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Introduction

Let E/Q be an elliptic curve given by

y2 = x3 + ax + b.
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Introduction

Let E/Q be an elliptic curve given by

y2 = x3 + ax + b.

Then,

E(Q) ! Etors(Q) ⊗ Zr(E).

Moreover, for any given prime p ! 6N(E)

E(Fp) ! Z/dpZ ⊗ Z/dpepZ
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Questions

• When is E(Fp) cyclic?
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Questions

• When is E(Fp) cyclic?

• Given E/Q with r(E) ≥ 1, P ∈ E(Q)/Etors(Q),

When < P mod p >= E(Fp) ?

• When |E(Fp)| is prime?
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Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E/Q be an
elliptic curve. There exist a constant CE such that

ΠE(x) = #{p ≤ x : E(Fp) is cyclic} ∼ CE
x

log x
.
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• Proved by Serre in 1976 under GRH, with an
explicit constant CE, which is non zero precisely

when [Q(E[2]) : Q] > 1.
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Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E/Q be an
elliptic curve. There exist a constant CE such that

ΠE(x) = #{p ≤ x : E(Fp) is cyclic} ∼ CE
x

log x
.

• Proved by Serre in 1976 under GRH, with an
explicit constant CE, which is non zero precisely

when [Q(E[2]) : Q] > 1.

• In 1979Murty prove the conjecture
unconditionally for CM curves.
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Primitive points

Conjecture: (Lang-Trotter, 1976) Given E/Q with

r(E) ≥ 1, P ∈ E(Q) free, there exist CE,P such that
if

AE,P (x) = {p ≤ x :< P mod p >= E(Fp)},

then

|AE,P (x)| ∼ CE,P
x

log x
.
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Primitive points

Given E/Q with CM by OK , r(E) ≥ 1, P ∈ E(Q)
free, let

Πsplit
E,P (x) = #{p ∈ AE,P (x) : p splits in OK}.
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Primitive points

Given E/Q with CM by OK , r(E) ≥ 1, P ∈ E(Q)
free, let

Πsplit
E,P (x) = #{p ∈ AE,P (x) : p splits in OK}.

Theorem: (Gupta-Murty, 1987) Under GRH we have

Πsplit
E,P (x) ∼ CE,P

x

log x

Remark: The constant CE,P is positive whenever 2, 3
are inert or K = Q(

√
−11).
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Primitive points

Theorem: (Gupta-Murty, 1987) Whenever r(E) ≥ 6,
there is a finite explicit set, S ∈ E(Q) such that
|AE,P (x)| → ∞ unconditionally for some P ∈ S.
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Primitive points

Theorem: (Gupta-Murty, 1987) Whenever r(E) ≥ 6,
there is a finite explicit set, S ∈ E(Q) such that
|AE,P (x)| → ∞ unconditionally for some P ∈ S.

Theorem: (Gupta-Murty, 1987)

#{p ≤ x : p splits , | < P mod p > | < x
1
2−ε} = o(x1−ε)

#{q ≤ x : q inert , | < P mod q > | < x
1
3−ε} = o(x1−ε)
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Prime Order
Conjecture: (Koblitz, 1988) Let E/Q be an elliptic
curve not isogenus to one with nontrivial Q torsion.
Then,

Πprime
E (x) = #{p ≤ x : |E(Fp)| is prime} ∼ CE

x

log2 x
.

Remark: It is not known a single example of curve
for which the conjecture is true. Why?
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Prime Order
Conjecture: (Koblitz, 1988) Let E/Q be an elliptic
curve not isogenus to one with nontrivial Q torsion.
Then,

Πprime
E (x) = #{p ≤ x : |E(Fp)| is prime} ∼ CE

x

log2 x
.

Remark: It is not known a single example of curve
for which the conjecture is true. Why?
Consider the CM case.

|E(Fp)| = N(πp − 1), πp ∈ OK ,

Hence, πp = 1 + π̃p, is the twin prime conjecture in
the ring OK .
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Prime Order, known results.

Theorem:(Balog-Cojocaru-David, Preprint)

1

|C|
∑

E∈C

Πprime
E (x) ∼ C

x

log2 x
.

Almost prime orders of CM elliptic curves modulo p. – p. 9/15



Prime Order, known results.

Theorem:(Balog-Cojocaru-David, Preprint)

1

|C|
∑

E∈C

Πprime
E (x) ∼ C

x

log2 x
.
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log2 x
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Prime Order, known results.

Theorem:(Balog-Cojocaru-David, Preprint)

1

|C|
∑

E∈C

Πprime
E (x) ∼ C

x

log2 x
.

Find the smallest n such that
#{p ≤ x : |E(Fp)| = Pn} + x

log2 x

• (Miri-Murty) , GRH, non CM, n ≤ 16.
• (Steuding-Weng), GRH, n ≤ 9, and n ≤ 4 if CM.
• (Cojocaru), CM n ≤ 5

• (Iwaniec-Jiménez Urroz), n ≤ 2 for y2 = x3 − x.
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Almost prime orders.

Theorem: (Jiménez Urroz) Let E/Q be an elliptic
curve with complex multiplication by OK . Then,

#{p ≤ x, p splits :
1

dE
|E(Fp)| = P2} +

x

log2 x
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Almost prime orders.

Theorem: (Jiménez Urroz) Let E/Q be an elliptic
curve with complex multiplication by OK . Then,

#{p ≤ x, p splits :
1

dE
|E(Fp)| = P2} +

x

log2 x

Remark: The method allow us to improve on
primitive points in the following way.

Let E/Q be an elliptic curve with complex

multiplication by OK with r(E) ≥ 1, and P ∈ E(Q)
free. Then

#{q ≤ x : q inert , | < P mod q > | > x0.44} +
x

log2 x
.
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Proof of the remark.
The Theorem gives an explicit constant such that

#{p ≤ x, :
1

dE
|E(Fp)| = P2} ≥

Cx

log2 x
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Proof of the remark.
The Theorem gives an explicit constant such that

#{p ≤ x, :
1

dE
|E(Fp)| = P2} ≥

Cx

log2 x

We know that

#{q ≤ x : | < P mod q > | < x1/3−ε} = o(x1−ε).
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Proof of the remark.
The Theorem gives an explicit constant such that

#{p ≤ x, :
1

dE
|E(Fp)| = P2} ≥

Cx

log2 x

We know that

#{q ≤ x : | < P mod q > | < x1/3−ε} = o(x1−ε).

By sieve, find β such that

#{p ≤ x, : q||E(Fp)|, x1/3−ε < q < xβ} < (C−ε)
x

log2 x
.

For inert primes use results of Cai and Wu for the best
constant in the twin prime conjecture.
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The constant dE

D (g4, g6) dE

−4 (−g4, 0), (4g4, 0) 8
−4 (m2, 0), (−m2, 0) 4
−4 (m, 0) 2
−8 (−30g2,−56g3) 2
−3 (0, g6), (0,−27g6) 12
−3 (0,m3) 4
−3 (0,m2), (0,−27m2) 3
−3 (0,m) 1
−7 (−140g2,−784g3) 4
−D ≥ 11 (g4, g6) 1
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The constant dE

Corollary: Any E/Q with CM curve by

K = Q(
√
−D), D ≥ 11 does not have rational

torsion.
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The constant dE

Corollary: Any E/Q with CM curve by

K = Q(
√
−D), D ≥ 11 does not have rational

torsion.

Proof: Note that for any prime λ ∈ OK ,

|(OK/λOK)∗| ≥ 3 and use Čebotarev density
theorem.
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Proof of Main Theorem
Based on the formula

|E(Fp)| = N(πp − 1),

for some explicit πp above p in OK . Recently Rubin
and Silverberg have given a general formula, valid in
particular for any CM curve over Q.

Consider the sequence

A(x) =
{

a = N
(

πp−1

δE

)

, π ∈ P(x)
}

.

The problem is a typical sieve problem.

Almost prime orders of CM elliptic curves modulo p. – p. 14/15



Proof of Main Theorem

Use the following weighted sum with y = x1/3.

∑

a∈A(x)
(a,P (z)Q(z)pK)=1











1 −
∑

p0|a
z<p0≤y

1

2
−

∑

a=p1p2p3
z<p3≤y<p2<p1

1

2










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









1 −
∑

p0|a
z<p0≤y

1

2
−

∑

a=p1p2p3
z<p3≤y<p2<p1

1

2











To control the error term, we need a
Bombieri-Vinogradov type theorem in two different
contexts, first in the ring OK , and then for elements

ω = δEπ1π2π3.

Finally, one key ingredient is remove the inert primes
from the sequence before sieving in order to increase
the level of distribution of the sequence.
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