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Pairings and Embedding Degree

Fq is a finite field, µr is the set of rth roots of unity in F̄q

E/Fq is an elliptic curve over Fq

#E (Fq) = n = hr , r is the largest prime divisor of n, gcd(r , q) = 1

E [r ] is the set of r -torsion points in E (F̄q)

Weil pairing er : E [r ]× E [r ] → µr

er is bilinear, non-degenerate

µr ⊆ Fqk where k ∈ Z and qk ≡ 1 (mod r)

The least positive such k is called the embedding degree of E
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Pairings in Cryptography

Applications

Identity Based Encryption, one-round three-party key agreement, short
signature schemes

Other pairing functions: Tate, Ate, Eta

We want (q, r , k) such that

E is constructible

er is efficiently computable

ECDLP in E (Fq) and DLP in Fqk are equivalently-infeasible

e.g. For 80-bit security q ≈ 2170, k = 6,#E (Fq) = r
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Prime-order Elliptic Curves with k = 3, 4, 6

Let #E (Fq) = n be prime and E have embedding degree k = 3, 4, 6

Miyaji, Nakabayashi and Takano (2001) characterize such curves

Let E be an ordinary elliptic curve over Fq with trace t = q + 1− n.

Then

1 k = 3 ⇔ q = 12`2 − 1 and t = −1± 6` for some ` ∈ Z.

2 k = 4 ⇔ q = `2 + ` + 1 and t = −`, ` + 1 for some ` ∈ Z.

3 k = 6 ⇔ q = 4`2 + 1 and t = 1± 2` for some ` ∈ Z.

Such curves are referred to as MNT curves
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CM Method

k = 6 ⇔ q(`) = 4`2 + 1 and t(`) = 1± 2` for some ` ∈ Z.

Find `: q(`) is a prime power, n(`) = q(`) + 1− t(`) is prime

Use Complex Multiplication (CM) method to construct E over Fq

CM equation: 4q − t2 = DY 2, Y ∈ Z, D > 0 is square-free

D is called the discriminant of E .

Find a root, jE , of the Hilbert class polynomial HD(x) over Fq

Construct E/Fq with j−invariant = jE
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CM method and MNT curves (k = 6)

CM method is practical if D < 1010

We should first fix D and find ` because otherwise D ≈ q

CM equation is equivalent to the Pell (or MNT ) equation

X 2 − 3DY 2 = −8 where X = 6`− 1 or X = 6` + 1

Fix D and solve for (X ,Y ) in the above equation

Set q(`), t(`) and construct E
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Solutions to Pell Equations

X 2 − DY 2 = m : m ∈ Z, D ∈ N, D not a perfect square

x , y , u, v ∈ Z : x2 − Dy2 = m, u2 − Dv2 = 1, gcd(x , y) = 1

Primitive solutions to X 2 − DY 2 = m in the class of x + y
√

D:

±(x + y
√

D)(u + v
√

D)j , j ∈ Z
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Scarcity of MNT Curves

MNT curves are constructible through the solutions of

X 2 − 3DY 2 = −8 where X = 6`− 1 or X = 6` + 1

q(`) and n(`) must satisfy primality conditions

The size of the solutions (X ,Y ) grow exponentially

MNT curves are very rare!

Let E (z) := #{E upto isogeny with k = 6 and D ≤ z}
Luca-Shparlinski (2006) upper bound:

E (z) � z/(log z)2
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MNT Curves with k = 4 and k = 6

E4/Fq, k = 4 ⇔ q = `2 + l + 1 and t = −`, ` + 1

E6/Fq, k = 6 ⇔ q = 4`2 + 1 and t = 1± 2`

k = 6 k = 4
E6/Fq ⇔ E4/Fn

#E6(Fq) = n #E4(Fn) = q

Proof Sketch: q = 4`2 + 1, t = 1− 2`
Set q′ = n, n′ = q, t ′ = q′ + 1− n′

q′ = (2`)2 + 2` + 1 = n, t ′ = 2` + 1

K. Karabina and E. Teske (UW) Prime-order elliptic curves with k = 3, 4, 6 12 / 21



MNT Equation and the Curve Parameters (k = 6)

X 2 − 3DY 2 = −8 has either zero or two solution classes: S1,S2

D ≡ 3 (mod 8)

-2 is a square modulo 3D

MNT curve parameters must come from S1 and S2: E1, E2

E1 = E2
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A Lower Bound on E (z)

Consider X 2 − 3DY 2 = −8 with Y = 1 and let

F(z) = {D : D ∈ [1, z ] is odd and squarefree, 3D − 8 perfect square}
F (z) = #F(z)

If x2
D = 3D − 8 then we can show that xD = 6`D ± 1

MNT theorem implies when xD = 6`D + 1 that

qD = 4`2
D + 1, nD = 4`2

D + 2`D + 1

So, D ≤ z ⇒ qD ≤ z/2, nD ≤ 3z/4

E (z) ≥ F (z)
1

(log z)2
≥ ??
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A Lower Bound on E (z) cont’d

We write 3D − 8 = (6`± 1)2. Then we can show that

D is odd and squarefree
3D − 8 is a perfect square

⇔ D = 12`2 ± 4` + 3 is squarefree

Let f+(`) = 12`2 +4`+3, F+(z) = {D ∈ [5, z ] : D = f+(`) is squarefree}

Fact: (G. Ricci, 1933) #{` : 0 < ` ≤ L and f+(`) is square free} ≈ cf+L
where

cf+ =
∏

p prime

(1− wf+(p)/p2)

wf+(p) = #{a ∈ [1, p2] : f+(a) ≡ 0 (mod p2)}
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A Lower Bound on E (z) cont’d

In our case,

F+(z) = #F+(z) ≈ cf+L+

D ∈ [5, z ] ⇔ L+ ≈
√

z/12

wf+(3) = 1 and wf+(p) = 0, 2

wf+(p) = 2 ⇔
(
−2
p

)
= 1 ⇔ p ≡ 1, 3 (mod 8)
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A Lower Bound on E (z) cont’d

Hence,

cf+ = cf− =
∏

p prime

(1− wf+(p)/p2)

=
8

9
·

∏
p≡1,3 (mod 8)

(1− 2/p2),

F (z) = F+(z) + F−(z)

> (cf+(z) + cf−(z)− 2ε)
√

z/12

> 0.857
√

z/3

and

E (z) ≥ F (z)
1

(log z)2
≥ 0.49

√
z

(log z)2
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Experimental Results on E (z)

Let EB(z) = # MNT curves E/Fq : k = 6, q < 2B , D ≤ z

R(B, z) = EB(z)/(0.49
√

z
(log z)2

), where z = 2i .

i B = 100 B = 160 B = 300 B = 500 B = 700 B = 1000

13 25.63 27.46 27.46 27.46 27.46 27.46
14 27.02 30.02 30.02 30.02 30.02 30.02
15 26.81 30.46 30.46 30.46 30.46 30.46
16 26.47 29.41 29.41 29.41 29.41 29.41
17 26.61 29.74 29.74 29.74 29.74 29.74
18 25.43 27.92 27.92 27.92 27.92 27.92
19 25.42 27.86 28.35 28.35 28.35 28.35
20 24.51 26.81 27.19 27.19 27.57 27.57
21 23.58 25.67 26.87 27.47 28.06 28.06
22 26.64 28.73 29.66 30.12 30.81 30.81
23 27.40 29.72 30.62 30.98 32.05 32.41
24 28.54 30.88 32.12 32.67 33.64 34.05
25 29.30 31.52 32.79 33.32 34.17 34.48
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Concluding Remarks

A detailed analysis of MNT equations

1− 1 correspondence between MNT curves with k = 4 and k = 6

More efficient and explicit algorithms for MNT curve parameters

A lower bound for the number of MNT curves

The lower bound can be improved
X 2 − 3DY 2 = −8 with Y = 3, 9 gives an improvement by a factor
(1 + 1/3 + 1/9)

Q. # MNT curves E/Fq with D ≤ z and L < q < U ?
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THANKS!
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