
Improved Stage 2 to P ± 1 Factoring
Algorithms

P. L. Montgomery and Alexander Kruppa

Microsoft Research, Redmond, USA and LORIA, Nancy, France

ANTS-VIII Banff, Canada, May 21st 2008

Contents

Contents
1. Introduction

• The P–1 and P+1 factoring algorithms

• The stage 2 extension

• Previous work

2. Our contribution

• Use of reciprocal Laurent polynomials

• Fast polynomial construction

• Evaluation along geometric progression for P–1, P+1

3. Timings and results

P. L. Montgomery and Alexander Kruppa 2 Banff, Canada, May 21st 2008

The P-1 factoring algorithm

The P-1 factoring algorithm

• Introduced by Pollard (1974)

• Let N be odd, composite integer, prime p | N . Goal: find p

• Choose b0 6≡ ±1 (mod N), gcd(b0, N) = 1,
and a highly composite integer e, e.g. e = lcm(1, 2, 3, . . . , B1)

• Compute b = be
0 mod N

• If p− 1 | e, then be
0 ≡ 1 (mod p) and p | gcd(b− 1, N)

• Finds p quickly if p− 1 has only small prime factors (is “smooth”)

P. L. Montgomery and Alexander Kruppa 3 Banff, Canada, May 21st 2008

The P+1 factoring algorithm

The P+1 factoring algorithm

• Introduced by Williams (1982)

• Works in F∗
p2, tries to construct element α of order p + 1

• Computes αe +α−e using Chebyshev polynomials Vn(x+x−1) =
xn + x−n

• Manipulating αn + α−n allows arithmetic in base ring Z/NZ, we
try to preserve this symmetry

• If αe ≡ 1 (mod p), then p | gcd(αe + α−e − 2, N)

P. L. Montgomery and Alexander Kruppa 4 Banff, Canada, May 21st 2008

The Stage 2

The Stage 2

• What if stage 1 fails to find a factor?

• Could increase B1, expensive

• Maybe p− 1 = nq where n | e, q not too large (likely prime), then
bq ≡ 1 (mod p). Try to find q up to B2

• One stage 2 variant uses polynomial multipoint evaluation: degree
d on n points in geometric progression with length l = d + n
convolution

• Number of q values tested: dn, so B2 ∼ l2

• Reaches high B2, needs much memory

P. L. Montgomery and Alexander Kruppa 5 Banff, Canada, May 21st 2008

The Stage 2 (cont.)

The Stage 2 (cont.)

• Choose highly composite P , assuming q ⊥ P .

• Choose set S as full set of representatives of (Z/PZ)∗

• Build f (X) =
∏

k∈S

(
X − bk

)
mod N , degree s = |S| = ϕ(P)

• Evaluate all f
(
bmP

)
mod N , m1 ≤ m < m2

• If q ⊥ P , there is k ∈ S so that q = m′P − k

• Hence
(
bm′P − bk

)
≡ bk(bq − 1) ≡ 0 (mod p) and we find

p | gcd
(
f

(
bm′P

)
, N

)
• Includes q if m1 ≤ m′ < m2, effective B2 ≈ m2P

P. L. Montgomery and Alexander Kruppa 6 Banff, Canada, May 21st 2008

Previous work

Previous work

Montgomery and Silverman (1990), “An FFT extension to the P-1
factoring algorithm”:

• Build f (X) with product tree in O(n log(n)2) multiplications

• Evaluate along geometric progression

• Mention in remarks that method extends to P + 1, f (X) can be
built faster, reciprocal polynomials save space

• We implement these ideas

P. L. Montgomery and Alexander Kruppa 7 Banff, Canada, May 21st 2008

Previous work (cont.)

Previous work (cont.)

GMP-ECM, unified stage 2 for P–1, P+1, ECM:

• described in Zimmermann, Dodson (2006)

• mostly modeled after Montgomery’s thesis (1992)

• product tree for f (X)

• general multipoint evaluation in O(n log(n)2) time and
O(n log(n)) space

P. L. Montgomery and Alexander Kruppa 8 Banff, Canada, May 21st 2008

Our contribution

Our contribution

Our new stage 2

P. L. Montgomery and Alexander Kruppa 9 Banff, Canada, May 21st 2008

Factoring S

Factoring S

• For a given P , we want S a full set of representatives of (Z/PZ)∗

• Set of sums A + B = {a + b, a ∈ A, b ∈ B}

• Factor S into sum of sets T1 + . . . + Tn to speed up building f (X)

• Chinese Remainder Theorem: if m ⊥ n

(Z/(mn)Z)∗ = n(Z/mZ)∗ + m(Z/nZ)∗

• Assume 4 | P

• One set for each prime dividing P . Example: P = 28,
S = T1 + T2 = {7, 21} + {4, 8, 12, 16, 20, 24}

P. L. Montgomery and Alexander Kruppa 10 Banff, Canada, May 21st 2008

Factoring S (cont.)

Factoring S (cont.)

• More, smaller sets possible

• Let Rn = {2i − n − 1 : 1 ≤ i ≤ n} be arithmetic progression of
length n, common difference 2, symmetric around 0

• Rp−1 is set of representatives of (Z/pZ)∗, p > 2

• Rmn = Rm + mRn, decompose into sets of prime cardinality

• One set for each prime in ϕ(P). Example: P = 28,
S = T1 + T2 + T3 = {−7, 7} + {−16, 0, 16} + {−4, 4}

• All Ti symmetric around 0, so S symmetric around 0

P. L. Montgomery and Alexander Kruppa 11 Banff, Canada, May 21st 2008

Reciprocal Laurent Polynomials

Reciprocal Laurent Polynomials
• S symmetric around 0, s = |S| even

• Make f (X) reciprocal polynomial

f (X) = X−s/2
∏

k∈S,k>0

(
X − bk

) (
X − b−k

)
=

∏
k∈S,k>0

(
X − (bk + b−k) + X−1

)
• f (X) monic reciprocal Laurent polynomial (RLP) of form f (X) =

f0 +
∑s/2

i=1 fi(X
i + X−i)

• Only s/2 + 1 coefficients

• P + 1: αk + α−k = Vk(α + α−1), coefficients in base ring

P. L. Montgomery and Alexander Kruppa 12 Banff, Canada, May 21st 2008

Fast construction of f(X)

Fast construction of f(X)
• Let S = T1+T2+. . .+Tn, all Ti sets of prime cardinality, symmetric

around 0. Assume |Tn| = 2

• We want

f (X) = X−s/2
∏
k1∈S

(X − bk1)

= X−s/2
∏
t1∈T1

∏
t2∈T2

. . .
∏

tn∈Tn

(X − bt1+t2+...+tn)

• Compute right-to-left: start with Tn = {tn,−tn},

fn(X) = X−1(X − btn)(X − b−tn) = X − (btn + b−tn) + X−1

• Expand for i = n− 1, . . . , 1:

fi(X) =
∏
ti∈Ti

bti deg(fi+1)fi+1(b
−tiX)

P. L. Montgomery and Alexander Kruppa 13 Banff, Canada, May 21st 2008

Fast construction of f(X) (cont.)

Fast construction of f(X) (cont.)

• Then f1(X) = f (X)

• If |Ti| = 2, fi(X) is product of polynomials of equal degree:
efficient, do last. Sort Ti so that |Tn| = 2, |Ti| ≤ |Ti + 1| for
i = 1, . . . , n− 2

• Complexity: M(n) cost of polynomial multiplication. Many |Ti| = 2
so that cost only ≈ M(s/2) + M(s/4) + . . . ≤ M(s)

• Scaled polynomial is not RLP, but fi+1(b
tiX)fi+1(b

−tiX) is.
Rewrite this product using Chebyshev polynomials to do all
computations with RLPs over base ring

P. L. Montgomery and Alexander Kruppa 14 Banff, Canada, May 21st 2008

Multiplying RLPs

Multiplying RLPs
• Given reciprocal Laurent polynomials Q(X), R(X), we want

S(X) = Q(X)R(X) = s0 +
∑ds

i=1 si(X + X−1)

• Monomial basis: 2ds + 1 terms, only ds + 1 distinct coefficients,
would like to use cyclic convolution of length ds + 1 ≤ l < 2ds.

• Computing S(X) in monomial basis mod X l − 1 does not work
for l < 2ds

• Example: ds = 3, l = 4

x−3 x−2 x−1 x0 x1 x2 x3

s3 s2 s1 s0 s1 s2 s3

s0 s1 + s3 s2 + s2 s3 + s1 (mod x4 − 1)

• Can’t separate si, sl−i for i 6= 0, l/2

P. L. Montgomery and Alexander Kruppa 15 Banff, Canada, May 21st 2008

Multiplying RLPs (cont.)

Multiplying RLPs (cont.)
• Idea: use weighted convolution

• Multiply S̃(wX) = Q(wX)R(wX) mod X l − 1:

x−3 x−2 x−1 x0 x1 x2 x3

w−3s3 w−2s2 w−1s1 w0s0 w1s1 w2s2 w3s3

w0s0 w1s1 + w−3s3 w2s2 + w−2s2 w3s3 + w−1s1

• After un-weighting S̃(X) :

x0 x1 x2 x3

s0 s1 + w−4s3 s2 + w−4s2 s3 + w−4s1

• If wl 6= 0,±1, we can separate si, sl−i:(
wl − w−l

)
si = wl

(
si + w−lsl−i

)
−

(
sl−i + w−lsi

)
P. L. Montgomery and Alexander Kruppa 16 Banff, Canada, May 21st 2008

Multipoint evaluation

Multipoint evaluation

• We want to evaluate RLP f (X) at X = bmP , m1 ≤ m < m2

• Evaluating f (X) at n points in geometric progression possible with
convolution of length l = deg(f) + n

• Most efficient if deg(f) ≈ n: choose s = ϕ(P) close to l/2 for
available transform lengths l

• Form h(X) = f0 +
∑s/2

j=1 fjb
−j2P (Xj + X−j), an RLP

• h(X) is reciprocal: h(ωi) = h(ωl−i) in length l DFT, ω an l-th root
of unity: only l/2 + 1 distinct Fourier coefficients

P. L. Montgomery and Alexander Kruppa 17 Banff, Canada, May 21st 2008

Multipoint evaluation (cont.)

Multipoint evaluation (cont.)

• Let g(X) =
∑l−1

i=0 xM−i
0 bP (M−i)2X i, where x0 = bm1P , M =

l − 1− s1/2

• Then coefficient of XM−i in g(X)h(X) is

xm
0 bPm2

f
(
b(m1+i)P

)
• For P+1: coefficients of g(X), h(X) in quadratic extension: need

twice the memory, two convolutions

P. L. Montgomery and Alexander Kruppa 18 Banff, Canada, May 21st 2008

The algorithm: Summary

The algorithm: Summary

1. Choose P , S

2. Build f (X) from factored S1 (in O(M(s)))

3. Build h(X) (in O(l))

4. Build g(X) (in O(l))

5. Compute g(X)h(X) (in O(M(l)))

6. Take gcd of coefficients and N (in O(l)). Print any factor

P. L. Montgomery and Alexander Kruppa 19 Banff, Canada, May 21st 2008

Our implementation

Our implementation

Our implementation: Timings
and results

P. L. Montgomery and Alexander Kruppa 20 Banff, Canada, May 21st 2008

Our implementation

Our implementation

• Based on GMP-ECM, implementation of P-1, P+1, ECM

• Stage 1 unchanged from previous version

• Uses number-theoretic transform modulo small primes with CRT
for convolutions, written by D. Newman, J. S. Papadopoulos

• On SMP: allows for parallelization, different cores process different
primes

• Only power of 2 transform lengths so far

P. L. Montgomery and Alexander Kruppa 21 Banff, Canada, May 21st 2008

Our implementation: Timings

Our implementation: Timings
Time for stage 2 on 230 digit number with B2 = 1.2 · 1015, l = 224,
s1 = 7434240, s2 = 3 on 2.4GHz Opteron with 2 cores, 8GB:

1 core 2 cores
cpu elapsed

P–1 1738s 1753s 941s
P+1 3356s 3390s 2323s

For comparison, old P-1 stage 2: 34080s with 1 core (similar for P+1)

Time for stage 2 with 1.34 · 1016, l = 226, s1 = 33177600, s2 = 2 on
2.6GHz Opteron with 32GB, 8 cores:

8 cores
cpu elapsed

P–1 5483s 922s
P+1 10089s 2192s

P. L. Montgomery and Alexander Kruppa 22 Banff, Canada, May 21st 2008

Results

Results

Method Number factor size q size of q
P–1 73109 − 1, c191 p50 462832247372839 15 digits

p = 76227040047863715568322367158695720006439518152299

P–1 24142 + 1, c183 p53 12750725834505143 17 digits
p = 20489047427450579051989683686453370154126820104624537

P+1 47146 + 1, c235 p52 843497917739 12 digits
p = 7986478866035822988220162978874631335274957495008401

P+1 L2366, c290 p60 483576618980159 15 digits
p = 725516237739635905037132916171116034279215026146021770250523

60 digit factor set new record for P+1!

P. L. Montgomery and Alexander Kruppa 23 Banff, Canada, May 21st 2008

New GMP-ECM release

New GMP-ECM release

• New release of GMP-ECM version 6.2 implements new stage 2 for
P–1, P+1

• Now available at

http://gforge.inria.fr/projects/ecm/

P. L. Montgomery and Alexander Kruppa 24 Banff, Canada, May 21st 2008

Brent-Suyama vs. large B2

Brent-Suyama vs. large B2

• Brent-Suyama extension: roots bd(k1) and points of evaluation
bd(−k2+mP), e.g. d(x) = x12, includes values > B2

• New stage 2 allows larger B2. Which is better?

• Example probabilities with B1 = 1011, typical parameters used by
GMP-ECM:

B2 = 1014 B2 = 2 · 1014 B2 = 1015

x120

p ≈ 1045 0.0179 0.0197 0.0196 0.0236
p ≈ 1050 0.0065 0.0071 0.0071 0.0087
p ≈ 1055 0.0022 0.0024 0.0024 0.0030

• Brent-Suyama extension improves probability of finding factors, but
increasing B2 by factor > 2 is better

P. L. Montgomery and Alexander Kruppa 25 Banff, Canada, May 21st 2008

Multi-point evaluation: Example

Multi-point evaluation: Example

Example: F (X) = f0 + f1X + f2X
2, evaluate at X = c, cr, cr2

Let h(X) = f0 + f1cX/r + f2c
2X2/r3,

g(X) = r10 + r6X + r3X2 + rX3 + X4

Then g(x)h(x) is

X6 f2c
2/r3

X5 f1c/r + f2c
2/r2

X4 f0 + f1c + f2c
2 = F (c)

X3 f0r + f1cr
2 + f2c

2r3 = rF (cr)
X2 f0r

3 + f1cr
5 + f2c

2r7 = r3F (cr2)
X1 f0r

6 + f1cr
9

X0 f0r
10

P. L. Montgomery and Alexander Kruppa 26 Banff, Canada, May 21st 2008

	Title slide
	Contents
	The P-1 factoring algorithm
	The P+1 factoring algorithm
	The Stage 2
	The Stage 2 (cont.)
	Previous work
	Previous work (cont.)
	Our contribution
	Factoring S
	Factoring S (cont.)
	Reciprocal Laurent Polynomials
	Fast construction of f(X)
	Fast construction of f(X) (cont.)
	Multiplying RLPs
	Multiplying RLPs (cont.)
	Multipoint evaluation
	Multipoint evaluation (cont.)
	The algorithm: Summary
	Our implementation
	Our implementation
	Our implementation: Timings
	Results
	New GMP-ECM release
	Brent-Suyama vs. large B2
	Multi-point evaluation: Example

