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Introdution

Plane Models

We will consider a genug hyperelliptic curveC defined over a fielt
with chark) # 2. We can assume th@tis given by a plane model

C:y’=F(x)

whereF is a polynomial irk[x] with no repeated roots.
If P = (x,y) is a point on the curve, the® = (x, —y) also lies on the
curve and is called hyperelliptic conjugatefaf

Taxonomy

o Ifdeg(F) is 2g + 1, this is an imaginary modeC will have 1
point at infinity.

o Ifdeg(F) is 2g + 2, this is a real modelC will have 2 points at
infinity.

-
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The divisor class group

@ Thegroup of divisorson C is the group of finite formal sums

D = > niP;, for integersn; and pointsP; on C(K).
degD) = > n.
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Introdution

The divisor class group

@ Thegroup of divisorson C is the group of finite formal sums
D = " n;P;, for integersn; and pointsP; on C(K).
degD) = > n.

@ To every rational functiori in C(k)*, one can associate a divisor

div(f) = > ords(f).

PeC(k)

The set of divisors associated to all the function€{k)* forms
the subgroup of principal divisors.
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Introdution

The divisor class group

@ Thegroup of divisorson C is the group of finite formal sums
D = " n;P;, for integersn; and pointsP; on C(K).
degD) = > n.

@ To every rational functiori in C(k)*, one can associate a divisor

div(f) = > ords(f).

PeC(k)

The set of divisors associated to all the function€{k)* forms
the subgroup of principal divisors.

@ The divisor class group o is the quotient group of the group of
divisors modulo the subgroup of principal divisors. Thesslaf
D will be denotedD].
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div(w> — P14+ P+ Py +Ps— Ry — R — 200,

[P1 + P2 — 200] + [Q1 + Q2 — 200] = [Ry + Ry — 200].
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[P1+P2—00t —007 | +[Q1+Q2—ocT —007] = [Rg+Ro—o0™ —007].
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Introdution

Adivisor D = Y n;P; is said to beeffectiveif every coefficientn; is
non-negative.

4

We say that an effective divis@ = ) _; P; on a hyperelliptic curv&
is semi-reducedf i # j impliesP; # P;.
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Introdution

Adivisor D = Y n;P; is said to beeffectiveif every coefficientn; is
non-negative.

We say that an effective divis@ = ) _; P; on a hyperelliptic curv&
is semi-reducedf i # j impliesP; # P;. If the hyperelliptic curveC
has genug), we say that a divisdD on C is reducedif it is
semi-reduced, and has degreg g. We will denote the degree of a
divisor D; asd;.
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Introdution

Let D, be a k-rational degree g divisor, and let®Div®(C) be a
k-rational divisor on the hyperelliptic curve C. Théd| has a unique
representative irC1%(C) of the form[Dg — D], where By is an
effectlve k-rational divisor of degree g whose affine pareduced.

The base divisor

o If Cis given by an imaginary model, théh,, = goo.
o If Cis given by a real model denote its points at infinity-as
andoco~. Then
o Do = 3(c0™ + 007) if gis even.
8 Do = Hloot + L2oo™ if giis odd.
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Introdution

Mumford’s Representation
To every pair of polynomial$u(x), v(x)) such that

u(x) divides F(x) — v(x)?, (1)
we associate a divisor as follows
If u(x) = JJ(x—ri), then(u(x), v(x)) — > (ri,v(ri)).

We say that the polynomials, v) are the Mumford representation of
D, and denote this d3 = div(u, v). Every affine semi-reduced
divisor has a Mumford representation.
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Introdution

Fix a degreey divisor D,. Given two effective degregdivisors with
reduced affine paid; andD,, find an effective degreg divisor D3
with reduced affine part such that

[Dl = DOO] + [Dz = DOO] = [Dg = DOO].

Equivalently

To add the divisor classéB; — D] and[D2 — D], one calculates
D3 satisfying
[D1 + D2] = [D3 + Dol

© Given the Mumford representation bf andD», find the
Mumford representation dd; + Do.

@ From the Mumford representation Bf + D, find the
appropriateD3. This is done using the reduction algorithms.
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Introdution

Reduction

Let Dp = div(up, Vo) be a divisor of degredy > g+ 2 (do > g+ 1).
By definition of the Mumford representation, the divisoryof vo(X)
has (generically) the form

do + dp

> (00T + 007),

div(y — vo(X)) = Do + D1 —
whereD; is an affine semi-reduced divisor. This implies

— do—dl(

[Do] = [Dl aF oot aF OO_)]

-

The affine zeros of — vo(x) are found solving/ip(x)2 — F(x) = 0. J
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Composition and reduction »

o If the divisorD = div(u, v) has degree at mogt+ 1, then
reduction using — v(x) does not work.

@ Forinstance iD has degreg + 1, then degv) < g, sov? — F
will have 29 + 2 affine zeros, and we get another divisor of
degreeg + 1.

Arithmetic on Hyperelliptic Curves



Introdution

Composition and reduction »

o If the divisorD = div(u, v) has degree at mogt+ 1, then
reduction using — v(x) does not work.

@ Forinstance iD has degreg + 1, then degv) < g, sov? — F
will have 29 + 2 affine zeros, and we get another divisor of
degreeg + 1.

@ We have cancelation iv? — F if and only if the leading term of

e £1/2 g+
is Fzg +2x9 .
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Composition and reduction

o If the divisorD = div(u, v) has degree at mogt+ 1, then
reduction using — v(x) does not work.

@ Forinstance iD has degreg + 1, then degv) < g, sov? — F
will have 29 + 2 affine zeros, and we get another divisor of
degreeg + 1.

@ We have cancelation iv? — F if and only if the leading term of
is F;éf‘rzxg* &

@ The functiony — p(x) has different order ato™ andoco™ if and

only if the leading term op is F;éizxgﬂ.
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Introdution

This motivates

Let HT (x) be the polynomial with leading terﬁ%izxg*l such that
(HT)? — F has minimal degree.
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Introdution

This motivates

Let HT (x) be the polynomial with leading terﬁ%izxg*l such that
(HT)? — F has minimal degree. Gived = div(u, v) of degree at
mostg + 1, use the polynomial

p(x) =H'* + (v—HT modu)

to perform a reduction (This is a rgdstep).

Generically

\.
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Introdution

This motivates

Let HT (x) be the polynomial with leading terﬁ%izxg*l such that
(HT)? — F has minimal degree. Gived = div(u, v) of degree at
mostg + 1, use the polynomial

p(x) =H'* + (v—HT modu)

to perform a reduction (This is a rgdstep).

-

Generically

@ If Dg has degreg, then typically[Dg] = [D1 + (co™ — 0o™)].

\.
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Introdution

This motivates

Let HT (x) be the polynomial with leading terﬁ%izxg*l such that
(HT)? — F has minimal degree. Gived = div(u, v) of degree at

mostg + 1, use the polynomial

p(x) =H'* + (v—HT modu)

to perform a reduction (This is a rgdstep).

@ If Dg has degreg, then typically[Dg] = [D1 + (co™ — 0o™)].
@ If Do has degreg + 1, then typically|Do] = [D1 + co™].
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Generical addition for even genus
@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».

Arithmetic on Hyperelliptic Curves



Generical addition for even genus
@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».

@ Reduce unti[D; + D3] = [D3 + (9/2)(c0™ + 007 )].
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Generical addition for even genus

@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».

@ Reduce unti[D; + D3] = [D3 + (9/2)(c0™ + 007 )].
@ This is equivalent tgD1 — D] + [D2 — Doo] = [D3 — Do .
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Addition

Odd genus
@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».
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Addition

Odd genus
@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».

o Reduce unti[D; + Dy] = [D5 + (g — 1)/2(co™ + 007 )].
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Addition

Odd genus
@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».

o Reduce unti[D; + Dy] = [D5 + (g — 1)/2(co™ + 007 )].
e Use composition-and-reduction to gBt] = [D3 + co].
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Addition

Odd genus
@ Given|[D; — D] and[D2 — D] find the Mumford
representation dD; + D».

o Reduce unti[D; + Dy] = [D5 + (g — 1)/2(co™ + 007 )].
e Use composition-and-reduction to gBt] = [D3 + co].
@ Now [D; + Do) = [D5+ (g+ 1)/200" + (g — 1) /2007].
@ This is equivalent tdD1; — D] + [D2 — Doo] = [D3 — Do
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Comparison

In the olden days

Previous authors used the base dividgr = goo™ instead of the
“balanced” divisor we proposed. We will show that this isrgto than
our approach.
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Comparison

In the even genus case

Using a a balanced representation, we finished when we fbynd
such that g
D1+ Dy =Dy + E(Oo-i— =4k OO_).
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Comparison

In the even genus case

Using a a balanced representation, we finished when we fbynd
such that

D1+ Dy =Dy + g(oo+ =4k OO_).
If we wanted to us®,, = goo™ instead, we'd get

[D1 — Duo] + [D2 — D] = [Da — D] + g(oo_ s,
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Comparison

In the even genus case

Using a a balanced representation, we finished when we fbynd
such that

D1+ Dy =Dy + g(oo+ =4k OO_).
If we wanted to us®,, = goo™ instead, we'd get

[D1 — Duo] + [D2 — D] = [Da — D] + g(oo_ s,

s0g/2 extra red, steps are needed to finish.
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Comparison

In the odd genus case »

Usinga a balanced representation, we finished when we fbynd
such that | 0
D1+ D2 = D4+ %oo"‘ + g%oo_.
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Comparison

In the odd genus case
Usinga a balanced representation, we finished when we fbynd

such that | 0
D1+ D2 = D4+ %oo"‘ + g%oo_.

If we wanted to us®., = goo™ instead, we'd get

[D1 — Do) + [Ds — D] = [Da — Do) + g%l(oo— +)
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Comparison

In the odd genus case

Usinga a balanced representation, we finished when we fbynd
such that | 0
D1+ D2 = D4+ %oo"‘ + g%oo_.

If we wanted to us®., = goo™ instead, we'd get

[D1 — Do) + [Ds — D] = [Da — Do) + g%l(oo— +)

so(g— 1)/2 extra red, steps are needed to finish.
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Comparison

Divisor inversion

It is important to be able to invert elements in a group (windo
methods, signed representations, etc).
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Comparison

Divisor inversion

It is important to be able to invert elements in a group (windo
methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 retéps.

o If the genus is even, thed,, = D.
o Ifthe genus is odd, theB,, = Do + (00t — 007).
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Comparison

Divisor inversion

It is important to be able to invert elements in a group (windo
methods, signed representations, etc).

Using our representation, this can be done with 0 or 1 retéps.

o If the genus is even, thed,, = D.

o Ifthe genus is odd, theB ., = Do + (00T — 007).
Usinggoo™ as base divisor, it takepapplications of reg,.

@ If Do = goo™, thenD,, = Do + g(oot — 007).
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Comparison

In a genus 2 curve 5= M andl = 4M then balanced
representations give a saving of aroun1fer addition and 1% for
doubling (if| = 30M the savings become &2and 58% respectively)/.

Imaginary | Balanced | Non-balanced
Addition | 1I, 2S, 22M| 1I, 2S, 26M | 2I, 4S, 30M
Doubling | 1I, 5S, 22M| 11, 4S, 28M| 2I, 6S, 32M
Inversion | O 0 2l, 4S, 8M

Table: Operation counts for genus 2 arithmetic.
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Comparison

@ The analogue of a baby-step in the imaginary model is additio
of P — o0.
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Comparison

@ The analogue of a baby-step in the imaginary model is additio
of P — o0.

o If the genus is even and the points at infinity are not rational
baby-steps are not necessary.
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Comparison

@ The analogue of a baby-step in the imaginary model is additio
of P — o0.

o If the genus is even and the points at infinity are not rational
baby-steps are not necessary.

o Implemented in Magma V2.12, July 2005.
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Comparison

@ The analogue of a baby-step in the imaginary model is aaditio
of P — o0.

o If the genus is even and the points at infinity are not rational
baby-steps are not necessary.

o Implemented in Magma V2.12, July 2005.

@ One can efficiently implement pairings on hyperellipticvas
given by a real model (upcoming article with S. Galbraith and
X. Lin).

ot
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Thank you for your attention

Arithmetic on Hyperelliptic Curves



	Introdution
	Addition
	Comparison

