Construction of Special K3 Surfaces

Andreas-Stephan Elsenhans

Mathematisches Institut der Universität Göttingen

22 May 2008

joint work with Jörg Jahnel

K3 surfaces I

Definition (K3 surface)

A K3 surface is a simply connected proper algebraic surface with trivial canonical class.

Definition (K3 surface)

A K3 surface is a simply connected proper algebraic surface with trivial canonical class.

Examples

- A K3 surface of degree 2 is a twofold cover of ${\bf P}^2,$ ramified at a smooth sextic.
- A K3 surface of degree 4 is a smooth quartic in \mathbf{P}^3 .
- A K3 surface of degree 6 is a smooth complete intersection of a quadric and a cubic in **P**⁴.
- A K3 surface of degree 8 is a smooth complete intersection of three quadrics in **P**⁵.

Properties of K3 surfaces

```
Betti numbers: 1, 0, 22, 0, 1
Hodge diamond: 1
0 	 0 	 1 	 20 	 1 	 0 	 0 	 1
Picard group: \mathbb{Z}^n for n \in \{1, ..., 20\}
```

- ₹ 🗦 🕨

To construct a K3 surface V of degree 2 over \mathbb{Q} such that $Pic(V) \cong \mathbb{Z}$. That means:

- The equation of V has the form $w^2 = f_6(x, y, z)$.
 - I.e., V is a double cover of \mathbf{P}^2 ramified at a smooth curve of degree 6.
- The geometric Picard group should be of rank 1.

To construct a K3 surface V of degree 2 over \mathbb{Q} such that $Pic(V) \cong \mathbb{Z}$. That means:

- The equation of V has the form $w^2 = f_6(x, y, z)$.
 - I.e., V is a double cover of \mathbf{P}^2 ramified at a smooth curve of degree 6.
- The geometric Picard group should be of rank 1.

Additional condition:

f₆ should be given in determinantal form.
 I.e., f₆ = det(M) for a symmetric matrix M.
 M should contain either linear or quadratic forms.

 \bullet Let V be a K3 surface over \mathbbm{Q} and p be a prime of good reduction. Then

$$\operatorname{Pic}(V_{\overline{\mathbb{Q}}}) \hookrightarrow \operatorname{Pic}(V_{\overline{\mathbb{F}}_p}) \hookrightarrow H^2_{\operatorname{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_{\ell}).$$

• Let V be a K3 surface over \mathbbm{Q} and p be a prime of good reduction. Then

$$\operatorname{Pic}(V_{\overline{\mathbb{Q}}}) \hookrightarrow \operatorname{Pic}(V_{\overline{\mathbb{F}}_p}) \hookrightarrow H^2_{\operatorname{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_{\ell}).$$

Every divisor on V_{Fρ} is defined over a finite field.
 A sufficiently large power of the Frobenius acts trivially on Pic(V_{Fρ}).

• Let V be a K3 surface over \mathbb{Q} and p be a prime of good reduction. Then

$$\operatorname{Pic}(V_{\overline{\mathbb{Q}}}) \hookrightarrow \operatorname{Pic}(V_{\overline{\mathbb{F}}_p}) \hookrightarrow H^2_{\operatorname{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_{\ell}).$$

- Every divisor on $V_{\overline{\mathbb{F}}_n}$ is defined over a finite field. A sufficiently large power of the Frobenius acts trivially on $Pic(V_{\overline{\mathbb{F}}_n})$.
- The Frobenius actions on $\operatorname{Pic}(V_{\overline{\mathbb{F}}_p})$ and $H^2_{\operatorname{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_\ell)$ are compatible.

$$\mathsf{rk}(\mathsf{Pic}(V_{\overline{\mathbb{Q}}})) \leq \mathsf{rk}(\mathsf{Pic}(V_{\overline{\mathbb{F}}_p})) \stackrel{(*)}{\leq} \# \left\{ \begin{array}{c} \mathsf{Frobenius \ eigenvalues \ on} \\ H^2_{\mathsf{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_\ell) \\ \mathsf{which \ are \ of \ the \ form \ } p\zeta. \end{array} \right\}$$

 \bullet Let V be a K3 surface over \mathbbm{Q} and p be a prime of good reduction. Then

$$\operatorname{Pic}(V_{\overline{\mathbb{Q}}}) \hookrightarrow \operatorname{Pic}(V_{\overline{\mathbb{F}}_p}) \hookrightarrow H^2_{\operatorname{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_{\ell}).$$

- Every divisor on V_{Fρ} is defined over a finite field.
 A sufficiently large power of the Frobenius acts trivially on Pic(V_{Fρ}).
- The Frobenius actions on $\operatorname{Pic}(V_{\overline{\mathbb{F}}_p})$ and $H^2_{\operatorname{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_\ell)$ are compatible.

$$\mathsf{rk}(\mathsf{Pic}(V_{\overline{\mathbb{Q}}})) \leq \mathsf{rk}(\mathsf{Pic}(V_{\overline{\mathbb{F}}_p})) \stackrel{(*)}{\leq} \# \left\{ \begin{array}{c} \mathsf{Frobenius eigenvalues on} \\ H^2_{\mathsf{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_\ell) \\ \mathsf{which are of the form } p\zeta. \end{array} \right\}$$

 Every prime of good reduction leads to an upper bound for rk(Pic(V_Q)). This bound is always even. The Tate conjecture implies equality in (*).

The structure of the Picard group I

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface.

- Divisors are constructed by pulling back a divisor of \mathbf{P}^2 and splitting.
- Assume that $_{,r}f_6(x, y, z) = 0^{"}$ allows a tritangent G. The pull-back of G splits into two projective lines D_1 and D_2 .

The structure of the Picard group I

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface.

- Divisors are constructed by pulling back a divisor of \mathbf{P}^2 and splitting.
- Assume that $,, f_6(x, y, z) = 0$ allows a tritangent G. The pull-back of G splits into two projective lines D_1 and D_2 .
- The adjunction formula $2g 2 = D(D + K) = D^2$ can be used to calculate the intersection product.

$$\begin{aligned} -2 &= D_1^2 = D_2^2 \\ 2 &= 2G^2 = (D_1 + D_2)^2 = D_1^2 + D_2^2 + 2D_1D_2 \\ \Rightarrow &3 &= D_1D_2 \end{aligned}$$

• Discriminant of the lattice $\langle D_1, D_2 \rangle$:

$$det \left(\begin{array}{cc} -2 & 3 \\ 3 & -2 \end{array} \right) = 4 - 9 = -5 \, .$$

The structure of the Picard group II

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface. Assume the existence of a conic Q which intersects $f_6(x, y, z) = 0$ only with even multiplicities.

- The pull-back of Q splits into two projective lines C_1 and C_2 .
- The pull-back of a line G leads to a divisor $D = \pi^*(G)$.
- Intersection products:

$$-2 = C_1^2 = C_2^2$$

$$2 = 2G^2 = D^2$$

$$4 = 2QG = (C_1 + C_2)D \Rightarrow C_1D = 2$$

The structure of the Picard group II

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface. Assume the existence of a conic Q which intersects $f_6(x, y, z) = 0$ only with even multiplicities.

- The pull-back of Q splits into two projective lines C_1 and C_2 .
- The pull-back of a line G leads to a divisor $D = \pi^*(G)$.
- Intersection products:

$$\begin{aligned} -2 &= C_1^2 = C_2^2 \\ 2 &= 2G^2 = D^2 \\ 4 &= 2QG = (C_1 + C_2)D \Rightarrow C_1D = 2 \end{aligned}$$

• Discriminant of the lattice $\langle C_1, D \rangle$:

$$\det \left(\begin{array}{cc} -2 & 2 \\ 2 & 2 \end{array} \right) = -4 - 4 = -8 \,.$$

• This lattice can not be refined to a lattice of discriminant -2.

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{Q} .

Assume

- $V_{\mathbb{F}_3}$ has Picard rank 2 and " $f_6(x, y, z) = 0$ " has conic with only even intersection multiplicities over \mathbb{F}_3 .
- $V_{\overline{\mathbb{F}}_5}$ has Picard rank 2 and " $f_6(x, y, z) = 0$ " has a tritangent over \mathbb{F}_5 .

Then V is of geometric Picard rank 1.

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{Q} .

Assume

- V_{𝔅3} has Picard rank 2 and "f₆(x, y, z) = 0" has conic with only even intersection multiplicities over 𝔅3.
- $V_{\overline{\mathbb{F}}_5}$ has Picard rank 2 and $f_6(x, y, z) = 0$ has a tritangent over \mathbb{F}_5 .

Then V is of geometric Picard rank 1.

Proof: The discriminants are not compatible. Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{Q} .

Assume

- $V_{\mathbb{F}_3}$ has Picard rank 2 and " $f_6(x, y, z) = 0$ " has conic with only even intersection multiplicities over \mathbb{F}_3 .
- $V_{\overline{\mathbb{F}}_5}$ has Picard rank 2 and " $f_6(x, y, z) = 0$ " has a tritangent over \mathbb{F}_5 .

Then V is of geometric Picard rank 1.

Proof: The discriminants are not compatible.

See [Ronald van Luijk: Rational points on K3 surfaces, PhD Thesis (2005)].

To construct a K3 surface of Picard rank 1, we need the following.

- An algorithm that searches for tritangents of $_{,,} f_6 = 0^{\circ}$.
- An algorithm that searches for conics which intersect " $f_6 = 0$ " only with even multiplicities.
- An algorithm to compute the characteristic polynomial $\chi_{\phi}(t)$ of the Frobenius.

More precisely, an algorithm to prove that $\chi_{\phi}(t)$ has at most two zeros of the form $p\zeta$ (counted with multiplicites).

These two zeros correspond to the two divisors we know explicitly.

How to search for tritangents of $_{n}f_{6}(x, y, z) = 0$ ":

- Consider a generic line $g: t \mapsto [1:t:a+bt]$. $f_6(g(t))$ is a square in $\overline{K}[t]$ if and only if g is a tritangent of " $f_6 = 0$ ".
- This leads to an algebraic system of equations.
 It can be solved by the computation of a Gröbner basis.
 The tritangents can be read off explicitly from the Gröbner basis.
- The remaining lines can be treated via the parametrizations $t \mapsto [1:a:t]$ and $t \mapsto [0:1:t]$.

How to search for tritangents of $_{n}f_{6}(x, y, z) = 0$ ":

- Consider a generic line $g: t \mapsto [1:t:a+bt]$. $f_6(g(t))$ is a square in $\overline{K}[t]$ if and only if g is a tritangent of " $f_6 = 0$ ".
- This leads to an algebraic system of equations.
 It can be solved by the computation of a Gröbner basis.
 The tritangents can be read off explicitly from the Gröbner basis.
- The remaining lines can be treated via the parametrizations $t \mapsto [1:a:t]$ and $t \mapsto [0:1:t]$.

Remarks

- The computation time is less than 1 sec per example.
- From time to time, we find tritangents on randomly chosen examples.

- **(())) (())) ())**

Searching for conics intersecting , $f_6(x, y, z) = 0$ "only with even multiplicities:

- Consider a conic q: t → [q₁(t) : q₂(t) : q₃(t)].
 f₆(q(t)) is a square in K[t] if and only if all intersection multiplicities are even.
- This leads to an algebraic system of equations.
- The computation of a Gröbner basis fails.

Searching for conics defined over \mathbb{F}_p intersecting " $f_6(x, y, z) = 0$ " only with even multiplicities:

- Build up a list of all smooth conics defined over \mathbb{F}_p .
- Factor $f_6(q(t))$ for each conic in the list.

Searching for conics defined over \mathbb{F}_p intersecting " $f_6(x, y, z) = 0$ " only with even multiplicities:

- Build up a list of all smooth conics defined over \mathbb{F}_p .
- Factor $f_6(q(t))$ for each conic in the list.

Remarks

- Instead of factoring $f_6(q(t))$, one could run an IsSquare routine.
- The number of all smooth conics is $p^5 p^2$.
- The running time is $O(p^{5+\varepsilon})$.
- From time to time, we find such conics on randomly chosen examples.

The characteristic polynomial of the Frobenius

Let V be a K3 surface and ϕ be the Frobenius on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_{\rho}}, \overline{\mathbb{Q}}_{\ell})$.

Theorem (Lefschetz trace formula)

$$Tr(\phi^d) = \#V(\mathbb{F}_{p^d}) - p^{2d} - 1$$

Let $\lambda_1, \ldots, \lambda_{22}$ be the eigenvalues of ϕ on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_{\ell})$.

$$Tr(\phi^d) = \lambda_1^d + \dots + \lambda_{22}^d$$

Using Newton's identity, one can compute the symmetric functions σ_i of $\lambda_1, \ldots, \lambda_{22}$. These are the coefficients of the characteristic polynomial χ_{ϕ} .

The characteristic polynomial of the Frobenius

Let V be a K3 surface and ϕ be the Frobenius on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_{\rho}}, \overline{\mathbb{Q}}_{\ell})$.

Theorem (Lefschetz trace formula)

$$Tr(\phi^d) = \#V(\mathbb{F}_{p^d}) - p^{2d} - 1$$

Let $\lambda_1, \ldots, \lambda_{22}$ be the eigenvalues of ϕ on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_{\ell})$.

$$Tr(\phi^d) = \lambda_1^d + \dots + \lambda_{22}^d$$

Using Newton's identity, one can compute the symmetric functions σ_i of $\lambda_1, \ldots, \lambda_{22}$. These are the coefficients of the characteristic polynomial χ_{ϕ} . **Consequence:** We have to count points on V.

- Let χ_{ϕ} be the characteristic polynomial of the Frobenius on $H^2_{\text{et}}(V_{\overline{\mathbb{P}}_n}, \overline{\mathbb{Q}}_{\ell})$.
 - Naively, one has to count the number of rational points over $\mathbb{F}_p,\ldots,\mathbb{F}_{p^{22}}.$

- Let χ_{ϕ} be the characteristic polynomial of the Frobenius on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_n}, \overline{\mathbb{Q}}_{\ell})$.
 - Naively, one has to count the number of rational points over $\mathbb{F}_p,\ldots,\mathbb{F}_{p^{22}}.$
 - The functional equation $p^{22}\chi_{\phi}(t) = \pm \chi_{\phi}(\frac{p^2}{t})$ leads to a relation between σ_i and σ_{22-i} . Thus, it suffices to count the rational points over $\mathbb{F}_p, \ldots, \mathbb{F}_{p^{11}}$.

22 May 2008

14 / 28

- Let χ_{ϕ} be the characteristic polynomial of the Frobenius on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_n}, \overline{\mathbb{Q}}_{\ell})$.
 - Naively, one has to count the number of rational points over $\mathbb{F}_p,\ldots,\mathbb{F}_{p^{22}}.$
 - The functional equation $p^{22}\chi_{\phi}(t) = \pm \chi_{\phi}(\frac{p^2}{t})$ leads to a relation between σ_i and σ_{22-i} . Thus, it suffices to count the rational points over $\mathbb{F}_p, \ldots, \mathbb{F}_{p^{11}}$.
 - Using χ_φ(p) = 0, we get a linear relation for the coefficients of χ_φ. Hence, it suffices to count the rational points over F_p,..., F_p¹⁰.

• The assumption of zeros leads to linear relations for the coefficients.

- The assumption of zeros leads to linear relations for the coefficients.
- Having counted the number of rational points over $\mathbb{F}_p, \ldots, \mathbb{F}_{p^9}$, one can try to derive a contradiction to the existence of an additonal zero of the form ζp .

- The assumption of zeros leads to linear relations for the coefficients.
- Having counted the number of rational points over $\mathbb{F}_p, \ldots, \mathbb{F}_{p^9}$, one can try to derive a contradiction to the existence of an additonal zero of the form ζp .

Theorem (Deligne-Weil)

All roots of the characteristic polynomial χ_{ϕ} have absolute value p.

- The assumption of zeros leads to linear relations for the coefficients.
- Having counted the number of rational points over $\mathbb{F}_p, \ldots, \mathbb{F}_{p^9}$, one can try to derive a contradiction to the existence of an additonal zero of the form ζp .

Theorem (Deligne-Weil)

All roots of the characteristic polynomial χ_{ϕ} have absolute value p.

This theorem can be used to disprove that a given polynomial is the characteristic polynomial of the Frobenius for any K3 surface. Just calculate the roots as floating point numbers. Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p .

•
$$\#V(\mathbb{F}_q) = \sum_{[x:y:z]\in \mathbf{P}^2(\mathbb{F}_q)} 1 + \chi_2(f_6(x, y, z))$$

This requires $q^2 + q + 1$ evaluations of f_6 and χ_2

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p .

•
$$\#V(\mathbb{F}_q) = \sum_{[x:y:z]\in \mathbf{P}^2(\mathbb{F}_q)} 1 + \chi_2(f_6(x, y, z))$$

This requires $q^2 + q + 1$ evaluations of f_6 and χ_2 .

• V is defined over \mathbb{F}_p . Therefore, the summands for [x : y : z] and $[\phi(x) : \phi(y) : \phi(z)]$ coincide.

It is enough to inspect a fundamental domain of the Frobenius. We gain a factor of $[\mathbb{F}_q : \mathbb{F}_p]$.

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p . We call f_6 decoupled if $f_6(1, y, z) = g(y) + h(z)$.

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p . We call f_6 decoupled if $f_6(1, y, z) = g(y) + h(z)$.

•
$$\#V(\mathbb{F}_q) = \sum_{u \in \mathbb{F}_q} \#g^{-1}(u) \sum_{v \in \mathbb{F}_q} \#h^{-1}(v) (1 + \chi_2(u+v)) + \sum_{[0:y:z] \in \mathbf{P}^2(\mathbb{F}_q)} 1 + \chi_2(f_6(0,y,z))$$

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p . We call f_6 decoupled if $f_6(1, y, z) = g(y) + h(z)$.

•
$$\#V(\mathbb{F}_q) = \sum_{u \in \mathbb{F}_q} \#g^{-1}(u) \sum_{v \in \mathbb{F}_q} \#h^{-1}(v) (1 + \chi_2(u + v)) + \sum_{[0:y:z] \in \mathbf{P}^2(\mathbb{F}_q)} 1 + \chi_2(f_6(0, y, z))$$

• The double sum has approximately $q^2(1-\frac{1}{e})^2$ summands such that $\#g^{-1}(u) > 0$ and $\#h^{-1}(v) > 0$.

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p . We call f_6 decoupled if $f_6(1, y, z) = g(y) + h(z)$.

•
$$\#V(\mathbb{F}_q) = \sum_{u \in \mathbb{F}_q} \#g^{-1}(u) \sum_{v \in \mathbb{F}_q} \#h^{-1}(v) (1 + \chi_2(u + v)) + \sum_{[0:y:z] \in \mathbf{P}^2(\mathbb{F}_q)} 1 + \chi_2(f_6(0, y, z))$$

- The double sum has approximately $q^2(1-\frac{1}{e})^2$ summands such that $\#g^{-1}(u) > 0$ and $\#h^{-1}(v) > 0$.
- For evaluation, one can build up tables stating how often g and h represent which value. Then, the evaluation reduces to one addition in \mathbb{F}_q per summand.

Let $V: w^2 = f_6(x, y, z)$ be a K3 surface defined over \mathbb{F}_p . We call f_6 decoupled if $f_6(1, y, z) = g(y) + h(z)$.

•
$$\#V(\mathbb{F}_q) = \sum_{u \in \mathbb{F}_q} \#g^{-1}(u) \sum_{v \in \mathbb{F}_q} \#h^{-1}(v) (1 + \chi_2(u+v)) + \sum_{[0:y:z] \in \mathbf{P}^2(\mathbb{F}_q)} 1 + \chi_2(f_6(0,y,z))$$

- The double sum has approximately $q^2(1-\frac{1}{e})^2$ summands such that $\#g^{-1}(u) > 0$ and $\#h^{-1}(v) > 0$.
- For evaluation, one can build up tables stating how often g and h represent which value. Then, the evaluation reduces to one addition in \mathbb{F}_q per summand.
- Additionally, one table can be restricted to a fundamental domain of the Frobenius.
- The resulting algorithm is approximately 10 times faster than that for the general case.

Example

 $V: w^2 = \det(xM_x + yM_y + zM_z)$ is a K3 surface of geometric Picard rank 1.

$$\begin{split} f_6(x, y, z) &= \det \left(xM_x + yM_y + zM_z \right) = \\ &- 106613x^6 - 8455829x^5y + 3479390x^5z - 5386183x^4y^2 \\ &- 10075660x^4yz + 3946878x^4z^2 + 3130266x^3y^3 - 10182480x^3y^2z \\ &- 858915x^3yz^2 + 582012x^3z^3 + 2787726x^2y^4 + 1029050x^2y^3z \\ &- 776790x^2y^2z^2 + 3132270x^2yz^3 - 1365782x^2z^4 - 4062988xy^5 \\ &- 4529440xy^4z - 4108065xy^3z^2 + 1753440xy^2z^3 + 2845590xyz^4 \\ &- 388050xz^5 - 448780y^6 + 3612620y^5z + 4818675y^4z^2 \\ &- 1646250y^3z^3 - 2435045y^2z^4 + 275960yz^5 + 30699z^6 \end{split}$$

A determinantal example with linear forms II

The matrices:								(3	9	3	9	14	11 \
									9	13	0	7	6	10
							Δ.		3	0	14	10	13	5
							$M_{X} :=$		9	7	10	7	1	13
									14	6	13	1	5	2
									11	10	5	13	2	6 /
	(0	5	13	13	5	1 \		(2	1	1	1	5	0 \
	(0 5	5 2	13 5	13 11	5 8	$\begin{array}{c} 1 \\ 11 \end{array}$		(2 1	1 10	1 9	1 4	5 14	0 4
A.A	(0 5 13	5 2 5	13 5 0	13 11 10	5 8 13	1 11 0	A4 .		2 1 1	1 10 9	1 9 2	1 4 13	5 14 10	0 4 2
$M_y :=$	(0 5 13 13	5 2 5 11	13 5 0 10	13 11 10 13	5 8 13 10	1 11 0 10	$M_z :=$		2 1 1 1	1 10 9 4	1 9 2 13	1 4 13 6	5 14 10 12	0 4 2 7
$M_y :=$	(0 5 13 13 5	5 2 5 11 8	13 5 0 10 13	13 11 10 13 10	5 8 13 10 5	1 11 0 10 11	$M_z :=$		2 1 1 1 5	1 10 9 4 14	1 9 2 13 10	1 4 13 6 12	5 14 10 12 8	0 4 2 7 11

Reduction modulo 3

$$(t-1)^2(3t^{20}+3t^{19}+3t^{18}+2t^{17}+3t^{16}+2t^{15})$$

 $-2t^{13}-3t^{12}-4t^{11}-6t^{10}-4t^9-3t^8)$
 $-2t^7+2t^5+3t^4+2t^3+3t^2+3t+3)/3$

Reduction modulo 5

- Tritangent: x = 0
- Traces on $H^2_{\text{et}}(V_{\overline{\mathbb{F}}_5}, \overline{\mathbb{Q}}_{\ell})$: 11, 41, 86, 1081, -2024, 11396, 418716, 1298561, 8089556, -19047174.
- Scaled characteristic polynomial of the Frobenius:

$$(t-1)^2(5t^{20}-t^{19}+t^{18}+2t^{17}+3t^{15}+t^{14}-2t^{13}+t^{12}-t^{11}\ +2t^{10}-t^9+t^8-2t^7+t^6+3t^5+2t^3+t^2-t+5)/5\,.$$

Example

 $V: w^2 = \det(M(x, y, z))$ is a K3 surface of geometric Picard rank 1.

$$m_{11} = 9x^{2} + 5xy + 9xz + 11y^{2} + 10yz$$

$$m_{12} = m_{21} = 2x^{2} + 10xy + 10xz + 10yz + 8z^{2}$$

$$m_{13} = m_{31} = 14x^{2} + 12xy + 7xz + 9y^{2} + 13yz + 7z^{2}$$

$$m_{22} = x^{2} + 4xy + 9y^{2} + 6yz + 3z^{2}$$

$$m_{23} = m_{32} = 4xy + 12xz + y^{2} + 4yz + 14z^{2}$$

$$m_{33} = 14x^{2} + 5xy + 6xz + 5y^{2} + 5yz + 3z^{2}$$

$$\begin{split} f_6(x, y, z) &= \det(M) = \\ &- 196x^6 - 1078x^5y + 56x^5z - 2254x^4y^2 - 320x^4yz \\ &+ 546x^4z^2 - 2369x^3y^3 - 1410x^3y^2z + 3145x^3yz^2 \\ &+ 1354x^3z^3 - 1873x^2y^4 - 2390x^2y^3z + 2180x^2y^2z^2 \\ &+ 6360x^2yz^3 + 882x^2z^4 - 1241xy^5 - 3225xy^4z \\ &- 1530xy^3z^2 + 4225xy^2z^3 + 6060xyz^4 + 2031xz^5 \\ &- 245y^6 - 1235y^5z - 2700y^4z^2 - 1515y^3z^3 + 475y^2z^4 \\ &+ 1810yz^5 + 1229z^6 \end{split}$$

Image: A matrix and a matrix

Reduction modulo 3

$$(t-1)^2(3t^{20}+t^{19}+2t^{18}+t^{16}+t^{15}+2t^{14}+2t^{13}+3t^{12}\ +2t^{10}+3t^8+2t^7+2t^6+t^5+t^4+2t^2+t+3)/3\,.$$

Reduction modulo 5

- Tritangent: x = 0
- Traces on $H^2_{\text{et}}(V_{\overline{\mathbb{R}}_{\text{E}}}, \overline{\mathbb{Q}}_{\ell})$: 8, 44, -103, 1236, 3043, -7891, -495683, 970196, 12359273, -11502651.
- Scaled characteristic polynomial of the Frobenius:

$$(t-1)^2(5t^{20}+2t^{19}+t^{18}+5t^{17}+2t^{16}+2t^{15}+5t^{14} + 8t^{13}+4t^{12}+2t^{11}+8t^{10}+2t^9+4t^8 + 8t^7+5t^6+2t^5+2t^4+5t^3+t^2+2t+5)/5.$$

We construct \mathbb{F}_3 examples and \mathbb{F}_5 examples separately and combine them via the Chinese remainder theorem.

Algorithm for the \mathbb{F}_3 part:

- Choose *M* randomly symmetric and calculate $f_6 = \det(M)$.
- Test the smoothness of $_{n}f_{6}(x, y, z) = 0^{"}$ using a Gröbner basis.
- Search for tritangents and conics with even intersection multiplicities.
- If there is no tritangent and exactly one such conic then count the rational points of the K3 surface defined over $\mathbb{F}_3, \ldots, \mathbb{F}_{3^{10}}$.
- Calculate and factorize the characteristic polynomial of the Frobenius.
- We succeed if the degree 20 factor contains no cyclotomic polynomial.

The \mathbb{F}_5 examples can only be handled in the decoupled case. Chose some of the entries of M randomly such that decoupling leads to a linear system for the remaining coefficients.

- Test smoothness of $_{n}f_{6}(x, y, z) = 0^{"}$ using a Gröbner basis.
- Search for tritangents and conics with even intersection multiplicities.
- If there is exactly one tritangent and no such conic then count the rational points of the K3 surface defined over $\mathbb{F}_5, \ldots, \mathbb{F}_{5^9}$.
- Try to prove $rk(Pic(V_{\overline{\mathbb{F}}_p})) = 2$.
- \bullet If the proof is successful then we count the rational points defined over $\mathbb{F}_{5^{10}}.$
- Calculate and factorize the characteristic polynomial of the Frobenius.

Summary

Conclusion

- $\bullet\,$ Found explicit examples of K3 surfaces over \mathbbm{Q} of degree 2 and geometric Picard rank 1.
- Calculations are based on reduction modulo *p* methods.
- Methods are flexible enough to construct many examples. We illustrated this by constructing examples in determinantal form.

Estimates for the Picard rank in characteristic *p*

- Lower bounds by explicitly constructing divisors.
- Upper bounds by point counting.
- Provable ranks are always even.

Bounds for characteristic zero

- Reduction modulo *p* induces an injection on the Picard lattices.
- Incompatibility of the discriminants reduces the rank.