On prime-order elliptic curves with embedding degrees $k = 3, 4$ and 6

Koray Karabina and Edlyn Teske

University of Waterloo

ANTS VIII, Banff, May 20, 2008

[Introduction](#page-2-0)

- **[Pairings and embedding degree](#page-3-0)**
- **MNT** curves: $k = 3, 4, 6$

2 [Constructing MNT Curves](#page-6-0)

- [CM method](#page-7-0)
- **Figure [Frequency of MNT curves](#page-10-0)**

3 [Our Contributions](#page-11-0)

- **[Relation between the MNT curves with](#page-12-0)** $k = 4$ **and** $k = 6$
- [A deep analysis of MNT equations](#page-13-0)
- [A lower bound on MNT curves with bounded discriminant](#page-14-0)

[Introduction](#page-2-0)

- **[Pairings and embedding degree](#page-3-0)**
- **MNT** curves: $k = 3, 4, 6$

[Constructing MNT Curves](#page-6-0)

- [CM method](#page-7-0)
- **Figure [Frequency of MNT curves](#page-10-0)**

[Our Contributions](#page-11-0)

- [Relation between the MNT curves with](#page-12-0) $k = 4$ and $k = 6$
- [A deep analysis of MNT equations](#page-13-0)
- **A** lower bound on MNT curves with bounded discriminant

- \mathbb{F}_q is a finite field, μ_r is the set of r th roots of unity in $\bar{\mathbb{F}}_q$
- \bullet E/\mathbb{F}_q is an elliptic curve over \mathbb{F}_q
- $\bullet \#E(\mathbb{F}_q) = n = hr$, r is the largest prime divisor of n, gcd $(r, q) = 1$
- $E[r]$ is the set of r-torsion points in $E(\bar{\mathbb{F}}_q)$
- Weil pairing $e_r:E[r]\times E[r]\rightarrow \mu_r$
	- e_r is bilinear, non-degenerate
	- $\mu_{r}\subseteq \mathbb{F}_{q^k}$ where $k\in \mathbb{Z}$ and $q^k\equiv 1\pmod{r}$
	- The least positive such k is called the embedding degree of E
- **•** Applications
	- Identity Based Encryption, one-round three-party key agreement, short signature schemes
	- **Other pairing functions: Tate, Ate, Eta**
- We want (q, r, k) such that
	- \bullet F is constructible
	- e_r is efficiently computable
	- ECDLP in $E(\mathbb{F}_q)$ and DLP in \mathbb{F}_{q^k} are equivalently-infeasible
	- e.g. For 80-bit security $q \approx 2^{170}$, $k = 6, \#E(\mathbb{F}_q) = r$
- Let $\#E(\mathbb{F}_q) = n$ be prime and E have embedding degree $k = 3, 4, 6$
- Miyaji, Nakabayashi and Takano (2001) characterize such curves
- Let E be an ordinary elliptic curve over \mathbb{F}_q with trace $t = q + 1 n$. Then

1
$$
k = 3 \Leftrightarrow q = 12\ell^2 - 1
$$
 and $t = -1 \pm 6\ell$ for some $\ell \in \mathbb{Z}$.

2
$$
k = 4 \Leftrightarrow q = \ell^2 + \ell + 1
$$
 and $t = -\ell, \ell + 1$ for some $\ell \in \mathbb{Z}$.

3
$$
k = 6 \Leftrightarrow q = 4\ell^2 + 1
$$
 and $t = 1 \pm 2\ell$ for some $\ell \in \mathbb{Z}$.

• Such curves are referred to as MNT curves

[Introduction](#page-2-0)

- **[Pairings and embedding degree](#page-3-0)**
- **MNT** curves: $k = 3, 4, 6$

2 [Constructing MNT Curves](#page-6-0)

- [CM method](#page-7-0)
- **Figure [Frequency of MNT curves](#page-10-0)**

[Our Contributions](#page-11-0)

- [Relation between the MNT curves with](#page-12-0) $k = 4$ and $k = 6$
- [A deep analysis of MNT equations](#page-13-0)
- **A** lower bound on MNT curves with bounded discriminant

- $k = 6 \Leftrightarrow \textit{q}(\ell) = 4\ell^2 + 1$ and $t(\ell) = 1 \pm 2\ell$ for some $\ell \in \mathbb{Z}.$
- Find $\ell: q(\ell)$ is a prime power, $n(\ell) = q(\ell) + 1 t(\ell)$ is prime
- • Use Complex Multiplication (CM) method to construct E over \mathbb{F}_q
	- CM equation: $4q t^2 = DY^2$, $Y \in \mathbb{Z}$, $D > 0$ is square-free
		- \bullet D is called the *discriminant* of E .
	- \bullet Find a root, j_E , of the Hilbert class polynomial $H_D(x)$ over \mathbb{F}_q
	- Construct E/\mathbb{F}_q with j−invariant = j_E
- CM method is practical if $D < 10^{10}$
- We should first fix D and find ℓ because otherwise $D \approx q$
	- CM equation is equivalent to the Pell (or *MNT*) equation

$$
X^2 - 3DY^2 = -8
$$
 where $X = 6\ell - 1$ or $X = 6\ell + 1$

- Fix D and solve for (X, Y) in the above equation
- Set $q(\ell), t(\ell)$ and construct E
- $X^2 DY^2 = m$: $m \in \mathbb{Z}, D \in \mathbb{N}, D$ not a perfect square
- $x, y, u, v \in \mathbb{Z}: x^2 Dy^2 = m, u^2 Dv^2 = 1, \gcd(x, y) = 1$
- *Primitive solutions to* $X^2 DY^2 = m$ in the class of $x + y\sqrt{2}$ D:

$$
\pm(x+y\sqrt{D})(u+v\sqrt{D})^j, \ j\in\mathbb{Z}
$$

• MNT curves are constructible through the solutions of

$$
X^2 - 3DY^2 = -8 \text{ where } X = 6\ell - 1 \text{ or } X = 6\ell + 1
$$

- \bullet $q(\ell)$ and $n(\ell)$ must satisfy primality conditions
- The size of the solutions (X, Y) grow exponentially
- MNT curves are very rare!
	- Let $E(z) := \#\{E \text{ upto isogeny with } k = 6 \text{ and } D \leq z\}$
	- Luca-Shparlinski (2006) upper bound:

$$
E(z) \ll z/(\log z)^2
$$

[Introduction](#page-2-0)

- **[Pairings and embedding degree](#page-3-0)**
- **MNT** curves: $k = 3, 4, 6$
- **[Constructing MNT Curves](#page-6-0)**
	- [CM method](#page-7-0)
	- **Figure [Frequency of MNT curves](#page-10-0)**

3 [Our Contributions](#page-11-0)

- [Relation between the MNT curves with](#page-12-0) $k = 4$ and $k = 6$
- [A deep analysis of MNT equations](#page-13-0)
- [A lower bound on MNT curves with bounded discriminant](#page-14-0)

MNT Curves with $k = 4$ and $k = 6$

\n- \n
$$
E_4/\mathbb{F}_q
$$
, $k = 4 \Leftrightarrow q = \ell^2 + 1 + 1$ and $t = -\ell, \ell + 1$ \n
\n- \n E_6/\mathbb{F}_q , $k = 6 \Leftrightarrow q = 4\ell^2 + 1$ and $t = 1 \pm 2\ell$ \n
\n

$$
k = 6 \t k = 4
$$

\n
$$
E_6/\mathbb{F}_q \Leftrightarrow E_4/\mathbb{F}_n
$$

\n
$$
\#E_6(\mathbb{F}_q) = n \t \#E_4(\mathbb{F}_n) = q
$$

Proof Sketch: $q = 4\ell^2 + 1, t = 1 - 2\ell$ Set $q' = n$, $n' = q$, $t' = q' + 1 - n'$ $q' = (2\ell)^2 + 2\ell + 1 = n, t' = 2\ell + 1$

- $X^2-3DY^2=-8~$ has either zero or two solution classes: S_1,S_2
- $D \equiv 3 \pmod{8}$
- \bullet -2 is a square modulo 3D
- MNT curve parameters must come from S_1 and S_2 : $\mathcal{E}_1, \mathcal{E}_2$
- $\circ \mathcal{E}_1 = \mathcal{E}_2$

A Lower Bound on $E(z)$

Consider $X^2 - 3DY^2 = -8$ with $Y = 1$ and let

 $\mathcal{F}(z) = \{D : D \in [1, z] \text{ is odd and squarefree, } 3D - 8 \text{ perfect square}\}\$ $F(z) = #F(z)$

If $x_D^2 = 3D - 8$ then we can show that $x_D = 6\ell_D \pm 1$ MNT theorem implies when $x_D = 6\ell_D + 1$ that

$$
q_D = 4\ell_D^2 + 1, \ \ n_D = 4\ell_D^2 + 2\ell_D + 1
$$

So, $D < z \Rightarrow q_D < z/2$, $n_D < 3z/4$

$$
E(z) \geq F(z) \frac{1}{(\log z)^2} \geq ??
$$

We write 3 $D-8=(6\ell\pm1)^2$. Then we can show that

D is odd and squarefree $3D - 8$ is a perfect square $\Leftrightarrow D = 12\ell^2 \pm 4\ell + 3$ is squarefree

Let $f_+(\ell) = 12\ell^2 + 4\ell + 3, \; \mathcal{F}_+(z) = \{D \in [5,z] : \; D = f_+(\ell)$ is squarefree $\}$ *Fact:* (G. Ricci, 1933) $\#\{\ell : 0 < \ell \leq L \text{ and } f_+(\ell) \text{ is square free}\}\approx c_{f_+}L$ where

$$
c_{f_+} = \prod_{p \text{ prime}} (1 - w_{f_+}(p)/p^2)
$$

$$
w_{f_+}(p) = \# \{ a \in [1, p^2] : f_+(a) \equiv 0 \pmod{p^2} \}
$$

In our case,

$$
F_{+}(z) = #F_{+}(z) \approx c_{f_{+}}L_{+}
$$

\n
$$
D \in [5, z] \Leftrightarrow L_{+} \approx \sqrt{z/12}
$$

\n
$$
w_{f_{+}}(3) = 1 \text{ and } w_{f_{+}}(p) = 0, 2
$$

\n
$$
w_{f_{+}}(p) = 2 \Leftrightarrow \left(\frac{-2}{p}\right) = 1 \Leftrightarrow p \equiv 1, 3 \pmod{8}
$$

A Lower Bound on $E(z)$ cont'd

Hence,

$$
c_{f_+} = c_{f_-} = \prod_{p \text{ prime}} (1 - w_{f_+}(p)/p^2)
$$

= $\frac{8}{9} \cdot \prod_{p \equiv 1,3 \pmod{8}} (1 - 2/p^2),$

$$
F(z) = F_{+}(z) + F_{-}(z)
$$

> $(c_{f_{+}}(z) + c_{f_{-}}(z) - 2\epsilon)\sqrt{z/12}$
> $0.857\sqrt{z/3}$

and

$$
E(z) \geq F(z) \frac{1}{(\log z)^2} \geq 0.49 \frac{\sqrt{z}}{(\log z)^2}
$$

Experimental Results on $E(z)$

Let $E_B(z) = \#$ MNT curves $E/\mathbb{F}_q : k = 6, \; q < 2^B, \; D \leq z$

[Introduction](#page-2-0)

- **[Pairings and embedding degree](#page-3-0)**
- **MNT** curves: $k = 3, 4, 6$

[Constructing MNT Curves](#page-6-0)

- [CM method](#page-7-0)
- **Figure [Frequency of MNT curves](#page-10-0)**

[Our Contributions](#page-11-0)

- **[Relation between the MNT curves with](#page-12-0)** $k = 4$ **and** $k = 6$
- [A deep analysis of MNT equations](#page-13-0)
- **A** lower bound on MNT curves with bounded discriminant

- A detailed analysis of MNT equations
	- 1 1 correspondence between MNT curves with $k = 4$ and $k = 6$
	- More efficient and explicit algorithms for MNT curve parameters
- A lower bound for the number of MNT curves
	- The lower bound can be improved $X^2 - 3DY^2 = -8$ with $Y = 3,9$ gives an improvement by a factor $(1 + 1/3 + 1/9)$
- Q. # MNT curves E/\mathbb{F}_q with $D \leq z$ and $L < q < U$?

THANKS!