have cancelation inv2 − F if and only if the leading term ofp
is F1/2

2g+2xg+1.

The functiony− p(x) has different order at∞+ and∞− if and

only if the leading term ofp is F1/2
2g+2xg+1.
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This motivates

Let H+(x) be the polynomial with leading termF1/2
2g+2xg+1 such that

(H+)2 − F has minimal degree.GivenD = div(u, v) of degree at
mostg + 1, use the polynomial

p(x) = H+ + (v− H+ mod u)

to perform a reduction (This is a red∞ step).

Generically

If D0 has degreeg, then typically[D0] = [D1 + (∞+ −∞−)].

If D0 has degreeg + 1, then typically[D0] = [D1 + ∞+].
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Generical addition for even genus

Given[D1 − D∞] and[D2 − D∞] find the Mumford
representation ofD1 + D2.

Reduce until[D1 + D2] = [D3 + (g/2)(∞+ + ∞−)].

This is equivalent to[D1 − D∞] + [D2 − D∞] = [D3 − D∞].
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Odd genus

Given[D1 − D∞] and[D2 − D∞] find the Mumford
representation ofD1 + D2.

Reduce until[D1 + D2] = [D′

3 + (g− 1)/2(∞+ + ∞−)].

Use composition-and-reduction to get[D′

3] = [D3 + ∞+].

Now [D1 + D2] = [D′

3 + (g + 1)/2∞+ + (g− 1)/2∞−].

This is equivalent to[D1 − D∞] + [D2 − D∞] = [D3 − D∞].
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In the olden days

Previous authors used the base divisorD∞ = g∞+ instead of the
“balanced” divisor we proposed. We will show that this is slower than
our approach.
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In the even genus case

Using a a balanced representation, we finished when we foundD4

such that
D1 + D2 ≡ D4 +

g
2
(∞+ + ∞−).

If we wanted to useD∞ = g∞+ instead, we’d get

[D1 − D∞] + [D2 − D∞] = [D4 − D∞] +
g
2
(∞− −∞+),

sog/2 extra red∞ steps are needed to finish.
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In the odd genus case

Usinga a balanced representation, we finished when we foundD4

such that

D1 + D2 ≡ D4 +
g + 1

2
∞+ +

g− 1
2

∞−.
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[D1 − D∞] + [D2 − D∞] = [D4 − D∞] +
g− 1

2
(∞− −∞+),
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Divisor inversion

It is important to be able to invert elements in a group (window
methods, signed representations, etc).
Using our representation, this can be done with 0 or 1 red∞ steps.

If the genus is even, thenD∞ = D∞.

If the genus is odd, thenD∞ = D∞ + (∞+ −∞−).

Usingg∞+ as base divisor, it takesg applications of red∞.

If D∞ = g∞+, thenD∞ = D∞ + g(∞+ −∞−).
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Comparison

In a genus 2 curve ifS= M andI = 4M then balanced
representations give a saving of around 15% for addition and 13% for
doubling (if I = 30M the savings become 62% and 58% respectively).

Imaginary Balanced Non-balanced
Addition 1I, 2S, 22M 1I, 2S, 26M 2I, 4S, 30M
Doubling 1I, 5S, 22M 1I, 4S, 28M 2I, 6S, 32M
Inversion 0 0 2I, 4S, 8M

Table:Operation counts for genus 2 arithmetic.
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Remarks

The analogue of a baby-step in the imaginary model is addition
of P−∞.

If the genus is even and the points at infinity are not rational,
baby-steps are not necessary.

Implemented in Magma V2.12, July 2005.

One can efficiently implement pairings on hyperelliptic curves
given by a real model (upcoming article with S. Galbraith and
X. Lin ).
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Questions?
Thank you for your attention
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