[Introdution](#page-2-0) [Addition](#page-28-0) [Comparison](#page-35-0)

Efficient Hyperelliptic Arithmetic Using Balanced Representation for Divisors

Steven Galbraith¹ Mike Harrison² David Mireles¹

¹Royal Holloway, University of London

²University of Sydney

May 22, 2008

[Arithmetic on Hyperelliptic Curves](#page-50-0)

4 0 8

つくへ

[Introdution](#page-2-0) [Addition](#page-28-0) [Comparison](#page-35-0)

[Arithmetic on Hyperelliptic Curves](#page-0-0)

K ロト K 御 ト K 君 ト K 君 ト

 290

≣

Plane Models

We will consider a genus *g* hyperelliptic curve *C* defined over a field *k* with char(k) \neq 2. We can assume that *C* is given by a plane model

$$
C: y^2 = F(x),
$$

where F is a polynomial in $k[x]$ with no repeated roots. If $P = (x, y)$ is a point on the curve, then $\overline{P} = (x, -y)$ also lies on the curve and is called hyperelliptic conjugate of *P*.

Taxonomy

- If deg(*F*) is $2g + 1$, this is an imaginary model. *C* will have 1 point at infinity.
- If deg(*F*) is $2g + 2$, this is a real model. *C* will have 2 points at infinity.

イロト (何) (ほ) (ほ)

 QQ

[Introdution](#page-2-0) [Addition](#page-28-0) [Comparison](#page-35-0)

The divisor class group

- The *group of divisors* on *C* is the group of finite formal sums $D = \sum n_i P_i$, for integers n_i and points P_i on $C(k)$. $deg(D) = \sum n_i$.
- To every rational function *f* in $C(\overline{k})^*$, one can associate a divisor

$$
\mathrm{div}(f) = \sum_{P \in C(\overline{k})} \mathrm{ord}_P(f).
$$

The set of divisors associated to all the functions in $C(\overline{k})^*$ forms the subgroup of principal divisors.

The divisor class group of *C* is the quotient group of the group of divisors modulo the subgroup of principal divisors. The class of *D* will be denoted [*D*].

and in

The divisor class group

- The *group of divisors* on *C* is the group of finite formal sums $D = \sum n_i P_i$, for integers n_i and points P_i on $C(k)$. $deg(D) = \sum n_i$.
- To every rational function *f* in $C(\overline{k})^*$, one can associate a divisor

$$
\mathrm{div}(f) = \sum_{P \in C(\overline{k})} \mathrm{ord}_P(f).
$$

The set of divisors associated to all the functions in $C(\overline{k})^*$ forms the subgroup of principal divisors.

The divisor class group of *C* is the quotient group of the group of divisors modulo the subgroup of principal divisors. The class of *D* will be denoted [*D*].

and and

The divisor class group

- The *group of divisors* on *C* is the group of finite formal sums $D = \sum n_i P_i$, for integers n_i and points P_i on $C(k)$. $deg(D) = \sum n_i$.
- To every rational function *f* in $C(\overline{k})^*$, one can associate a divisor

$$
\mathrm{div}(f) = \sum_{P \in C(\overline{k})} \mathrm{ord}_P(f).
$$

The set of divisors associated to all the functions in $C(\overline{k})^*$ forms the subgroup of principal divisors.

The divisor class group of *C* is the quotient group of the group of divisors modulo the subgroup of principal divisors. The class of *D* will be denoted [*D*].

and and

 QQ

$$
\operatorname{div}\left(\frac{\partial}{\partial y}\right) = P + Q - R - \infty
$$

$$
[P - \infty] + [Q - \infty] = [R - \infty]
$$

K ロメ K 御 X K 重 X K 重 X …重

$$
\operatorname{div}\left(\frac{l}{v}\right) = P + Q - R - \infty,
$$

$$
[P - \infty] + [Q - \infty] = [R - \infty]
$$

イロト イ団 トイモト イモト

 299

重

$$
\operatorname{div}\left(\frac{l}{v}\right) = P + Q - R - \infty,
$$

$$
[P - \infty] + [Q - \infty] = [R - \infty]
$$

K ロ ト K 個 ト K 差 ト K 差 ト …

 299

重

$$
\text{div}\left(\frac{y - p(x)}{v_1 v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - 2\infty,
$$
\n
$$
[P_1 + P_2 - 2\infty] + [Q_1 + Q_2 - 2\infty] = [R_1 + R_2 - 2\infty].
$$

$$
\text{div}\left(\frac{y - p(x)}{v_1 v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - 2\infty,
$$
\n
$$
[P_1 + P_2 - 2\infty] + [Q_1 + Q_2 - 2\infty] = [R_1 + R_2 - 2\infty].
$$

$$
\text{div}\left(\frac{y - p(x)}{v_1 v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - 2\infty,
$$
\n
$$
[P_1 + P_2 - 2\infty] + [Q_1 + Q_2 - 2\infty] = [R_1 + R_2 - 2\infty].
$$

重

$$
\operatorname{div}\left(\frac{y - p(x)}{v_1 v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - \infty^+ - \infty^-,
$$

$$
[P_1 + P_2 - \infty^+ - \infty^-] + [Q_1 + Q_2 - \infty^+ - \infty^-] = [R_1 + R_2 - \infty^+ - \infty^-].
$$

$$
\operatorname{div}\left(\frac{y - p(x)}{v_1 v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - \infty^+ - \infty^-,
$$

$$
[P_1 + P_2 - \infty^+ - \infty^-] + [Q_1 + Q_2 - \infty^+ - \infty^-] = [R_1 + R_2 - \infty^+ - \infty^-].
$$

$$
\operatorname{div}\left(\frac{y - p(x)}{v_1 v_2}\right) = P_1 + P_2 + P_3 + P_4 - R_1 - R_2 - \infty^+ - \infty^-,
$$

$$
[P_1 + P_2 - \infty^+ - \infty^-] + [Q_1 + Q_2 - \infty^+ - \infty^-] = [R_1 + R_2 - \infty^+ - \infty^-].
$$

重

Definition

A divisor $D = \sum n_i P_i$ is said to be *effective* if every coefficient n_i is non-negative.

Definition

We say that an effective divisor $D = \sum_i P_i$ on a hyperelliptic curve C i *semi-reduced* if $i \neq j$ implies $P_i \neq P_j$. If the hyperelliptic curve C has genus *g*, we say that a divisor *D* on *C* is *reduced* if it is semi-reduced, and has degree $d \leq g$. We will denote the degree of a divisor D_i as d_i .

K ロト K 御 ト K 唐 ト K 唐

Definition

A divisor $D = \sum n_i P_i$ is said to be *effective* if every coefficient n_i is non-negative.

Definition

We say that an effective divisor $D = \sum_i P_i$ on a hyperelliptic curve C is *semi-reduced* if $i \neq j$ implies $P_i \neq P_j$. If the hyperelliptic curve *C* has genus *g*, we say that a divisor *D* on *C* is *reduced* if it is semi-reduced, and has degree $d \leq g$. We will denote the degree of a divisor D_i as d_i .

∢ ロ ▶ ∢ 何 ▶ ∢ 重 ▶ ∢

Theorem

Let D_{∞} be a k-rational degree g divisor, and let $D \in \text{Div}^{0}(C)$ be a *k-rational divisor on the hyperelliptic curve C. Then* [*D*] *has a unique representative in* $Cl^0(C)$ *of the form* $[D_0 - D_{\infty}]$ *, where* D_0 *is an effective k-rational divisor of degree g whose affine part is reduced.*

The base divisor

- **If** *C* is given by an imaginary model, then $D_{\infty} = g\infty$.
- **If** *C* is given by a real model denote its points at infinity as ∞^+ and ∞−. Then

•
$$
D_{\infty} = \frac{g}{2}(\infty^+ + \infty^-)
$$
 if g is even.

•
$$
D_{\infty} = \frac{\tilde{g}+1}{2}\infty^+ + \frac{g-1}{2}\infty^-
$$
 if g is odd.

4 0 8 4

Mumford's Representation

To every pair of polynomials $(u(x), v(x))$ such that

$$
u(x) \quad \text{divides} \quad F(x) - v(x)^2,\tag{1}
$$

we associate a divisor as follows

If
$$
u(x) = \prod_i (x - r_i)
$$
, then $(u(x), v(x)) \mapsto \sum_i (r_i, v(r_i))$.

We say that the polynomials (u, v) are the Mumford representation of *D*, and denote this as $D = \text{div}(u, v)$. Every affine semi-reduced divisor has a Mumford representation.

4 0 8 4

 QQ

Problem

Fix a degree g divisor D_{∞} . Given two effective degree g divisors with reduced affine part D_1 and D_2 , find an effective degree g divisor D_3 with reduced affine part such that

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_3 - D_{\infty}].
$$

Equivalently

To add the divisor classes $[D_1 - D_{\infty}]$ and $[D_2 - D_{\infty}]$, one calculates *D*³ satisfying

$$
[D_1 + D_2] = [D_3 + D_{\infty}].
$$

- **1** Given the Mumford representation of D_1 and D_2 , find the Mumford representation of $D_1 + D_2$.
- **2** From the Mumford representation of $D_1 + D_2$, find the appropriate D_3 . This is done using the reduction algorithms.

Reduction

Let $D_0 = \text{div}(u_0, v_0)$ be a divisor of degree $d_0 \geq g + 2 (d_0 \geq g + 1)$. By definition of the Mumford representation, the divisor of $y - v_0(x)$ has (generically) the form

$$
div(y - v_0(x)) = D_0 + D_1 - \frac{d_0 + d_1}{2}(\infty^+ + \infty^-),
$$

where D_1 is an affine semi-reduced divisor. This implies

$$
[D_0] = [\overline{D}_1 + \frac{d_0 - d_1}{2} (\infty^+ + \infty^-)].
$$

The affine zeros of $y - v_0(x)$ are found solving $v_0(x)^2 - F(x) = 0$.

∢ ロ ▶ (何) ((重) (重

Composition and reduction

- **•** If the divisor $D = \text{div}(u, v)$ has degree at most $g + 1$, then reduction using $y - v(x)$ does not work.
- For instance if *D* has degree $g + 1$, then deg(v) $\leq g$, so $v^2 F$ will have $2g + 2$ affine zeros, and we get another divisor of degree $g + 1$.
- We have cancelation in $v^2 F$ if and only if the leading term of *p* is $F_{2g+}^{1/2}$ $\frac{1}{2g+2}x^{g+1}$.
- The function $y p(x)$ has different order at ∞^+ and ∞^- if and only if the leading term of *p* is $F_{2g+1}^{1/2}$ $\frac{1}{2g+2}x^{g+1}$.

母→ (ヨ)

Composition and reduction

- If the divisor $D = \text{div}(u, v)$ has degree at most $g + 1$, then reduction using $y - v(x)$ does not work.
- For instance if *D* has degree $g + 1$, then deg(v) $\leq g$, so $v^2 F$ will have $2g + 2$ affine zeros, and we get another divisor of degree $g + 1$.
- We have cancelation in $v^2 F$ if and only if the leading term of *p* is $F_{2g+}^{1/2}$ $\frac{1}{2g+2}x^{g+1}$.
- The function $y p(x)$ has different order at ∞^+ and ∞^- if and only if the leading term of *p* is $F_{2g+1}^{1/2}$ $\frac{1}{2g+2}x^{g+1}$.

∢ロ ▶ ∢母 ▶ ∢ヨ ▶

Composition and reduction

- If the divisor $D = \text{div}(u, v)$ has degree at most $g + 1$, then reduction using $y - v(x)$ does not work.
- For instance if *D* has degree $g + 1$, then deg(v) $\leq g$, so $v^2 F$ will have $2g + 2$ affine zeros, and we get another divisor of degree $g + 1$.
- We have cancelation in $v^2 F$ if and only if the leading term of *p* is $F_{2g+}^{1/2}$ $\frac{1}{2g+2}x^{g+1}$.
- The function $y p(x)$ has different order at ∞^+ and ∞^- if and only if the leading term of *p* is $F_{2a+1}^{1/2}$ $\frac{1}{2g+2}x^{g+1}$.

∢ ロ ▶ ∢ 何 ▶ ∢ 重 ▶ ∢

Let $H^+(x)$ be the polynomial with leading term $F_{2g+1}^{1/2}$ $2g+2^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \text{div}(u, v)$ of degree at most $g + 1$, use the polynomial

$$
p(x) = H^+ + (v - H^+ \mod u)
$$

to perform a reduction (This is a red_∞ step).

- \bullet If *D*₀ has degree *g*, then typically $[D_0] = [D_1 + (\infty^+ \infty^-)].$
- **•** If D_0 has degree $g + 1$, then typically $[D_0] = [D_1 + \infty^+]$.

イロト (何) (ほ) (手)

Let $H^+(x)$ be the polynomial with leading term $F_{2g+1}^{1/2}$ $2g+2^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \text{div}(u, v)$ of degree at most $g + 1$, use the polynomial

$$
p(x) = H^+ + (v - H^+ \mod u)
$$

to perform a reduction (This is a red_∞ step).

Generically

 \bullet If *D*₀ has degree *g*, then typically $[D_0] = [D_1 + (\infty^+ - \infty^-)].$ If *D*₀ has degree *g* + 1, then typically $[D_0] = [D_1 + \infty^+]$.

イロメ イ母メ イヨメイヨ

Let $H^+(x)$ be the polynomial with leading term $F_{2g+1}^{1/2}$ $2g+2^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \text{div}(u, v)$ of degree at most $g + 1$, use the polynomial

$$
p(x) = H^+ + (v - H^+ \mod u)
$$

to perform a reduction (This is a red_∞ step).

Generically

• If *D*₀ has degree *g*, then typically $[D_0] = [D_1 + (\infty^+ - \infty^-)].$

 \bullet If *D*₀ has degree *g* + 1, then typically $[D_0] = [D_1 + \infty^+]$.

イロト (何) (ほ) (ほ)

Let $H^+(x)$ be the polynomial with leading term $F_{2g+1}^{1/2}$ $2g+2^{g+1}$ such that $(H^+)^2 - F$ has minimal degree. Given $D = \text{div}(u, v)$ of degree at most $g + 1$, use the polynomial

$$
p(x) = H^+ + (v - H^+ \mod u)
$$

to perform a reduction (This is a red_∞ step).

Generically

- If *D*₀ has degree *g*, then typically $[D_0] = [D_1 + (\infty^+ \infty^-)].$
- If D_0 has degree $g + 1$, then typically $[D_0] = [D_1 + \infty^+]$.

◆ロト→何ト→ヨト→ヨ

Generical addition for even genus

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D_3 + (g/2)(\infty^+ + \infty^-)].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

K ロト K 御 ト K 君 ト K 君 ト

つへへ

Generical addition for even genus

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D_3 + (g/2)(\infty^+ + \infty^-)].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

イロトメ部トメ活メメ活メ。

 Ω

Generical addition for even genus

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D_3 + (g/2)(\infty^+ + \infty^-)].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

メロトメ 伊 トメ 君 トメ 君 トー

 Ω

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g-1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get [D['] S_3^{\prime}] = [$D_3 + \infty^+$].
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

4 0 8

伊 ▶ すき ▶ すき ▶

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g-1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get [D['] S_3^{\prime}] = [$D_3 + \infty^+$].
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

4 0 8 4

伊 ▶ すき ▶ すき ▶

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g-1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get [D['] S_3] = [D₃ + ∞^+].
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- Given $[D_1 D_{\infty}]$ and $[D_2 D_{\infty}]$ find the Mumford representation of $D_1 + D_2$.
- Reduce until $[D_1 + D_2] = [D'_3 + (g-1)/2(\infty^+ + \infty^-)].$
- Use composition-and-reduction to get [D['] S_3] = [D₃ + ∞^+].
- Now $[D_1 + D_2] = [D'_3 + (g+1)/2\infty^+ + (g-1)/2\infty^-].$
- This is equivalent to $[D_1 D_{\infty}] + [D_2 D_{\infty}] = [D_3 D_{\infty}]$.

∢ ロ ▶ (何) (ミ) (ミ) 。

つへへ

In the olden days

Previous authors used the base divisor $D_{\infty} = g \infty^+$ instead of the "balanced" divisor we proposed. We will show that this is slower than our approach.

← ロ → → 伊

 \mathbf{p} ÷. QQ

In the even genus case

Using a a balanced representation, we finished when we found *D*⁴ such that

$$
D_1 + D_2 \equiv D_4 + \frac{g}{2}(\infty^+ + \infty^-).
$$

If we wanted to use $D_{\infty} = g \infty^{+}$ instead, we'd get

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g}{2}(\infty^- - \infty^+),
$$

so $g/2$ extra red_∞ steps are needed to finish.

メロトメ団 トメモトメ

In the even genus case

Using a a balanced representation, we finished when we found *D*⁴ such that

$$
D_1 + D_2 \equiv D_4 + \frac{g}{2}(\infty^+ + \infty^-).
$$

If we wanted to use $D_{\infty} = g\infty^{+}$ instead, we'd get

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g}{2}(\infty^- - \infty^+),
$$

so $g/2$ extra red_∞ steps are needed to finish.

K ロ ト K 何 ト K ヨ ト

In the even genus case

Using a a balanced representation, we finished when we found *D*⁴ such that

$$
D_1 + D_2 \equiv D_4 + \frac{g}{2}(\infty^+ + \infty^-).
$$

If we wanted to use $D_{\infty} = g\infty^{+}$ instead, we'd get

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g}{2}(\infty^- - \infty^+),
$$

so $g/2$ extra red_∞ steps are needed to finish.

4 日) 4 伊

 \rightarrow \equiv \rightarrow

In the odd genus case

Usinga a balanced representation, we finished when we found *D*⁴ such that

$$
D_1 + D_2 \equiv D_4 + \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-.
$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g-1}{2}(\infty^- - \infty^+),
$$

so $(g - 1)/2$ extra red_∞ steps are needed to finish.

K ロト K 御 ト K 君 ト K 君 ト

In the odd genus case

Usinga a balanced representation, we finished when we found *D*⁴ such that

$$
D_1 + D_2 \equiv D_4 + \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-.
$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g-1}{2}(\infty^- - \infty^+),
$$

so $(g - 1)/2$ extra red_∞ steps are needed to finish.

K ロト K 御 ト K 君 ト K 君 ト

In the odd genus case

Usinga a balanced representation, we finished when we found *D*⁴ such that

$$
D_1 + D_2 \equiv D_4 + \frac{g+1}{2}\infty^+ + \frac{g-1}{2}\infty^-.
$$

If we wanted to use $D_{\infty} = g \infty^+$ instead, we'd get

$$
[D_1 - D_{\infty}] + [D_2 - D_{\infty}] = [D_4 - D_{\infty}] + \frac{g-1}{2}(\infty^- - \infty^+),
$$

so $(g - 1)/2$ extra red_∞ steps are needed to finish.

イロト (何) (ほ) (ほ)

Divisor inversion

It is important to be able to invert elements in a group (window methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 red_∞ steps.

- **If the genus is even, then** $D_{\infty} = \overline{D_{\infty}}$ **.**
- **If the genus is odd, then** $D_{\infty} = \overline{D_{\infty}} + (\infty^+ \infty^-)$ **.**

Using $g\infty^+$ as base divisor, it takes g applications of red_∞.

 \bullet If $D_{\infty} = g\infty^{+}$, then $D_{\infty} = \overline{D_{\infty}} + g(\infty^{+} - \infty^{-}).$

 \triangleright 4 \equiv \triangleright 4

Divisor inversion

It is important to be able to invert elements in a group (window methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 red_∞ steps.

- **If the genus is even, then** $D_{\infty} = \overline{D_{\infty}}$ **.**
- If the genus is odd, then $D_{\infty} = \overline{D_{\infty}} + (\infty^+ \infty^-)$.

Using $g\infty^+$ as base divisor, it takes g applications of red_∞. \bullet If $D_{\infty} = g\infty^{+}$, then $D_{\infty} = \overline{D_{\infty}} + g(\infty^{+} - \infty^{-}).$

伊 ▶ (ヨ) (ヨ

Divisor inversion

It is important to be able to invert elements in a group (window methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 red_∞ steps.

- **If the genus is even, then** $D_{\infty} = \overline{D_{\infty}}$ **.**
- If the genus is odd, then $D_{\infty} = \overline{D_{\infty}} + (\infty^+ \infty^-)$.

Using $g\infty^+$ as base divisor, it takes g applications of red_∞.

• If
$$
D_{\infty} = g \infty^+
$$
, then $D_{\infty} = \overline{D_{\infty}} + g(\infty^+ - \infty^-)$.

つへへ

Comparison

In a genus 2 curve if $S = M$ and $I = 4M$ then balanced

representations give a saving of around 15% for addition and 13% for doubling (if $I = 30M$ the savings become 62% and 58% respectively).

Table: Operation counts for genus 2 arithmetic.

≮ ロ ▶ ⊀ 伊 ▶ ⊀

- The analogue of a baby-step in the imaginary model is addition of $P - \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

イロト イ母ト イヨトイ

- The analogue of a baby-step in the imaginary model is addition of $P - \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

イロト イ母 トイヨ トイ

- The analogue of a baby-step in the imaginary model is addition of $P - \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

イロト イ母ト イヨトイ

- The analogue of a baby-step in the imaginary model is addition of $P - \infty$.
- If the genus is even and the points at infinity are not rational, baby-steps are not necessary.
- Implemented in Magma V2.12, July 2005.
- One can efficiently implement pairings on hyperelliptic curves given by a real model (upcoming article with S. Galbraith and X. Lin).

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

[Introdution](#page-2-0) [Addition](#page-28-0) [Comparison](#page-35-0)

Questions?

Thank you for your attention

[Arithmetic on Hyperelliptic Curves](#page-0-0)

K ロト K 個 ト K 君 ト

重

к

 $\,$ ∍