Improved Stage 2 to $P \pm 1$ Factoring Algorithms

P. L. Montgomery and Alexander Kruppa

Microsoft Research, Redmond, USA and LORIA, Nancy, France

ANTS-VIII Banff, Canada, May 21st 2008

Contents

- 1. Introduction
 - The P-1 and P+1 factoring algorithms
 - The stage 2 extension
 - Previous work
- 2. Our contribution
 - Use of reciprocal Laurent polynomials
 - Fast polynomial construction
 - Evaluation along geometric progression for P-1, P+1
- 3. Timings and results

The P-1 factoring algorithm

- Introduced by Pollard (1974)
- Let N be odd, composite integer, prime $p \mid N$. Goal: find p
- Choose $b_0 \not\equiv \pm 1 \pmod{N}$, $gcd(b_0, N) = 1$, and a highly composite integer e, e.g. $e = lcm(1, 2, 3, \dots, B_1)$
- Compute $b = b_0^e \mod N$
- If $p-1 \mid e$, then $b_0^e \equiv 1 \pmod{p}$ and $p \mid \gcd(b-1, N)$
- Finds p quickly if p-1 has only small prime factors (is "smooth")

The P+1 factoring algorithm

- Introduced by Williams (1982)
- Works in $\mathbb{F}_{p^2}^*$, tries to construct element α of order p+1
- Computes $\alpha^e + \alpha^{-e}$ using Chebyshev polynomials $V_n(x + x^{-1}) = x^n + x^{-n}$
- Manipulating $\alpha^n + \alpha^{-n}$ allows arithmetic in base ring $\mathbb{Z}/N\mathbb{Z}$, we try to preserve this symmetry
- If $\alpha^e \equiv 1 \pmod{p}$, then $p \mid \gcd(\alpha^e + \alpha^{-e} 2, N)$

The Stage 2

- What if stage 1 fails to find a factor?
- Could increase B_1 , expensive
- Maybe p 1 = nq where $n \mid e, q$ not too large (likely prime), then $b^q \equiv 1 \pmod{p}$. Try to find q up to B_2
- One stage 2 variant uses polynomial multipoint evaluation: degree d on n points in geometric progression with length l = d + n convolution
- Number of q values tested: dn, so $B_2 \sim l^2$
- Reaches high B_2 , needs much memory

The Stage 2 (cont.)

- Choose highly composite P, assuming $q \perp P$.
- \bullet Choose set S as full set of representatives of $(\mathbb{Z}/P\mathbb{Z})^*$
- Build $f(X) = \prod_{k \in S} (X b^k) \mod N$, degree $s = |S| = \varphi(P)$
- Evaluate all $f(b^{mP}) \mod N$, $m_1 \le m < m_2$
- \bullet If $q\perp P$, there is $k\in S$ so that q=m'P-k
- Hence $(b^{m'P} b^k) \equiv b^k(b^q 1) \equiv 0 \pmod{p}$ and we find $p \mid \gcd\left(f\left(b^{m'P}\right), N\right)$
- Includes q if $m_1 \leq m' < m_2$, effective $B_2 \approx m_2 P$

P. L. Montgomery and Alexander Kruppa

Previous work

Montgomery and Silverman (1990), "An FFT extension to the P-1 factoring algorithm":

- \bullet Build f(X) with product tree in $O(n\log(n)^2)$ multiplications
- Evaluate along geometric progression
- Mention in remarks that method extends to P + 1, f(X) can be built faster, reciprocal polynomials save space
- We implement these ideas

Previous work (cont.)

GMP-ECM, unified stage 2 for P-1, P+1, ECM:

- described in Zimmermann, Dodson (2006)
- mostly modeled after Montgomery's thesis (1992)
- \bullet product tree for $f(\boldsymbol{X})$
- \bullet general multipoint evaluation in $O(n\log(n)^2)$ time and $O(n\log(n))$ space

Our contribution

Our contribution

Our new stage 2

Factoring S

- \bullet For a given P, we want S a full set of representatives of $(\mathbb{Z}/P\mathbb{Z})^*$
- Set of sums $A + B = \{a + b, a \in A, b \in B\}$
- Factor S into sum of sets $T_1 + \ldots + T_n$ to speed up building f(X)
- \bullet Chinese Remainder Theorem: if $m\perp n$

$$(\mathbb{Z}/(mn)\mathbb{Z})^* = n(\mathbb{Z}/m\mathbb{Z})^* + m(\mathbb{Z}/n\mathbb{Z})^*$$

- Assume $4 \mid P$
- One set for each prime dividing P. Example: P = 28, $S = T_1 + T_2 = \{7, 21\} + \{4, 8, 12, 16, 20, 24\}$

Factoring *S* (cont.)

- More, smaller sets possible
- Let $R_n = \{2i n 1 : 1 \le i \le n\}$ be arithmetic progression of length n, common difference 2, symmetric around 0
- R_{p-1} is set of representatives of $(\mathbb{Z}/p\mathbb{Z})^*$, p>2
- $R_{mn} = R_m + mR_n$, decompose into sets of prime cardinality
- One set for each prime in $\varphi(P)$. Example: P = 28, $S = T_1 + T_2 + T_3 = \{-7, 7\} + \{-16, 0, 16\} + \{-4, 4\}$
- All T_i symmetric around 0, so S symmetric around 0

Reciprocal Laurent Polynomials

- $\bullet~S$ symmetric around 0, s=|S| even
- \bullet Make $f(\boldsymbol{X})$ reciprocal polynomial

$$f(X) = X^{-s/2} \prod_{k \in S, k > 0} (X - b^k) (X - b^{-k})$$
$$= \prod_{k \in S, k > 0} (X - (b^k + b^{-k}) + X^{-1})$$

- f(X) monic reciprocal Laurent polynomial (RLP) of form $f(X)=f_0+\sum_{i=1}^{s/2}f_i(X^i+X^{-i})$
- \bullet Only s/2+1 coefficients
- P + 1: $\alpha^k + \alpha^{-k} = V_k(\alpha + \alpha^{-1})$, coefficients in base ring

P. L. Montgomery and Alexander Kruppa

Fast construction of *f*(*X*)

- Let $S = T_1 + T_2 + \ldots + T_n$, all T_i sets of prime cardinality, symmetric around 0. Assume $|T_n| = 2$
- We want

$$f(X) = X^{-s/2} \prod_{k_1 \in S} (X - b^{k_1})$$

= $X^{-s/2} \prod_{t_1 \in T_1} \prod_{t_2 \in T_2} \dots \prod_{t_n \in T_n} (X - b^{t_1 + t_2 + \dots + t_n})$

- Compute right-to-left: start with $T_n = \{t_n, -t_n\}$,
 - $f_n(X) = X^{-1}(X b^{t_n})(X b^{-t_n}) = X (b^{t_n} + b^{-t_n}) + X^{-1}$

• Expand for
$$i = n - 1, \dots, 1$$
:

$$f_i(X) = \prod_{t_i \in T_i} b^{t_i \deg(f_{i+1})} f_{i+1}(b^{-t_i}X)$$

Fast construction of *f*(*X*) **(cont.)**

• Then
$$f_1(X) = f(X)$$

- If $|T_i| = 2$, $f_i(X)$ is product of polynomials of equal degree: efficient, do last. Sort T_i so that $|T_n| = 2$, $|T_i| \le |T_i + 1|$ for i = 1, ..., n - 2
- Complexity: M(n) cost of polynomial multiplication. Many $|T_i| = 2$ so that cost only $\approx M(s/2) + M(s/4) + \ldots \leq M(s)$
- Scaled polynomial is not RLP, but $f_{i+1}(b^{t_i}X)f_{i+1}(b^{-t_i}X)$ is. Rewrite this product using Chebyshev polynomials to do all computations with RLPs over base ring

Multiplying RLPs

- \bullet Given reciprocal Laurent polynomials $Q(X),\ R(X),$ we want $S(X)=Q(X)R(X)=s_0+\sum_{i=1}^{d_s}s_i(X+X^{-1})$
- Monomial basis: $2d_s + 1$ terms, only $d_s + 1$ distinct coefficients, would like to use cyclic convolution of length $d_s + 1 \le l < 2d_s$.
- \bullet Computing S(X) in monomial basis $\mod X^l-1$ does not work for $l<2d_s$

• Example:
$$d_s = 3$$
, $l = 4$

			1		x^2		
s_3	s_2	s_1	s_0	s_1	s_2	s_3	$\pmod{x^4 - 1}$
			$ s_0 $	$s_1 + s_3$	$s_2 + s_2$	$s_3 + s_1$	$\pmod{x^4-1}$

• Can't separate s_i , s_{l-i} for $i \neq 0, l/2$

P. L. Montgomery and Alexander Kruppa

Multiplying RLPs (cont.)

• Idea: use weighted convolution

• Multiply
$$\tilde{S}(wX) = Q(wX)R(wX) \mod X^l - 1$$
:

$$\frac{x^{-3}}{w^{-3}s_3} \frac{x^{-2}}{w^{-2}s_2} \frac{x^{-1}}{w^{-1}s_1} \frac{x^0}{w^0s_0} \frac{x^1}{w^{1}s_1} \frac{x^2}{w^{2}s_2} \frac{x^3}{w^{3}s_3} \frac{x^{-2}s_2}{w^{3}s_3} \frac{x^{-2}s_2}{w^{3}s_0} \frac{x^{-1}s_1}{w^0s_0} \frac{x^1s_1}{w^{1}s_1 + w^{-3}s_3} \frac{x^2s_2}{w^{2}s_2 + w^{-2}s_2} \frac{x^3s_3}{w^{3}s_3 + w^{-1}s_1}$$

• After un-weighting $\tilde{S}(X)$:

• If $w^l \neq 0, \pm 1$, we can separate s_i, s_{l-i} :

$$(w^{l} - w^{-l}) s_{i} = w^{l} (s_{i} + w^{-l} s_{l-i}) - (s_{l-i} + w^{-l} s_{i})$$

Multipoint evaluation

- We want to evaluate RLP f(X) at $X = b^{mP}$, $m_1 \leq m < m_2$
- Evaluating f(X) at n points in geometric progression possible with convolution of length $l=\deg(f)+n$
- \bullet Most efficient if $\deg(f)\approx n$: choose $s=\varphi(P)$ close to l/2 for available transform lengths l
- Form $h(X) = f_0 + \sum_{j=1}^{s/2} f_j b^{-j^2 P} (X^j + X^{-j})$, an RLP
- h(X) is reciprocal: $h(\omega^i) = h(\omega^{l-i})$ in length l DFT, ω an l-th root of unity: only l/2 + 1 distinct Fourier coefficients

Multipoint evaluation (cont.)

- Let $g(X) = \sum_{i=0}^{l-1} x_0^{M-i} b^{P(M-i)^2} X^i$, where $x_0 = b^{m_1 P}$, $M = l 1 s_1/2$
- \bullet Then coefficient of X^{M-i} in g(X)h(X) is

$$x_0^m b^{Pm^2} \underline{f\left(b^{(m_1+i)P}\right)}$$

• For P+1: coefficients of g(X), h(X) in quadratic extension: need twice the memory, two convolutions

The algorithm: Summary

- 1. Choose P, S
- 2. Build f(X) from factored S_1 (in O(M(s)))
- 3. Build $h(\boldsymbol{X})$ (in O(l))
- 4. Build $g(\boldsymbol{X})$ (in O(l))
- 5. Compute g(X)h(X) (in O(M(l)))
- 6. Take gcd of coefficients and N (in O(l)). Print any factor

Our implementation

Our implementation

Our implementation: Timings and results

Our implementation

- Based on GMP-ECM, implementation of P-1, P+1, ECM
- Stage 1 unchanged from previous version
- Uses number-theoretic transform modulo small primes with CRT for convolutions, written by D. Newman, J. S. Papadopoulos
- On SMP: allows for parallelization, different cores process different primes
- Only power of 2 transform lengths so far

Our implementation: Timings

Time for stage 2 on 230 digit number with $B_2 = 1.2 \cdot 10^{15}$, $l = 2^{24}$, $s_1 = 7434240$, $s_2 = 3$ on 2.4GHz Opteron with 2 cores, 8GB:

	1 core	2 cores		
		cpu	elapsed	
P–1	1738s	1753s	941s	
P+1	3356s	3390s	2323s	

For comparison, old P-1 stage 2: 34080s with 1 core (similar for P+1)

Time for stage 2 with $1.34 \cdot 10^{16}$, $l = 2^{26}$, $s_1 = 33177600$, $s_2 = 2$ on 2.6GHz Opteron with 32GB, 8 cores:

	8 cores		
	cpu	elapsed	
P–1	5483s	922s	
P+1	10089s	2192s	

Results

P-1 24^{142} + 1, c183 p53 12750725834505143 17 digits p = 20489047427450579051989683686453370154126820104624537

P+1 $47^{146} + 1$, c235p5284349791773912 digitsp = 7986478866035822988220162978874631335274957495008401

P+1 L_{2366} , c290p6048357661898015915 digitsp = 725516237739635905037132916171116034279215026146021770250523

60 digit factor set new record for P+1!

New GMP-ECM release

- New release of GMP-ECM version 6.2 implements new stage 2 for P-1, P+1
- Now available at

```
http://gforge.inria.fr/projects/ecm/
```

Brent-Suyama vs. large *B*₂

- Brent-Suyama extension: roots $b^{d(k_1)}$ and points of evaluation $b^{d(-k_2+mP)}$, e.g. $d(x) = x^{12}$, includes values $> B_2$
- New stage 2 allows larger B_2 . Which is better?
- Example probabilities with $B_1 = 10^{11}$, typical parameters used by GMP-ECM:

	$B_2 =$	10^{14}	$B_2 = 2 \cdot 10^{14}$	$B_2 = 10^{15}$
		x^{120}		
$p \approx 10^{45}$			0.0196	0.0236
$p \approx 10^{50}$	0.0065	0.0071	0.0071	0.0087
$p \approx 10^{55}$	0.0022	0.0024	0.0024	0.0030

• Brent-Suyama extension improves probability of finding factors, but increasing B_2 by factor > 2 is better

p

p

 \mathcal{D}

Multi-point evaluation: Example

Example: $F(X) = f_0 + f_1 X + f_2 X^2$, evaluate at $X = c, cr, cr^2$

Let
$$h(X) = f_0 + f_1 c X / r + f_2 c^2 X^2 / r^3$$
,
 $g(X) = r^{10} + r^6 X + r^3 X^2 + r X^3 + X^4$

Then g(x)h(x) is

$$\begin{array}{c|ccccccc} X^{6} & & f_{2}c^{2}/r^{3} \\ X^{5} & f_{1}c/r + f_{2}c^{2}/r^{2} \\ X^{4} & f_{0} & + f_{1}c & + f_{2}c^{2} & = F(c) \\ X^{3} & f_{0}r & + f_{1}cr^{2} + f_{2}c^{2}r^{3} & = rF(cr) \\ X^{2} & f_{0}r^{3} & + f_{1}cr^{5} + f_{2}c^{2}r^{7} & = r^{3}F(cr^{2}) \\ X^{1} & f_{0}r^{6} & + f_{1}cr^{9} \\ X^{0} & f_{0}r^{10} \end{array}$$