1. Lang's Conjecture

ET E/K be an elliptic curve, K a number field or complex function field

• Néron and Tate showed (independently) there is a canonical height function: $\hat{h}: E(K) \longrightarrow [0,\infty)$

- If K is a function field, $\hat{h}(P) \in \mathbb{Q}$
- $E(K)/E(K)_{tors} \cong \mathbb{Z}^r$ finitely generated free abelian group $\implies \hat{h}$ descends to positive definite quadratic form on $E(K)/E(K)_{tors}$

QUESTION: If P is nontorsion, how small can $\hat{h}(P)$ be?

Conjecture (Lang) If $K = \mathbb{Q}$, then $\hat{h}(P) \gg \log |\Delta_E|$. If K is number field, then $\hat{h}(P) \ge C_K \log |N_{K/\mathbb{Q}} \Delta_{E/K}|$

Over $\mathbb{C}(t)$ or $\mathbb{C}(C)$ for C a curve, the same bound holds with $\log |N_{K/\mathbb{O}}\Delta_{E/K}|$ replaced by the discriminant degree 12n

2. A Theorem of Hindry-Silverman

INDRY-SILVERMAN proved (1988):

ABC conjecture \implies Lang's conjecture

For K function field, Hindry-Silverman determine explicit value for $C_K \cong 6 \cdot 10^{-11}$

Basic Idea in Hindry-Silverman proof:

- Replace P by 12P so P meets every additive fiber at identity component (incurs factor of 12^2 in lower bound)
- Canonical height $\hat{h}(P)$ depends on heights of $\hat{h}(mP)$ for integers m
- Using facts about elliptic surfaces, choose coefficients c_m so that

$$\sum_{m=1}^{\infty} c_m \hat{h}(mP) \ge 12n$$

• Obtain a lower bound

$$\hat{h}(P) \ge 12n/(\sum_{m=1}^{\infty} m^2 c_m)$$

3. Elkies' Approach

LKIES (2002) used two new ideas to improve the lower bound:

- Semistable reduction: When minimizing $\hat{h}(P)$, may assume semistable reduction
- Instead of choosing c_m , use theory of heights on elliptic surfaces to find linear constraints on the c_m s.t. (1) holds for c_m in some feasible region
- Linear programming: Minimize $\sum_{m=1}^{\infty} m^2 c_m$ (increases bound \approx 5000x)
- This improves the constant to $C_K \approx 1/25330$, or $\hat{h}(P) \ge n/2111$
- Using heuristic arguments to reduce size of the feasible region, Elkies conjectures best possible $C_K \approx 1/3520$

Minimal Heights and Regulators for Elliptic Surfaces

Sonal Jain

Courant Institute of Mathematical Sciences, New York University

WE GENERALIZE Elkies' approach to the case in which E has rank at least 2:

QUESTION: What is smallest possible regulator for a rank 2 subgroup? What are the possible lattices generated by 2 independent sections?

- Semistable reduction: Need only consider curves with semistable reduction
- Next, fix a, b and find lower bound for $a\hat{h}(P) + b\langle P, Q \rangle + \hat{h}(Q)$:

$$\sum_{n,n} c_{m,n} \hat{h}(mP + nQ) = \sum_{m,n} m^2 c_{m,n} \hat{h}(P) + \sum_{m,n} 2mnc_{m,n} \langle P, Q \rangle + \sum_{m,n} n^2 c_{m,n} \hat{h}(Q)$$

• Add the conditions corresponding to P, Q forming a reduced basis, and write

$$\sum_{m,n} m^2 c_{m,n} - \alpha + \gamma) \hat{h}(P) + (\sum_{m,n} 2mnc_{m,n} - 2\gamma + \beta) \langle P, Q \rangle + (\sum_{m,n} n^2 c_{m,n} + \alpha) \hat{h}(Q)$$
(2)

where $\alpha, \beta, \gamma \geq 0$

• Use theory of heights on elliptic surfaces to constrain the $c_{m,n}$ s.t.

$$\sum_{m,n} c_{m,n} \hat{h}(mP + nQ) \ge$$

- Add two linear conditions to ensure ratio of coefficients in (2) are a and b
- Linear Programming: Minimizing $(\sum_{m,n} n^2 c_{m,n} + \alpha)$ yields a lower bound of

$$a\hat{h}(P) + b\langle P, Q \rangle + \hat{h}(Q) \ge \frac{12n}{\sum_{m,n} n^2 c_{m,n} + \alpha}$$

5. New Results

• If Q is the point of second smallest height, constant in Lang's Conjecture improves to 1/3595 (conjecturally 19/5059), i.e.

 $\hat{h}(Q) \ge n/300$

- Lower bound for the form $\hat{h}(Q) \hat{h}(P)/4$ is n/400
- Since $\{P, Q\}$ reduced, volume of fundamental domain for lattice is bounded below by

$$V = \hat{h}(P)\hat{h}(Q) - \langle P, Q \rangle^2 \ge \hat{h}(P)\hat{h}(Q) - \hat{h}(P)^2/4$$

• New lower bound:

$$V = (\det \hat{h})(P,Q) \ge n^2/(21$$

- Minimize (3) to obtain a plane in aX + bY + Z > C in 3-dimensional space of reduced 2-dimensional quadratic forms
- Find enough planes to restrict shape of the region
- Use heuristics to reduce size of feasible region of each linear program
- Find **supporting plane** for the region in each direction

(1)

- 12n

(3)

 $111 \cdot 400)$

able region in \mathbb{R}^3 . The boundary must be piecewise algebraic.

Figure 2: We draw the intersection of the region with the plane $\langle P, Q \rangle = 0$.

- *maticae* **53** (1979), 1-44.
- over \mathbb{P}^1 with small d. LNCS 4076 (proceedings of ANTS-7), 2006. 287-301.
- *Inventiones Mathematicae* **93** (1988), 419-450.

Figure 1: As we increase the number of planes, we approach the asymptotically obtain-

References

[1] Cox, D.A., Zucker, S.: Intersection Numbers of Elliptic Surfaces. *Inventiones Mathe-*

[2] Elkies, N.D.: Points of Low Height on Elliptic Curves and Surfaces I: Elliptic surfaces

[3] Hindry, M., Silverman, J.H.: The canonical height and integral points on elliptic curves.