

A statistical look at maps of the discrete logarithm

Dr. Joshua Holden and Nathan Lindle

Mathematics and Computer Science, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803

Definitions

Functional Graph - A directed graph where the edges are determined by a transition function. In this case the function is

 $\varphi : x \to q^x \mod p$

Binary Functional Graph - A functional graph where the indegree of each node is either 0 or 2. All the graphs studied were binary functional graphs.

Component - A connected set of nodes. The average number of components is measured for each prime modulus (e.g. 1.75 for p = 11)

Cyclic Nodes - Nodes that are part of a cycle, including nodes which loop back on themselves. The average cyclic nodes are measured for each prime (e.g. 3.25 for p = 11)

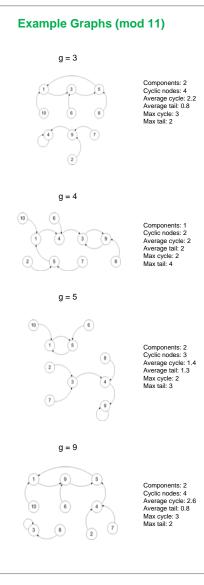
Average Cycle - The average cycle size as seen from a random node in a functional graph divided by the number of nodes in all the functional graphs for a given prime (e.g. 2.05 for p = 11)

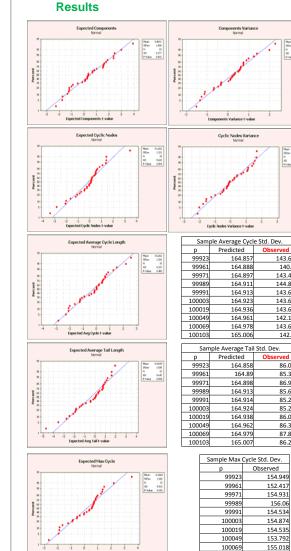
Average Tail - The average distance to the cycle as seen from a random node in the graph. Cyclic nodes have a distance of 0. Computation is similar to that of the average cycle (e.g. 1.225 for p = 11)

Max Cycle - The largest cycle in a graph. The average is taken over all bases for a given p (e.g. 2.5 for p = 11)

Max Tail - The longest distance from a node to its cycle in a graph. Similar to max cycle (e.g. 2.75 for p = 11)

Generating functions: Binary Functional Graphs = $f(z) = e^{\epsilon(z)}$ $Components = c(z) = \ln(\frac{1}{1 - zb(z)})$


Methods


Binary Trees = $b(z) = z + \frac{1}{2}zb(z)^2$

Marked generating function for total number of components:

Sample Maximum Tail Statistics				
	Mean			Std. Dev.
р	Predicted	Observed	P-value	Observed
99923	547.605802	543.281073	0	163.809
99961	547.710225	541.005022	0	163.494
99971	547.737702	544.967041	0.002	165.249
99989	547.787156	542.47563	0	163.809
99991	547.792651	541.265167	0	163.805
100003	547.825617	543.876996	0	163.295
100019	547.86957	542.008421	0	163.79
100049	547.951971	544.38604	0.002	165.651
100069	548.006899	549.379291	0.318	165.926
100103	548,100263	540.966673	0	164.496

Summarv

143.637

140.91

143.442

144.856

143.678

143.686

143.632

142.121

143.612

142.79

86.025

85.319

86.914

85.661

85.227

85.261

86 029

86.398

87.876

86.234

154.1

100103

- · Many of the statistics gathered do not provide sufficient evidence to question the theory that modular exponentiation graphs are similar to random functional graphs.
- · The observed variance in the average cycle and the average tail were significantly lower than the expected variance for a random binary functional graph.
- A few tests had surprisingly low p-values, but the normality tests indicate that these were just outliers.

Future Work

- · Get theoretical values for maximum tail and maximum cycle variance.
- · Analyze lower variances in average cycle length and average tail length to try and come up with a reason.
- · Find an explanation for the lower maximum tail.