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Several algorithms in cryptography are based on the apparent difficulty of solving the
discrete logarithm. It, like integer factorization, is attractive in cryptography because the
inverse (modular exponentiation) is much easier to compute. The paper “Mapping the
Discrete Logarithm” by Daniel Coulter and Joshua Holden takes a look at the functional
graphs that can be generated using the function x 7→ gx (mod p) where p is a prime
number. It turns out the structure of the graph is largely determined by the interac-
tion between g and p − 1, and this interaction gives us an easy way to generate many
binary functional graphs by choosing the correct values for g. In “Mapping the Dis-
crete Logarithm” the authors extracted some statistics from graphs with p near 100,000.
Their work showed evidence that binary functional graphs generated through modular
exponentiation were very close to the theoretical values for random binary functional
graphs.

This second look tells a slightly different story though. Using many of the same
techniques as in the previous paper, we were able to generate values for the theoretical
variance in several of the statistics which were measured. While the variance in the num-
ber of components and the number of cyclic nodes is similar to the theoretical variance
for binary functional graphs, the variance in the average cycle length and the average tail
length are far from what was expected. T-tests were also performed to determine if the
theoretical and observed means were statistically similar. The results show that in some
cases this is true, but in others the test shows that seemingly small differences could
actually be quite significant. We have also applied a t-test on the variance to determine
the significance of the deviation from what we expected.

Through some optimizations to the code used for the previous paper, as well as
a conversion from C++ to C, we are now able to complete trials much more quickly.
This has allowed us to test values of p near 200,000, and we have run tests on 33 primes
between 100,00 and 200,00. The following is a tabulation of some of the statistics we have
gathered, along with the variation, theoretical variation, and the P-value obtained after
running a two-tailed t-test on the observed statistic comparing it to the theoretical value.
The results here (unusual average cycle variation, average tail variation and maximum
tail) are consistent with the rest of our results.
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100043 100057
Predicted Observed P-value Predicted Observed P-value

Components 6.392 6.389 0.842 6.392 6.364 0.134
Variance 5.158 5.117 0.230 5.158 5.098 0.368
Cyclic nodes 395.417 395.303 0.920 395.445 395.858 0.842
Variance 42543.192 42227.348 0.272 42549.173 42781.153 0.690
Avg cycle 198.208 198.319 0.920 198.222 198.215 1
Variance 27210.527 20392.727 0 27214.349 20680.648 0
Avg. tail 197.212 197.178 1 197.226 196.768 0.548
Variance 27210.956 7362.882 0 27214.778 7335.733 0
Max cycle 247.495 247.261 0.764 247.512 247.302 0.920
Variance NA 23806.218 NA NA 23985.249 NA
Max tail 547.935 541.827 0 547.974 541.701 0
Variance NA 26848.354 NA NA 23985.249 NA

Table 1: Observed and theoretical statistics for p=100043 and p=100057

106261 200087
Predicted Observed P-value Predicted Observed P-value

Components 6.422 6.370 0.022 6.738 6.745 0.368
Variance 5.188 5.176 0.920 5.505 5.517 0.690
Cyclic nodes 407.551 408.433 0.690 559.620 562.252 0.006
Variance 45199.846 44488.375 0.272 85318.241 85825.849 0.230
Avg. Cycle 204.275 206.612 0.110 280.310 281.659 0.046
Variance 28907.991 22003.465 0 54537.238 41358.233 0
Avg. Tail 203.279 201.644 0.058 279.313 278.974 0.424
Variance 28908.420 7578.376 0 54537.668 14731.689 0
Max cycle 255.070 256.986 0.230 350.012 351.356 0.058
Variance NA 25629.420 NA NA 48068.838 NA
Max tail 564.756 554.905 0 775.570 769.207 0
Variance NA 27602.038 NA NA 54039.057 NA

Table 2: Observed and theoretical statistics for p=200087 and p=106261
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