On prime-order elliptic curves with embedding degrees k = 3, 4 and 6

Koray Karabina and Edlyn Teske

University of Waterloo

ANTS VIII, Banff, May 20, 2008

1 Introduction

- Pairings and embedding degree
- MNT curves: *k* = 3, 4, 6
- 2 Constructing MNT Curves
 - CM method
 - Frequency of MNT curves

3 Our Contributions

- Relation between the MNT curves with k = 4 and k = 6
- A deep analysis of MNT equations
- A lower bound on MNT curves with bounded discriminant

1 Introduction

- Pairings and embedding degree
- MNT curves: *k* = 3, 4, 6

2 Constructing MNT Curves

- CM method
- Frequency of MNT curves

3 Our Contributions

- Relation between the MNT curves with k = 4 and k = 6
- A deep analysis of MNT equations
- A lower bound on MNT curves with bounded discriminant

- \mathbb{F}_q is a finite field, μ_r is the set of *r*th roots of unity in $\overline{\mathbb{F}}_q$
- E/\mathbb{F}_q is an elliptic curve over \mathbb{F}_q
- $\#E(\mathbb{F}_q) = n = hr$, r is the largest prime divisor of n, gcd(r,q) = 1
- E[r] is the set of *r*-torsion points in $E(\bar{\mathbb{F}}_q)$
- Weil pairing $e_r : E[r] \times E[r] \rightarrow \mu_r$
 - er is bilinear, non-degenerate
 - $\mu_r \subseteq \mathbb{F}_{q^k}$ where $k \in \mathbb{Z}$ and $q^k \equiv 1 \pmod{r}$
 - The least positive such k is called the *embedding degree* of E

- Applications
 - Identity Based Encryption, one-round three-party key agreement, short signature schemes
 - Other pairing functions: Tate, Ate, Eta
- We want (q, r, k) such that
 - E is constructible
 - *e_r* is efficiently computable
 - ECDLP in $E(\mathbb{F}_q)$ and DLP in \mathbb{F}_{q^k} are equivalently-infeasible
 - e.g. For 80-bit security $q \approx 2^{170}, k = 6, \#E(\mathbb{F}_q) = r$

- Let $\#E(\mathbb{F}_q) = n$ be prime and E have embedding degree k = 3, 4, 6
- Miyaji, Nakabayashi and Takano (2001) characterize such curves
- Let *E* be an ordinary elliptic curve over \mathbb{F}_q with trace t = q + 1 n. Then

1
$$k = 3 \Leftrightarrow q = 12\ell^2 - 1$$
 and $t = -1 \pm 6\ell$ for some $\ell \in \mathbb{Z}$.

2
$$k = 4 \Leftrightarrow q = \ell^2 + \ell + 1$$
 and $t = -\ell, \ell + 1$ for some $\ell \in \mathbb{Z}$.

3
$$k = 6 \Leftrightarrow q = 4\ell^2 + 1$$
 and $t = 1 \pm 2\ell$ for some $\ell \in \mathbb{Z}$.

Such curves are referred to as MNT curves

Introduction

- Pairings and embedding degree
- MNT curves: *k* = 3, 4, 6

2 Constructing MNT Curves

- CM method
- Frequency of MNT curves

3 Our Contributions

- Relation between the MNT curves with k = 4 and k = 6
- A deep analysis of MNT equations
- A lower bound on MNT curves with bounded discriminant

- $k = 6 \Leftrightarrow q(\ell) = 4\ell^2 + 1$ and $t(\ell) = 1 \pm 2\ell$ for some $\ell \in \mathbb{Z}$.
- Find ℓ : $q(\ell)$ is a prime power, $n(\ell) = q(\ell) + 1 t(\ell)$ is prime
- Use Complex Multiplication (CM) method to construct E over \mathbb{F}_q
 - CM equation: $4q t^2 = DY^2$, $Y \in \mathbb{Z}$, D > 0 is square-free
 - D is called the *discriminant* of E.
 - Find a root, j_E , of the Hilbert class polynomial $H_D(x)$ over \mathbb{F}_q
 - Construct E/\mathbb{F}_q with j-invariant = j_E

- CM method is practical if $D < 10^{10}$
- We should first fix D and find ℓ because otherwise $D \approx q$
 - CM equation is equivalent to the Pell (or MNT) equation

$$X^2 - 3DY^2 = -8$$
 where $X = 6\ell - 1$ or $X = 6\ell + 1$

- Fix D and solve for (X, Y) in the above equation
- Set $q(\ell), t(\ell)$ and construct E

- $X^2 DY^2 = m$: $m \in \mathbb{Z}, \ D \in \mathbb{N}, \ D$ not a perfect square
- $x, y, u, v \in \mathbb{Z}$: $x^2 Dy^2 = m, u^2 Dv^2 = 1, \gcd(x, y) = 1$
- Primitive solutions to $X^2 DY^2 = m$ in the class of $x + y\sqrt{D}$:

$$\pm (x+y\sqrt{D})(u+v\sqrt{D})^j, \ j\in\mathbb{Z}$$

Scarcity of MNT Curves

• MNT curves are constructible through the solutions of

$$X^2 - 3DY^2 = -8$$
 where $X = 6\ell - 1$ or $X = 6\ell + 1$

- $q(\ell)$ and $n(\ell)$ must satisfy primality conditions
- The size of the solutions (X, Y) grow exponentially
- MNT curves are very rare!
 - Let $E(z) := #\{E \text{ upto isogeny with } k = 6 \text{ and } D \le z\}$
 - Luca-Shparlinski (2006) upper bound:

$$E(z) \ll z/(\log z)^2$$

Introduction

- Pairings and embedding degree
- MNT curves: *k* = 3, 4, 6

2 Constructing MNT Curves

- CM method
- Frequency of MNT curves

3 Our Contributions

- Relation between the MNT curves with k = 4 and k = 6
- A deep analysis of MNT equations
- A lower bound on MNT curves with bounded discriminant

MNT Curves with k = 4 and k = 6

•
$$E_4/\mathbb{F}_q$$
, $k = 4 \Leftrightarrow q = \ell^2 + l + 1$ and $t = -\ell, \ell + 1$
• E_6/\mathbb{F}_q , $k = 6 \Leftrightarrow q = 4\ell^2 + 1$ and $t = 1 \pm 2\ell$

$$\begin{aligned} k &= 6 & k &= 4 \\ E_6/\mathbb{F}_q & \Leftrightarrow & E_4/\mathbb{F}_n \\ \# E_6(\mathbb{F}_q) &= n & \# E_4(\mathbb{F}_n) &= q \end{aligned}$$

<u>Proof Sketch</u>: $q = 4\ell^2 + 1, t = 1 - 2\ell$ Set q' = n, n' = q, t' = q' + 1 - n' $q' = (2\ell)^2 + 2\ell + 1 = n, t' = 2\ell + 1$

- $X^2 3DY^2 = -8$ has either zero or two solution classes: S_1, S_2
- $D \equiv 3 \pmod{8}$
- -2 is a square modulo 3D
- MNT curve parameters must come from S_1 and S_2 : $\mathcal{E}_1, \mathcal{E}_2$
- $\mathcal{E}_1 = \mathcal{E}_2$

A Lower Bound on E(z)

Consider $X^2 - 3DY^2 = -8$ with Y = 1 and let

 $\mathcal{F}(z) = \{D: D \in [1, z] \text{ is odd and squarefree, } 3D - 8 \text{ perfect square}\}$ $F(z) = \#\mathcal{F}(z)$

If $x_D^2 = 3D - 8$ then we can show that $x_D = 6\ell_D \pm 1$ MNT theorem implies when $x_D = 6\ell_D + 1$ that

$$q_D = 4\ell_D^2 + 1, \ n_D = 4\ell_D^2 + 2\ell_D + 1$$

So, $D \leq z \Rightarrow q_D \leq z/2, \ n_D \leq 3z/4$

$$E(z) \ge F(z)\frac{1}{(\log z)^2} \ge ??$$

We write $3D - 8 = (6\ell \pm 1)^2$. Then we can show that

 $\begin{array}{l} D \text{ is odd and squarefree} \\ 3D-8 \text{ is a perfect square} \end{array} \Leftrightarrow D = 12\ell^2 \pm 4\ell + 3 \text{ is squarefree} \\\\ \text{Let } f_+(\ell) = 12\ell^2 + 4\ell + 3, \ \mathcal{F}_+(z) = \{D \in [5,z] : \ D = f_+(\ell) \text{ is squarefree}\} \\\\ \underline{Fact:} \ (\text{G. Ricci, 1933}) \ \#\{\ell : 0 < \ell \leq L \text{ and } f_+(\ell) \text{ is square free}\} \approx c_{f_+}L \\\\ \text{where} \end{array}$

$$\begin{array}{lll} c_{f_+} & = & \prod_{p \text{ prime}} (1 - w_{f_+}(p)/p^2) \\ \\ w_{f_+}(p) & = & \#\{a \in [1,p^2]: \ f_+(a) \equiv 0 \pmod{p^2}\} \end{array}$$

In our case,

$$F_{+}(z) = \#\mathcal{F}_{+}(z) \approx c_{f_{+}}L_{+}$$
$$D \in [5, z] \Leftrightarrow L_{+} \approx \sqrt{z/12}$$
$$w_{f_{+}}(3) = 1 \text{ and } w_{f_{+}}(p) = 0, 2$$
$$w_{f_{+}}(p) = 2 \iff \left(\frac{-2}{p}\right) = 1 \iff p \equiv 1, 3 \pmod{8}$$

A Lower Bound on E(z) cont'd

Hence,

$$\begin{split} c_{f_+} &= c_{f_-} &= \prod_{p \text{ prime}} (1 - w_{f_+}(p)/p^2) \\ &= \frac{8}{9} \cdot \prod_{p \equiv 1,3 \pmod{8}} (1 - 2/p^2), \end{split}$$

$$F(z) = F_{+}(z) + F_{-}(z)$$

$$> (c_{f_{+}}(z) + c_{f_{-}}(z) - 2\epsilon)\sqrt{z/12}$$

$$> 0.857\sqrt{z/3}$$

and

$$E(z) \ge F(z) rac{1}{(\log z)^2} \ge 0.49 rac{\sqrt{z}}{(\log z)^2}$$

Experimental Results on E(z)

Let $E_B(z) = \#$ MNT curves $E/\mathbb{F}_q : k = 6, q < 2^B, D \le z$

	$R(B,z) = E_B(z)/(0.49 \frac{\sqrt{z}}{(\log z)^2})$, where $z = 2^i$.					
i	B = 100	B = 160	<i>B</i> = 300	B = 500	<i>B</i> = 700	B = 1000
13	25.63	27.46	27.46	27.46	27.46	27.46
14	27.02	30.02	30.02	30.02	30.02	30.02
15	26.81	30.46	30.46	30.46	30.46	30.46
16	26.47	29.41	29.41	29.41	29.41	29.41
17	26.61	29.74	29.74	29.74	29.74	29.74
18	25.43	27.92	27.92	27.92	27.92	27.92
19	25.42	27.86	28.35	28.35	28.35	28.35
20	24.51	26.81	27.19	27.19	27.57	27.57
21	23.58	25.67	26.87	27.47	28.06	28.06
22	26.64	28.73	29.66	30.12	30.81	30.81
23	27.40	29.72	30.62	30.98	32.05	32.41
24	28.54	30.88	32.12	32.67	33.64	34.05
25	29.30	31.52	32.79	33.32	34.17	34.48

K. Karabina and E. Teske (UW)

Introduction

- Pairings and embedding degree
- MNT curves: *k* = 3, 4, 6

2 Constructing MNT Curves

- CM method
- Frequency of MNT curves

3 Our Contributions

- Relation between the MNT curves with k = 4 and k = 6
- A deep analysis of MNT equations
- A lower bound on MNT curves with bounded discriminant

- A detailed analysis of MNT equations
 - 1-1 correspondence between MNT curves with k = 4 and k = 6
 - More efficient and explicit algorithms for MNT curve parameters
- A lower bound for the number of MNT curves
 - The lower bound can be improved $X^2 3DY^2 = -8 \text{ with } Y = 3,9 \text{ gives an improvement by a factor} (1 + 1/3 + 1/9)$
- $\underline{Q}_{\cdot} \# \text{ MNT}$ curves E/\mathbb{F}_q with $D \leq z$ and L < q < U ?

THANKS!