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The P-1 factoring algorithm

The P-1 factoring algorithm

• Introduced by Pollard (1974)

• Let N be odd, composite integer, prime p | N . Goal: find p

• Choose b0 6≡ ±1 (mod N), gcd(b0, N) = 1,
and a highly composite integer e, e.g. e = lcm(1, 2, 3, . . . , B1)

• Compute b = be
0 mod N

• If p− 1 | e, then be
0 ≡ 1 (mod p) and p | gcd(b− 1, N)

• Finds p quickly if p− 1 has only small prime factors (is “smooth”)
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The P+1 factoring algorithm

The P+1 factoring algorithm

• Introduced by Williams (1982)

• Works in F∗
p2, tries to construct element α of order p + 1

• Computes αe +α−e using Chebyshev polynomials Vn(x+x−1) =
xn + x−n

• Manipulating αn + α−n allows arithmetic in base ring Z/NZ, we
try to preserve this symmetry

• If αe ≡ 1 (mod p), then p | gcd(αe + α−e − 2, N)
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The Stage 2

The Stage 2

• What if stage 1 fails to find a factor?

• Could increase B1, expensive

• Maybe p− 1 = nq where n | e, q not too large (likely prime), then
bq ≡ 1 (mod p). Try to find q up to B2

• One stage 2 variant uses polynomial multipoint evaluation: degree
d on n points in geometric progression with length l = d + n
convolution

• Number of q values tested: dn, so B2 ∼ l2

• Reaches high B2, needs much memory

P. L. Montgomery and Alexander Kruppa 5 Banff, Canada, May 21st 2008



The Stage 2 (cont.)

The Stage 2 (cont.)

• Choose highly composite P , assuming q ⊥ P .

• Choose set S as full set of representatives of (Z/PZ)∗

• Build f (X) =
∏

k∈S

(
X − bk

)
mod N , degree s = |S| = ϕ(P )

• Evaluate all f
(
bmP

)
mod N , m1 ≤ m < m2

• If q ⊥ P , there is k ∈ S so that q = m′P − k

• Hence
(
bm′P − bk

)
≡ bk(bq − 1) ≡ 0 (mod p) and we find

p | gcd
(
f

(
bm′P

)
, N

)
• Includes q if m1 ≤ m′ < m2, effective B2 ≈ m2P
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Previous work

Previous work

Montgomery and Silverman (1990), “An FFT extension to the P-1
factoring algorithm”:

• Build f (X) with product tree in O(n log(n)2) multiplications

• Evaluate along geometric progression

• Mention in remarks that method extends to P + 1, f (X) can be
built faster, reciprocal polynomials save space

• We implement these ideas
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Previous work (cont.)

Previous work (cont.)

GMP-ECM, unified stage 2 for P–1, P+1, ECM:

• described in Zimmermann, Dodson (2006)

• mostly modeled after Montgomery’s thesis (1992)

• product tree for f (X)

• general multipoint evaluation in O(n log(n)2) time and
O(n log(n)) space
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Our contribution

Our contribution

Our new stage 2
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Factoring S

Factoring S

• For a given P , we want S a full set of representatives of (Z/PZ)∗

• Set of sums A + B = {a + b, a ∈ A, b ∈ B}

• Factor S into sum of sets T1 + . . . + Tn to speed up building f (X)

• Chinese Remainder Theorem: if m ⊥ n

(Z/(mn)Z)∗ = n(Z/mZ)∗ + m(Z/nZ)∗

• Assume 4 | P

• One set for each prime dividing P . Example: P = 28,
S = T1 + T2 = {7, 21} + {4, 8, 12, 16, 20, 24}
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Factoring S (cont.)

Factoring S (cont.)

• More, smaller sets possible

• Let Rn = {2i − n − 1 : 1 ≤ i ≤ n} be arithmetic progression of
length n, common difference 2, symmetric around 0

• Rp−1 is set of representatives of (Z/pZ)∗, p > 2

• Rmn = Rm + mRn, decompose into sets of prime cardinality

• One set for each prime in ϕ(P ). Example: P = 28,
S = T1 + T2 + T3 = {−7, 7} + {−16, 0, 16} + {−4, 4}

• All Ti symmetric around 0, so S symmetric around 0
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Reciprocal Laurent Polynomials

Reciprocal Laurent Polynomials
• S symmetric around 0, s = |S| even

• Make f (X) reciprocal polynomial

f (X) = X−s/2
∏

k∈S,k>0

(
X − bk

) (
X − b−k

)
=

∏
k∈S,k>0

(
X − (bk + b−k) + X−1

)
• f (X) monic reciprocal Laurent polynomial (RLP) of form f (X) =

f0 +
∑s/2

i=1 fi(X
i + X−i)

• Only s/2 + 1 coefficients

• P + 1: αk + α−k = Vk(α + α−1), coefficients in base ring
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Fast construction of f(X)

Fast construction of f(X)
• Let S = T1+T2+. . .+Tn, all Ti sets of prime cardinality, symmetric

around 0. Assume |Tn| = 2

• We want

f (X) = X−s/2
∏
k1∈S

(X − bk1)

= X−s/2
∏
t1∈T1

∏
t2∈T2

. . .
∏

tn∈Tn

(X − bt1+t2+...+tn)

• Compute right-to-left: start with Tn = {tn,−tn},

fn(X) = X−1(X − btn)(X − b−tn) = X − (btn + b−tn) + X−1

• Expand for i = n− 1, . . . , 1:

fi(X) =
∏
ti∈Ti

bti deg(fi+1)fi+1(b
−tiX)
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Fast construction of f(X) (cont.)

Fast construction of f(X) (cont.)

• Then f1(X) = f (X)

• If |Ti| = 2, fi(X) is product of polynomials of equal degree:
efficient, do last. Sort Ti so that |Tn| = 2, |Ti| ≤ |Ti + 1| for
i = 1, . . . , n− 2

• Complexity: M(n) cost of polynomial multiplication. Many |Ti| = 2
so that cost only ≈ M(s/2) + M(s/4) + . . . ≤ M(s)

• Scaled polynomial is not RLP, but fi+1(b
tiX)fi+1(b

−tiX) is.
Rewrite this product using Chebyshev polynomials to do all
computations with RLPs over base ring
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Multiplying RLPs

Multiplying RLPs
• Given reciprocal Laurent polynomials Q(X), R(X), we want

S(X) = Q(X)R(X) = s0 +
∑ds

i=1 si(X + X−1)

• Monomial basis: 2ds + 1 terms, only ds + 1 distinct coefficients,
would like to use cyclic convolution of length ds + 1 ≤ l < 2ds.

• Computing S(X) in monomial basis mod X l − 1 does not work
for l < 2ds

• Example: ds = 3, l = 4

x−3 x−2 x−1 x0 x1 x2 x3

s3 s2 s1 s0 s1 s2 s3

s0 s1 + s3 s2 + s2 s3 + s1 (mod x4 − 1)

• Can’t separate si, sl−i for i 6= 0, l/2
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Multiplying RLPs (cont.)

Multiplying RLPs (cont.)
• Idea: use weighted convolution

• Multiply S̃(wX) = Q(wX)R(wX) mod X l − 1:

x−3 x−2 x−1 x0 x1 x2 x3

w−3s3 w−2s2 w−1s1 w0s0 w1s1 w2s2 w3s3

w0s0 w1s1 + w−3s3 w2s2 + w−2s2 w3s3 + w−1s1

• After un-weighting S̃(X) :

x0 x1 x2 x3

s0 s1 + w−4s3 s2 + w−4s2 s3 + w−4s1

• If wl 6= 0,±1, we can separate si, sl−i:(
wl − w−l

)
si = wl

(
si + w−lsl−i

)
−

(
sl−i + w−lsi

)
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Multipoint evaluation

Multipoint evaluation

• We want to evaluate RLP f (X) at X = bmP , m1 ≤ m < m2

• Evaluating f (X) at n points in geometric progression possible with
convolution of length l = deg(f ) + n

• Most efficient if deg(f ) ≈ n: choose s = ϕ(P ) close to l/2 for
available transform lengths l

• Form h(X) = f0 +
∑s/2

j=1 fjb
−j2P (Xj + X−j), an RLP

• h(X) is reciprocal: h(ωi) = h(ωl−i) in length l DFT, ω an l-th root
of unity: only l/2 + 1 distinct Fourier coefficients
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Multipoint evaluation (cont.)

Multipoint evaluation (cont.)

• Let g(X) =
∑l−1

i=0 xM−i
0 bP (M−i)2X i, where x0 = bm1P , M =

l − 1− s1/2

• Then coefficient of XM−i in g(X)h(X) is

xm
0 bPm2

f
(
b(m1+i)P

)
• For P+1: coefficients of g(X), h(X) in quadratic extension: need

twice the memory, two convolutions
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The algorithm: Summary

The algorithm: Summary

1. Choose P , S

2. Build f (X) from factored S1 (in O(M(s)))

3. Build h(X) (in O(l))

4. Build g(X) (in O(l))

5. Compute g(X)h(X) (in O(M(l)))

6. Take gcd of coefficients and N (in O(l)). Print any factor
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Our implementation

Our implementation

Our implementation: Timings
and results
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Our implementation

Our implementation

• Based on GMP-ECM, implementation of P-1, P+1, ECM

• Stage 1 unchanged from previous version

• Uses number-theoretic transform modulo small primes with CRT
for convolutions, written by D. Newman, J. S. Papadopoulos

• On SMP: allows for parallelization, different cores process different
primes

• Only power of 2 transform lengths so far
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Our implementation: Timings

Our implementation: Timings
Time for stage 2 on 230 digit number with B2 = 1.2 · 1015, l = 224,
s1 = 7434240, s2 = 3 on 2.4GHz Opteron with 2 cores, 8GB:

1 core 2 cores
cpu elapsed

P–1 1738s 1753s 941s
P+1 3356s 3390s 2323s

For comparison, old P-1 stage 2: 34080s with 1 core (similar for P+1)

Time for stage 2 with 1.34 · 1016, l = 226, s1 = 33177600, s2 = 2 on
2.6GHz Opteron with 32GB, 8 cores:

8 cores
cpu elapsed

P–1 5483s 922s
P+1 10089s 2192s
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Results

Results

Method Number factor size q size of q
P–1 73109 − 1, c191 p50 462832247372839 15 digits

p = 76227040047863715568322367158695720006439518152299

P–1 24142 + 1, c183 p53 12750725834505143 17 digits
p = 20489047427450579051989683686453370154126820104624537

P+1 47146 + 1, c235 p52 843497917739 12 digits
p = 7986478866035822988220162978874631335274957495008401

P+1 L2366, c290 p60 483576618980159 15 digits
p = 725516237739635905037132916171116034279215026146021770250523

60 digit factor set new record for P+1!
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New GMP-ECM release

New GMP-ECM release

• New release of GMP-ECM version 6.2 implements new stage 2 for
P–1, P+1

• Now available at

http://gforge.inria.fr/projects/ecm/
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Brent-Suyama vs. large B2

Brent-Suyama vs. large B2

• Brent-Suyama extension: roots bd(k1) and points of evaluation
bd(−k2+mP ), e.g. d(x) = x12, includes values > B2

• New stage 2 allows larger B2. Which is better?

• Example probabilities with B1 = 1011, typical parameters used by
GMP-ECM:

B2 = 1014 B2 = 2 · 1014 B2 = 1015

x120

p ≈ 1045 0.0179 0.0197 0.0196 0.0236
p ≈ 1050 0.0065 0.0071 0.0071 0.0087
p ≈ 1055 0.0022 0.0024 0.0024 0.0030

• Brent-Suyama extension improves probability of finding factors, but
increasing B2 by factor > 2 is better
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Multi-point evaluation: Example

Multi-point evaluation: Example

Example: F (X) = f0 + f1X + f2X
2, evaluate at X = c, cr, cr2

Let h(X) = f0 + f1cX/r + f2c
2X2/r3,

g(X) = r10 + r6X + r3X2 + rX3 + X4

Then g(x)h(x) is

X6 f2c
2/r3

X5 f1c/r + f2c
2/r2

X4 f0 + f1c + f2c
2 = F (c)

X3 f0r + f1cr
2 + f2c

2r3 = rF (cr)
X2 f0r

3 + f1cr
5 + f2c

2r7 = r3F (cr2)
X1 f0r

6 + f1cr
9

X0 f0r
10
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