Improved Stage 2 to P ± 1 **Factoring Algorithms**

P. L. Montgomery and Alexander Kruppa

Microsoft Research, Redmond, USA and LORIA, Nancy, France

ANTS-VIII Banff, Canada, May 21st 2008

Contents

- 1. Introduction
	- The P-1 and P+1 factoring algorithms
	- The stage 2 extension
	- Previous work
- 2. Our contribution
	- Use of reciprocal Laurent polynomials
	- Fast polynomial construction
	- Evaluation along geometric progression for P–1, P+1
- 3. Timings and results

The P-1 factoring algorithm

- Introduced by Pollard (1974)
- Let N be odd, composite integer, prime $p \mid N$. Goal: find p
- Choose $b_0 \not\equiv \pm 1 \pmod{N}$, $\gcd(b_0, N) = 1$, and a highly composite integer e, e.g. $e = \text{lcm}(1, 2, 3, \ldots, B_1)$
- \bullet Compute $b=b^e_0 \bmod N$
- If $p-1 \mid e,$ then $b_0^e \equiv 1 \pmod{p}$ and $p \mid \gcd(b-1,N)$
- Finds p quickly if $p-1$ has only small prime factors (is "smooth")

The P+1 factoring algorithm

- Introduced by Williams (1982)
- \bullet Works in \mathbb{F}_p^* $_{p^2}^{\ast},$ tries to construct element α of order $p+1$
- Computes $\alpha^e + \alpha^{-e}$ using Chebyshev polynomials $V_n(x + x^{-1}) =$ $x^n + x^{-n}$
- Manipulating $\alpha^n + \alpha^{-n}$ allows arithmetic in base ring ${\mathbb Z}/N{\mathbb Z},$ we try to preserve this symmetry
- If $\alpha^e \equiv 1 \pmod{p}$, then $p | \gcd(\alpha^e + \alpha^{-e} 2, N)$

The Stage 2

- What if stage 1 fails to find a factor?
- Could increase B_1 , expensive
- Maybe $p 1 = nq$ where $n | e, q$ not too large (likely prime), then $b^q \equiv 1 \pmod{p}$. Try to find q up to B_2
- One stage 2 variant uses polynomial multipoint evaluation: degree d on n points in geometric progression with length $l = d + n$ convolution
- Number of q values tested: dn , so $B_2 \sim l^2$
- Reaches high B_2 , needs much memory

The Stage 2 (cont.)

- Choose highly composite P, assuming $q \perp P$.
- Choose set S as full set of representatives of $(\mathbb{Z}/P\mathbb{Z})^*$
- \bullet Build $f(X)=\prod_{k\in S}\left(X-b^k\right) \bmod N$, degree $s=|S|=\varphi(P)$
- \bullet Evaluate all $f\left(b^{mP}\right) \bmod N,$ $m_{1}\leq m< m_{2}$
- If $q \perp P$, there is $k \in S$ so that $q = m'P k$
- Hence $(b^{m'P} b^k) \equiv b^k(b^q 1) \equiv 0 \pmod{p}$ and we find $p \mid \gcd(f(b^{m'P}), N)$
- Includes q if $m_1 \le m' < m_2$, effective $B_2 \approx m_2 P$

P. L. Montgomery and Alexander Kruppa 6 and 6 Banff, Canada, May 21st 2008

Previous work

Montgomery and Silverman (1990), "An FFT extension to the P-1 factoring algorithm":

- Build $f(X)$ with product tree in $O(n \log(n)^2)$ multiplications
- Evaluate along geometric progression
- Mention in remarks that method extends to $P+1$, $f(X)$ can be built faster, reciprocal polynomials save space
- We implement these ideas

Previous work (cont.)

GMP-ECM, unified stage 2 for P–1, P+1, ECM:

- described in Zimmermann, Dodson (2006)
- mostly modeled after Montgomery's thesis (1992)
- product tree for $f(X)$
- general multipoint evaluation in $O(n \log(n)^2)$) time and $O(n \log(n))$ space

Our contribution

Our contribution

Our new stage 2

Factoring *S*

- For a given P , we want S a full set of representatives of $(\mathbb{Z}/P\mathbb{Z})^*$
- Set of sums $A + B = \{a + b, a \in A, b \in B\}$
- Factor S into sum of sets $T_1 + \ldots + T_n$ to speed up building $f(X)$
- Chinese Remainder Theorem: if $m \perp n$

$$
(\mathbb{Z}/(mn)\mathbb{Z})^* = n(\mathbb{Z}/m\mathbb{Z})^* + m(\mathbb{Z}/n\mathbb{Z})^*
$$

- Assume $4 \mid P$
- One set for each prime dividing P. Example: $P = 28$, $S = T_1 + T_2 = \{7, 21\} + \{4, 8, 12, 16, 20, 24\}$

Factoring *S* **(cont.)**

- More, smaller sets possible
- Let $R_n = \{2i n 1 : 1 \leq i \leq n\}$ be arithmetic progression of length n , common difference 2, symmetric around 0
- R_{p-1} is set of representatives of $(\mathbb{Z}/p\mathbb{Z})^*, p > 2$
- $R_{mn} = R_m + mR_n$, decompose into sets of prime cardinality
- One set for each prime in $\varphi(P)$. Example: $P = 28$, $S = T_1 + T_2 + T_3 = \{-7, 7\} + \{-16, 0, 16\} + \{-4, 4\}$
- All T_i symmetric around 0, so S symmetric around 0

Reciprocal Laurent Polynomials

- S symmetric around $0, s = |S|$ even
- Make $f(X)$ reciprocal polynomial

$$
f(X) = X^{-s/2} \prod_{k \in S, k > 0} (X - b^k) (X - b^{-k})
$$

=
$$
\prod_{k \in S, k > 0} (X - (b^k + b^{-k}) + X^{-1})
$$

- $f(X)$ monic reciprocal Laurent polynomial (RLP) of form $f(X) =$ $f_0 + \sum_{i=1}^{s/2} f_i(X^i + X^{-i})$
- Only $s/2 + 1$ coefficients
- \bullet $P+1$: $\alpha^{k}+\alpha^{-k}=V_{k}(\alpha+\alpha^{-1}),$ coefficients in base ring

P. L. Montgomery and Alexander Kruppa 12 Banff, Canada, May 21st 2008

Fast construction of *f(X)*

- Let $S = T_1 + T_2 + \ldots + T_n$, all T_i sets of prime cardinality, symmetric around 0. Assume $|T_n| = 2$
- We want

$$
f(X) = X^{-s/2} \prod_{k_1 \in S} (X - b^{k_1})
$$

= $X^{-s/2} \prod_{t_1 \in T_1} \prod_{t_2 \in T_2} \cdots \prod_{t_n \in T_n} (X - b^{t_1 + t_2 + \dots + t_n})$

- Compute right-to-left: start with $T_n = \{t_n, -t_n\},$
	- $f_n(X) = X^{-1}(X b^{t_n})(X b^{-t_n}) = X (b^{t_n} + b^{-t_n}) + X^{-1}$

$$
\bullet \text{ Expand for } i = n-1, \dots, 1: \\ f_i(X) \ = \ \prod_{t_i \in T_i} b^{t_i \deg(f_{i+1})} f_{i+1}(b^{-t_i} X)
$$

Fast construction of *f(X)* **(cont.)**

• Then
$$
f_1(X) = f(X)
$$

- If $|T_i| = 2$, $f_i(X)$ is product of polynomials of equal degree: efficient, do last. Sort T_i so that $|T_n|\ =\ 2,\ |T_i|\ \leq\ |T_i\ +\ 1|$ for $i=1,\ldots,n-2$
- \bullet Complexity: $M(n)$ cost of polynomial multiplication. Many $|T_i|=2$ so that cost only $\approx M(s/2) + M(s/4) + \ldots \leq M(s)$
- Scaled polynomial is not RLP, but $f_{i+1}(b^{t_i}X)f_{i+1}(b^{-t_i}X)$ is. Rewrite this product using Chebyshev polynomials to do all computations with RLPs over base ring

Multiplying RLPs

- Given reciprocal Laurent polynomials $Q(X)$, $R(X)$, we want $S(X) = Q(X)R(X) = s_0 + \sum_{i=1}^{d_s} s_i(X + X^{-1})$
- Monomial basis: $2d_s + 1$ terms, only $d_s + 1$ distinct coefficients, would like to use cyclic convolution of length $d_s + 1 \leq l \leq 2d_s$.
- Computing $S(X)$ in monomial basis mod $X^l 1$ does not work for $l < 2d_s$

• Example:
$$
d_s = 3
$$
, $l = 4$

 \bullet Can't separate $s_i,$ s_{l-i} for $i\neq 0, l/2$

P. L. Montgomery and Alexander Kruppa 15 and 15 Banff, Canada, May 21st 2008

Multiplying RLPs (cont.)

• Idea: use weighted convolution

• Multiply
$$
\tilde{S}(wX) = Q(wX)R(wX) \text{ mod } X^l - 1
$$
:
\n
$$
\frac{x^{-3}}{w^{-3}s_3} \frac{x^{-2}}{w^{-2}s_2} \frac{x^{-1}}{w^{-1}s_1} \frac{x^0}{w^0s_0} \frac{x^1}{w^{1}s_1} \frac{x^2}{w^2s_2} \frac{x^2}{w^2s_2} \frac{x^3}{w^3s_3} \frac{x^2}{w^3s_3} + w^{-1}s_1
$$

• After un-weighting $\tilde{S}(X)$:

$$
\begin{array}{c|c|c}\nx^0 & x^1 & x^2 & x^3 \\
\hline\ns_0 & s_1 + w^{-4}s_3 & s_2 + w^{-4}s_2 & s_3 + w^{-4}s_1\n\end{array}
$$

 \bullet If $w^l \neq 0, \pm 1$, we can separate $s_i,$ s_{l-i} :

$$
\left(w^{l}-w^{-l}\right)s_{i}=w^{l}\left(s_{i}+w^{-l}s_{l-i}\right)-\left(s_{l-i}+w^{-l}s_{i}\right)
$$

Multipoint evaluation

- \bullet We want to evaluate RLP $f(X)$ at $X = b^{mP}, \, m_1 \leq m < m_2$
- Evaluating $f(X)$ at n points in geometric progression possible with convolution of length $l = \deg(f) + n$
- Most efficient if $\deg(f) \approx n$: choose $s = \varphi(P)$ close to $l/2$ for available transform lengths l
- \bullet Form $h(X) = f_0 + \sum_{j=1}^{s/2} f_j b^{-j^2 P} (X^j + X^{-j}),$ an <code>RLP</code>
- $\bullet\; h(X)$ is reciprocal: $h(\omega^{i})=h(\omega^{l-i})$ in length l DFT, ω an l -th root of unity: only $l/2 + 1$ distinct Fourier coefficients

Multipoint evaluation (cont.)

• Let
$$
g(X) = \sum_{i=0}^{l-1} x_0^{M-i} b^{P(M-i)^2} X^i
$$
, where $x_0 = b^{m_1 P}$, $M = l - 1 - s_1/2$

 \bullet Then coefficient of X^{M-i} in $g(X)h(X)$ is

$$
x_0^m b^{Pm^2} f\left(b^{(m_1+i)P}\right)
$$

• For P+1: coefficients of $g(X)$, $h(X)$ in quadratic extension: need twice the memory, two convolutions

The algorithm: Summary

- 1. Choose P, S
- 2. Build $f(X)$ from factored S_1 (in $O(M(s))$)
- 3. Build $h(X)$ (in $O(l)$)
- 4. Build $g(X)$ (in $O(l)$)
- 5. Compute $g(X)h(X)$ (in $O(M(l))$)
- 6. Take gcd of coefficients and N (in $O(l)$). Print any factor

Our implementation

Our implementation

Our implementation: Timings and results

Our implementation

- Based on GMP-ECM, implementation of P-1, P+1, ECM
- Stage 1 unchanged from previous version
- Uses number-theoretic transform modulo small primes with CRT for convolutions, written by D. Newman, J. S. Papadopoulos
- On SMP: allows for parallelization, different cores process different primes
- Only power of 2 transform lengths so far

Our implementation: Timings

Time for stage 2 on 230 digit number with $B_2\,=\,1.2\cdot 10^{15},\, l\,=\,2^{24},$ $s_1 = 7434240$, $s_2 = 3$ on 2.4GHz Opteron with 2 cores, 8GB:

For comparison, old P-1 stage 2: 34080s with 1 core (similar for $P+1$)

Time for stage 2 with $1.34\cdot10^{16}$, $l=2^{26},\, s_1=33177600,\, s_2=2$ on 2.6GHz Opteron with 32GB, 8 cores:

Results

Method Number factor size q size of q P–1 $73^{109} - 1$, c191 p50 462832247372839 15 digits $p = 76227040047863715568322367158695720006439518152299$

P–1 $24^{142} + 1$, c183 p53 12750725834505143 17 digits $p = 20489047427450579051989683686453370154126820104624537$

P+1 $47^{146} + 1$, c235 p52 843497917739 12 digits $p = 7986478866035822988220162978874631335274957495008401$

 P_{+1} L_{2366} , c290 p60 483576618980159 15 digits $p = 725516237739635905037132916171116034279215026146021770250523$

60 digit factor set new record for P+1!

P. L. Montgomery and Alexander Kruppa 23 Banff, Canada, May 21st 2008

New GMP-ECM release

- New release of GMP-ECM version 6.2 implements new stage 2 for P–1, P+1
- Now available at

```
http://gforge.inria.fr/projects/ecm/
```
Brent-Suyama vs. large B₂

- Brent-Suyama extension: roots $b^{d(k_1)}$ and points of evaluation $b^{d(-k_{2}+mP)},$ e.g. $d(x)=x^{12},$ includes values $>$ B_{2}
- New stage 2 allows larger B_2 . Which is better?
- Example probabilities with $B_1 = 10^{11}$, typical parameters used by GMP-ECM:

$$
p \approx 10^{45} \begin{vmatrix} B_2 = 10^{14} & B_2 = 2 \cdot 10^{14} & B_2 = 10^{15} \\ x^{120} & 0.0179 & 0.0197 & 0.0196 \\ p \approx 10^{50} & 0.0065 & 0.0071 & 0.0071 & 0.0087 \\ p \approx 10^{55} & 0.0022 & 0.0024 & 0.0024 & 0.0030 \end{vmatrix}
$$

• Brent-Suyama extension improves probability of finding factors, but increasing B_2 by factor > 2 is better

Multi-point evaluation: Example

Example: $F(X) = f_0 + f_1 X + f_2 X^2$, evaluate at $X = c, cr, cr^2$

Let
$$
h(X) = f_0 + f_1 cX/r + f_2 c^2 X^2/r^3
$$
,
\n $g(X) = r^{10} + r^6 X + r^3 X^2 + r X^3 + X^4$

Then $g(x)h(x)$ is

$$
\begin{array}{c}\nX^6 \\
X^5 \\
X^4 \\
f_0 + f_1c + f_2c^2/r^2 \\
X^3 \begin{vmatrix} f_0 & + f_1c + f_2c^2 \\ f_0r + f_1cr^2 + f_2c^2r^3 = rF(cf) \\ X^2 \begin{vmatrix} f_0r^3 + f_1cr^5 + f_2c^2r^7 = r^3F(cf^2) \\ f_0r^6 + f_1cr^9\n\end{vmatrix}\n\end{array}
$$

P. L. Montgomery and Alexander Kruppa 26 26 Banff, Canada, May 21st 2008