

RUNNING TIME PREDICTIONS FOR SQUARE PRODUCTS, AND LARGE PRIME VARIATIONS

by

Ernie Croot, Andrew Granville, Robin Pemantle, & Prasad Tetali

- Dixon's random squares algorithm
- The quadratic sieve
- Multiple polynomial quadratic sieve
- The number field sieve

- Dixon's random squares algorithm
- The quadratic sieve
- Multiple polynomial quadratic sieve
- The number field sieve

Idea: Generate a pseudo-random sequence of integers $a_1, a_2, ...,$ with each

 $a_i \equiv b_i^2 \pmod{n},$

until the product of a subseq of the a_i 's is a square,

say
$$Y^2 = a_{i_1} \cdots a_{i_k}$$
.

- Dixon's random squares algorithm
- The quadratic sieve
- Multiple polynomial quadratic sieve
- The number field sieve

Idea: Generate a pseudo-random sequence of integers $a_1, a_2, ...,$ with each

 $a_i \equiv b_i^2 \pmod{n},$

until the product of a subseq of the a_i 's is a square,

say
$$Y^2 = a_{i_1} \cdots a_{i_k}$$
.
Now, set $X^2 = (b_{i_1} \cdots b_{i_k})^2$

and then

 $n \mid Y^2 - X^2 = (Y - X)(Y + X).$

- Dixon's random squares algorithm
- The quadratic sieve
- Multiple polynomial quadratic sieve
- The number field sieve

Idea: Generate a pseudo-random sequence of integers $a_1, a_2, ...,$ with each

 $a_i \equiv b_i^2 \pmod{n},$

until the product of a subseq of the a_i 's is a square,

say
$$Y^2 = a_{i_1} \cdots a_{i_k}$$
.
Now, set $X^2 = (b_{i_1} \cdots b_{i_k})^2$

and then

 $n \mid Y^2 - X^2 = (Y - X)(Y + X).$

 $\geq 50\%$ Chance gcd(n, Y - X)is a non-trivial factor of n.

ANALYSIS OF RUNNING TIMES

1994 ICM, Pomerance: In the (heuristic) running time analysis of such factoring algorithms one assumes that the pseudo-random sequence $a_1, a_2, ...$ is close enough to random, to make predictions based on this assumption.

ANALYSIS OF RUNNING TIMES

1994 ICM, Pomerance: In the (heuristic) running time analysis of such factoring algorithms one assumes that the pseudo-random sequence $a_1, a_2, ...$ is close enough to random, to make predictions based on this assumption.

POMERANCE'S PROBLEM

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

 $Prob(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists $a_{i_1} \cdots a_{i_k} = Y^2$

WHAT IS EXPECTED STOPPING TIME?

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

 $Prob(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists $a_{i_1} \cdots a_{i_k} = \Box$

•

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

Prob $(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists $a_{i_1} \cdots a_{i_k} = \Box$ EXPECTED STOPPING TIME?

INTERESTING BECAUSE...

• If this expected stopping time is far less than what is obtained by the algorithms currently used, *maybe* we can speeding up factoring algorithms.

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

Prob $(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists $a_{i_1} \cdots a_{i_k} = \Box$ EXPECTED STOPPING TIME?

INTERESTING BECAUSE...

• If this expected stopping time is far less than what is obtained by the algorithms currently used, *maybe* we can speeding up factoring algorithms.

• Even if not, a good understanding might lead to better choice of parameters for most factoring algorithms.

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

 $\operatorname{Prob}(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists

$$a_{i_1} \cdots a_{i_k} = \Box$$

EXPECTED STOPPING TIME?

INTERESTING BECAUSE...

• If this expected stopping time is far less than what is obtained by the algorithms currently used, *maybe* we can speeding up factoring algorithms.

• Even if not, a good understanding might lead to better choice of parameters for most factoring algorithms.

• Possibility of proving something without assumption.

Previous best results

 $\begin{aligned} \pi(y) &= \text{number of primes up to } y. \\ n \text{ is } y\text{-smooth if } p|n \Rightarrow p \leq y \\ \Psi(x,y) &= \#y\text{-smooths up to } x. \end{aligned}$

PREVIOUS BEST RESULTS

 $\pi(y) =$ number of primes up to y.

 $n \text{ is } y\text{-smooth if } p|n \Rightarrow p \leq y$

 $\Psi(x,y) = \#y$ -smooths up to x.

Choose $y_0 = y_0(x)$ to maximize $\Psi(x, y)/y$, and let

$$J_0(x) := \frac{\pi(y_0)}{\Psi(x, y_0)} \cdot x.$$

$$(J_0(x) \approx e^{\sqrt{2\log x \log\log x}})$$

PREVIOUS BEST RESULTS

 $\pi(y) =$ number of primes up to y.

 $n \text{ is } y\text{-smooth if } p|n \Rightarrow p \leq y$

 $\Psi(x, y) = \#y$ -smooths up to x.

Choose $y_0 = y_0(x)$ to maximize $\Psi(x, y)/y$, and let

$$J_0(x) := \frac{\pi(y_0)}{\Psi(x, y_0)} \cdot x.$$

1985 Schroeppel: As $x \to \infty$, $\boxed{\operatorname{Prob}(T < (1+\epsilon)J_0(x)) \to 1.}$

$$(J_0(x) \approx e^{\sqrt{2\log x \log\log x}})$$

PREVIOUS BEST RESULTS

 $\pi(y) =$ number of primes up to y.

 $n \text{ is } y\text{-smooth if } p|n \Rightarrow p \leq y$

 $\Psi(x, y) = \#y$ -smooths up to x.

Choose $y_0 = y_0(x)$ to maximize $\Psi(x, y)/y$, and let

$$J_0(x) := \frac{\pi(y_0)}{\Psi(x, y_0)} \cdot x.$$

1985 Schroeppel: As $x \to \infty$, $\boxed{\operatorname{Prob}(T < (1+\epsilon)J_0(x)) \to 1.}$

1994 Pomerance: As $x \to \infty$, $Prob(T > J_0(x)^{1-\epsilon}) \to 1.$

$$(J_0(x) \approx e^{\sqrt{2\log x \log\log x}})$$

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

 $Prob(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists $a_{i_1} \cdots a_{i_k} = \Box$ EXPECTED STOPPING TIME, T?

Schroeppel-Pomerance: With probability going to 1, we have

 $J_0(x)^{1-\epsilon} < T < (1+\epsilon)J_0(x)$

Select integers $a_1, a_2, \dots \leq x$ independently at random; i.e.

Prob $(a_j = m) = \frac{1}{x} \quad \forall \ 1 \le m \le x;$ Stop at a_T as soon as there exists $a_{i_1} \cdots a_{i_k} = \Box$ EXPECTED STOPPING TIME, T?

Schroeppel-Pomerance: With probability going to 1, we have

 $J_0(x)^{1-\epsilon} < T < (1+\epsilon)J_0(x)$

Recently, in probability theory, results showing "*sharp transitions*"; i.e. random algorithms tend to stop at a certain precise time with probability going to 1.

Guess: There exists f(x), s.t. $(1 - \epsilon)f(x) < T < (1 + \epsilon)f(x)$, with probability going to 1.

Guess: There exists f(x), s.t. $(1 - \epsilon)f(x) < T < (1 + \epsilon)f(x)$, with probability going to 1.

Conjecture: $f(x) = e^{-\gamma} J_0(x)$, i.e. $(1-\epsilon)e^{-\gamma} J_0(x) < T < (1+\epsilon)e^{-\gamma} J_0(x)$, with probability going to 1.

Guess: There exists f(x), s.t. $(1 - \epsilon)f(x) < T < (1 + \epsilon)f(x)$, with probability going to 1.

Conjecture: $f(x) = e^{-\gamma} J_0(x)$, i.e. $(1-\epsilon)e^{-\gamma} J_0(x) < T < (1+\epsilon)e^{-\gamma} J_0(x)$, with probability going to 1.

Theorem: Almost proved it! $\left(\frac{\pi}{4} - \epsilon\right) e^{-\gamma} J_0(x) < T < (1+\epsilon) e^{-\gamma} J_0(x),$ with probability going to 1.

POMERANCE'S PROBLEM Theorems: With prob going to 1:

•
$$\frac{\pi}{4} \left(e^{-\gamma} - \epsilon \right) J_0(x) < T < (e^{-\gamma} + \epsilon) J_0(x).$$

POMERANCE'S PROBLEM Theorems: With prob going to 1:

•
$$\frac{\pi}{4} \left(e^{-\gamma} - \epsilon \right) J_0(x) < T < (e^{-\gamma} + \epsilon) J_0(x).$$

• All numbers in the square product $a_{i_1} \cdots a_{i_k}$ are $y_0^{2+\epsilon}$ -smooth.

• There are $k = y_0^{1+o(1)}$ different a_i 's in the square product

POMERANCE'S PROBLEM Theorems: With prob going to 1:

•
$$\frac{\pi}{4} \left(e^{-\gamma} - \epsilon \right) J_0(x) < T < (e^{-\gamma} + \epsilon) J_0(x).$$

• All numbers in the square product $a_{i_1} \cdots a_{i_k}$ are $y_0^{2+\epsilon}$ -smooth.

• There are $k = y_0^{1+o(1)}$ different a_i 's in the square product

• If $T < (\frac{\pi}{4} - \epsilon) e^{-\gamma} J_0(x)$ then the square product is just one a_i , a square.

Schroeppel's 1985 Approach Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$

Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$ Form the matrix with rows $(e_{i,1}, e_{i,2}, \dots, e_{i,k})$

Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$ Form the matrix with rows $(e_{i,1}, e_{i,2}, \dots, e_{i,k})$

A subset of the y-smooth a_i 's forms a square product *if and only if* the sum of those rows is 0 (mod 2).

Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$ Form the matrix with rows $(e_{i,1}, e_{i,2}, \dots, e_{i,k})$

A subset of the *y*-smooth a_i 's forms a square product *if and only if* the sum of those rows is 0 (mod 2).

So \exists a square product if > k rows.

How soon would we expect this?

Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$ Form the matrix with rows $(e_{i,1}, e_{i,2}, \dots, e_{i,k})$

A subset of the y-smooth a_i 's forms a square product *if and only if* the sum of those rows is 0 (mod 2).

So \exists a square product if > k rows.

Prob $(a_i \text{ is } y - \text{smooth}) = \psi(x, y)/x.$ $\therefore \mathbb{E}(\# \text{ of rows}) = T\psi(x, y)/x,$

Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$ Form the matrix with rows $(e_{i,1}, e_{i,2}, \dots, e_{i,k})$

A subset of the y-smooth a_i 's forms a square product *if and only if* the sum of those rows is 0 (mod 2).

So \exists a square product if > k rows.

Prob $(a_i \text{ is } y - \text{smooth}) = \psi(x, y)/x.$ $\therefore \mathbb{E}(\# \text{ of rows}) = T\psi(x, y)/x,$

This is $> k = \pi(y)$ for $T > x\pi(y)/\Psi(x, y)$. Minimized at $y = y_0$, so $T > J_0(x)$.

Study only the y-smooth a_i 's. Factor each as $a_i = 2^{e_{i,1}} 3^{e_{i,2}} \dots p_k^{e_{i,k}}$ Form the matrix with rows $(e_{i,1}, e_{i,2}, \dots, e_{i,k})$

A subset of the y-smooth a_i 's forms a square product *if and only if* the sum of those rows is 0 (mod 2).

So \exists a square product if > k rows.

Prob
$$(a_i \text{ is } y - \text{smooth}) = \psi(x, y)/x.$$

 $\therefore \mathbb{E}(\# \text{ of rows}) = T\psi(x, y)/x,$

This is $> k = \pi(y)$ for $T > x\pi(y)/\Psi(x, y)$. Minimized at $y = y_0$, so $T > J_0(x)$.

Technique works, with prob 1, for

$$T > (1+\epsilon)J_0(x)$$

Factor base: Primes up to yKeep only y-smooth a_i 's Square product after $\geq k$ such a_i 's

SCHROEPPEL'S 1985 APPROACH Factor base: Primes up to yKeep only y-smooth a_i 's Square product after $\geq k$ such a_i 's Practical to implement

Factor base: Primes up to yKeep only y-smooth a_i 's Square product after $\geq k$ such a_i 's *Practical to implement* New result: By time $(1+\epsilon)J_0(x)$ one has not one square product, but *many*, about $\epsilon \pi(y_0)$, with prob $\rightarrow 1$.

Factor base: Primes up to yKeep only y-smooth a_i 's Square product after $\geq k$ such a_i 's *Practical to implement* New result: By time $(1+\epsilon)J_0(x)$ one has not one square product, but *many*, about $\epsilon \pi(y_0)$, with prob $\rightarrow 1$.

Key Variant: Large Prime Variation

Also keep $a_i = pb_i$ where b_i is y-smooth and p is a prime > y.

Schroeppel's 1985 Approach

Factor base: Primes up to yKeep only y-smooth a_i 's Square product after $\geq k$ such a_i 's *Practical to implement* New result: By time $(1+\epsilon)J_0(x)$ one has not one square product, but *many*, about $\epsilon \pi(y_0)$, with prob $\rightarrow 1$.

Key Variant: Large Prime Variation

Also keep $a_i = pb_i$ where b_i is y-smooth and p is a prime > y.

With two, pb_i and pb_j , their product $p^2b_ib_j$ is a *y*-pseudosmooth and can be used as a row in our matrix.

Schroeppel's 1985 Approach

Factor base: Primes up to yKeep only y-smooth a_i 's Square product after $\geq k$ such a_i 's *Practical to implement* New result: By time $(1+\epsilon)J_0(x)$ one has not one square product, but *many*, about $\epsilon \pi(y_0)$, with prob $\rightarrow 1$.

Key Variant: Large Prime Variation

Also keep $a_i = pb_i$ where b_i is y-smooth and p is a prime > y.

With two, pb_i and pb_j , their product $p^2b_ib_j$ is a *y*-pseudosmooth and can be used as a row in our matrix.

Theorem: Speed up by factor .74997591747934498263... $\approx \frac{3}{4}$

Will prove this later

Can try two large primes: $a_i = pqb_i$,

 b_i is y-smooth, p, q primes > y.

Can try two large primes: $a_i = pqb_i$, b_i is y-smooth, p, q primes > y.

And three large primes, etc.

Can try two large primes: $a_i = pqb_i$, b_i is y-smooth, p, q primes > y. And three large primes, etc. Practical issues: Upper bound on extra primes, say y .

Can try two large primes: $a_i = pqb_i$, b_i is y-smooth, p, q primes > y. And three large primes, etc. Practical issues: Upper bound on extra primes, say y .How to find pseudosmooths?

Can try two large primes: $a_i = pqb_i$, b_i is y-smooth, p, q primes > y. And three large primes, etc. Practical issues: Upper bound on extra primes, say y .How to find pseudosmooths?

ℓ	$M = \infty$	M = 100	M = 10
0	1	1	1
1	.7499	.7517	.7677
2	.6415	.6448	.6745
3	.5962	.6011	.6422
4	.5764	.5823	.6324
5	.567	.575	.630

PROVED SPEED-UPS

For ℓ -large primes variation, each large prime in (y, My).

Speed-up for # of a_i 's searched, not for factoring algorithm

Speed-ups

ℓ	$M = \infty$	M = 100	M = 10
0	1	1	1
1	.7499	.7517	.7677
2	.6415	.6448	.6745
3	.5962	.6011	.6422
4	.5764	.5823	.6324
5	.567	.575	.630

For ℓ -large primes variation, each large prime in (y, My).

Speed-ups

ℓ	$M = \infty$	M = 100	M = 10
0	1	1	1
1	.7499	.7517	.7677
2	.6415	.6448	.6745
3	.5962	.6011	.6422
4	.5764	.5823	.6324
5	.567	.575	.630

For ℓ -large primes variation, each large prime in (y, My).

As $\ell, M \to \infty$ (*M* slowly), our speed up factor $\to e^{-\gamma} = .5614594836...$

Speed-ups

ℓ	$M = \infty$	M = 100	M = 10
0	1	1	1
1	.7499	.7517	.7677
2	.6415	.6448	.6745
3	.5962	.6011	.6422
4	.5764	.5823	.6324
5	.567	.575	.630

For ℓ -large primes variation, each large prime in (y, My).

As $\ell, M \to \infty$ (*M* slowly), our speed up factor $\to e^{-\gamma} = .5614594836...$

How big are y_0 and J_0 ?

SPEED-UPS

ℓ	$M = \infty$	M = 100	M = 10
0	1	1	1
1	.7499	.7517	.7677
2	.6415	.6448	.6745
3	.5962	.6011	.6422
4	.5764	.5823	.6324
5	.567	.575	.630

For ℓ -large primes variation, each large prime in (y, My).

As $\ell, M \to \infty$ (*M* slowly), our speed up factor $\to e^{-\gamma} = .5614594836...$

How big are y_0 and J_0 ? For $L(x) = e^{\sqrt{\frac{1}{2} \log x \log \log x}}$, $y_0(x) = L(x)^{1+o(1)}$ and $J_0(x) = L(x)^{2+o(1)}$

SUCH PRECISE ESTIMATES?

If we cannot be precise about the value of J_0 , how can we determine these speed-up constants?

SUCH PRECISE ESTIMATES?

If we cannot be precise about the value of J_0 , how can we determine these speed-up constants?

1986 Hildebrand and Tenenbaum: Even if we cannot give an asymptotic formula for $\Psi(x, y)$, we can do so for

 $\frac{\Psi(2x,y)}{\Psi(x,y)}$

and similar qns where the variables involved are close in size.

Our results here make full use of their estimates,

SUCH PRECISE ESTIMATES?

If we cannot be precise about the value of J_0 , how can we determine these speed-up constants?

1986 Hildebrand and Tenenbaum: Even if we cannot give an asymptotic formula for $\Psi(x, y)$, we can do so for

 $\frac{\Psi(2x,y)}{\Psi(x,y)}$

and similar qns where the variables involved are close in size.

Our results here make full use of their estimates,

But still cannot estimate J_0 accurately – maybe value can be computed (Bernstein) in any example.

 $\operatorname{Prob}(a = pb \leq x: \ b \text{ is } y - \operatorname{smooth}) = \frac{\Psi(x/p, y)}{x}$

 $\begin{aligned} \operatorname{Prob}(a = pb \leq x : \ b \text{ is } y - \operatorname{smooth}) = & \frac{\Psi(x/p, y)}{x} \\ &= \frac{\Psi(x/p, y)}{\Psi(x, y)} \cdot \frac{\Psi(x, y)}{x} \sim \frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x} \end{aligned}$

for y .

$$\begin{aligned} \operatorname{Prob}(a = pb \leq x : \ b \text{ is } y - \operatorname{smooth}) = & \frac{\Psi(x/p, y)}{x} \\ &= \frac{\Psi(x/p, y)}{\Psi(x, y)} \cdot \frac{\Psi(x, y)}{x} \sim \frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x} \end{aligned}$$

for y . $<math>\therefore$ Expected # of k-tuples, from the $T = \eta J_0$ values of a_i , that are p times a y-smooth:

$$\sim \binom{T}{k} \left(\frac{\log y}{p} \cdot \frac{\Psi(x,y)}{x} \right)^k$$

$$\begin{aligned} \operatorname{Prob}(a &= pb \leq x : \ b \text{ is } y - \operatorname{smooth}) = & \frac{\Psi(x/p, y)}{x} \\ &= \frac{\Psi(x/p, y)}{\Psi(x, y)} \cdot \frac{\Psi(x, y)}{x} \sim \frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x} \end{aligned}$$

for y . $<math>\therefore$ Expected # of k-tuples, from the $T = \eta J_0$ values of a_i , that are p times a y-smooth:

$$\sim \binom{T}{k} \left(\frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x}\right)^k \sim \frac{1}{k!} \left(\frac{\eta y}{p}\right)^k$$

as $J_0 \log y \Psi(x, y) / x \sim y$.

$$\begin{aligned} \operatorname{Prob}(a &= pb \leq x : \ b \text{ is } y - \operatorname{smooth}) = & \frac{\Psi(x/p, y)}{x} \\ &= \frac{\Psi(x/p, y)}{\Psi(x, y)} \cdot \frac{\Psi(x, y)}{x} \sim \frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x} \end{aligned}$$

for y . $<math>\therefore$ Expected # of k-tuples, from the $T = \eta J_0$ values of a_i , that are p times a y-smooth:

$$\sim \binom{T}{k} \left(\frac{\log y}{p} \cdot \frac{\Psi(x,y)}{x}\right)^k \sim \frac{1}{k!} \left(\frac{\eta y}{p}\right)^k$$

as $J_0 \log y \Psi(x, y) / x \sim y$.

: Expected number of k-tuples, including all p > y, is

$$\sim rac{(\eta y)^k}{k!} \sum_{p>y} rac{1}{p^k}$$

$$\begin{aligned} \operatorname{Prob}(a = pb \leq x : b \text{ is } y - \operatorname{smooth}) = & \frac{\Psi(x/p, y)}{x} \\ &= \frac{\Psi(x/p, y)}{\Psi(x, y)} \cdot \frac{\Psi(x, y)}{x} \sim \frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x} \end{aligned}$$

for y . $<math>\therefore$ Expected # of k-tuples, from the $T = \eta J_0$ values of a_i , that are p times a y-smooth:

$$\sim \binom{T}{k} \left(\frac{\log y}{p} \cdot \frac{\Psi(x,y)}{x}\right)^k \sim \frac{1}{k!} \left(\frac{\eta y}{p}\right)^k$$

as $J_0 \log y \Psi(x, y) / x \sim y$.

: Expected number of k-tuples, including all p > y, is

$$\sim \frac{(\eta y)^k}{k!} \sum_{p>y} \frac{1}{p^k} \sim \frac{(\eta y)^k}{k!} \frac{1}{(k-1)y^{k-1}\log y}$$

$$\begin{aligned} \operatorname{Prob}(a = pb \leq x : b \text{ is } y - \operatorname{smooth}) &= \frac{\Psi(x/p, y)}{x} \\ &= \frac{\Psi(x/p, y)}{\Psi(x, y)} \cdot \frac{\Psi(x, y)}{x} \sim \frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x} \\ \text{for } y$$

times a *y*-smooth:

$$\sim {\binom{T}{k}} \left(\frac{\log y}{p} \cdot \frac{\Psi(x, y)}{x}\right)^k \sim \frac{1}{k!} \left(\frac{\eta y}{p}\right)^k$$

as $J_0 \log y \Psi(x, y) / x \sim y$.
 \therefore Expected number of k-tuples, in-
cluding all $p > y$, is
 $\sim \frac{(\eta y)^k}{2} \sum \frac{1}{2} \sim \frac{(\eta y)^k}{2} = 1$

$$k! \quad \sum_{p>y} p^k \qquad k! \quad (k-1)y^{k-1}\log y$$
$$\sim \frac{\eta^k}{(k-1)k!} \pi(y)$$

ANALYSIS; ONE LARGE PRIME, II Sps pb_1, pb_2, \ldots, pb_r amongst a_i 's, each b_j is y-smooth.

 $(pb_1)(pb_2), (pb_1)(pb_3), \ldots, (pb_1)(pb_r).$

 $(pb_1)(pb_2), (pb_1)(pb_3), \dots, (pb_1)(pb_r).$ Use identity

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|};$$

 $(pb_1)(pb_2), (pb_1)(pb_3), \dots, (pb_1)(pb_r).$ Use identity

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|};$$

so total # smooths and pseudo-smooths:

$$\left(\eta + \sum_{k \ge 2} (-1)^k \frac{\eta^k}{(k-1)k!}\right) \pi(y)$$

 $(pb_1)(pb_2), (pb_1)(pb_3), \dots, (pb_1)(pb_r).$ Use identity

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|};$$

so total # smooths and pseudo-smooths:

$$\left(\eta + \sum_{k \ge 2} (-1)^k \frac{\eta^k}{(k-1)k!}\right) \pi(y)$$

Constant = 1 for $\eta = .74997591747934498263...$

And for two large primes?

Expected # pairs $pqb_1 \& pqb_2$, and Expected # triples pqb_1, prb_2, qrb_3 , bounded, so not useful!

Expected # pairs $pqb_1 \& pqb_2$, and Expected # triples pqb_1, prb_2, qrb_3 , bounded, so not useful!

Expected # triples pb_1, pqb_2, qb_3 , is $\sim \eta^3 \pi(y)$.

Expected # pairs $pqb_1 \& pqb_2$, and Expected # triples pqb_1, prb_2, qrb_3 , bounded, so not useful!

Expected # triples pb_1, pqb_2, qb_3 , is $\sim \eta^3 \pi(y)$.

How do you tell the difference?

Expected # pairs $pqb_1 \& pqb_2$, and Expected # triples pqb_1, prb_2, qrb_3 , *bounded*, so not useful!

Expected # triples pb_1, pqb_2, qb_3 , is $\sim \eta^3 \pi(y)$.

How do you tell the difference? Construct matrix M for p, pq, p, with ≥ 2 ones in each col:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Expected # pairs $pqb_1 \& pqb_2$, and Expected # triples pqb_1, prb_2, qrb_3 , *bounded*, so not useful!

Expected # triples pb_1, pqb_2, qb_3 , is $\sim \eta^3 \pi(y)$.

How do you tell the difference? Construct matrix M for p, pq, p, with ≥ 2 ones in each col:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Expect $c\pi(y)$ such triples *iff*

#ones = #rows + #columns - 1.

Expected # pairs $pqb_1 \& pqb_2$, and Expected # triples pqb_1, prb_2, qrb_3 , bounded, so not useful!

Expected # triples pb_1, pqb_2, qb_3 , is $\sim \eta^3 \pi(y)$.

How do you tell the difference? Construct matrix M for p, pq, p, with ≥ 2 ones in each col:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Expect $c\pi(y)$ such triples iff #ones = #rows + #columns - 1.

Yields exactly

rows - rank(M)
mult indep pseudosmooths

Combinatorial identity like in one large prime case?

Before used

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|}.$$

Before used

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|}.$$

Generalization: $\mathcal{M} := \text{matrices s.t.}$ #ones = #rows + #columns - 1. M_R has rows R.

Before used

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|}.$$

Generalization: $\mathcal{M} := \text{matrices s.t.}$

#ones = #rows + #columns - 1.

 M_R has rows R. If $M_R \in \mathcal{M}$ then

$$\# \operatorname{rows} - \operatorname{rank}(M_R) = \sum_{\substack{S \subset R \\ M_S \in \mathcal{M}}} (-1)^{\# \operatorname{ones}(S)}$$

Before used

$$r - 1 = \sum_{\substack{I \subset \{1, \dots, r\} \\ |I| \ge 2}} (-1)^{|I|}.$$

Generalization: $\mathcal{M} := \text{matrices s.t.}$

#ones = #rows + #columns - 1.

 M_R has rows R. If $M_R \in \mathcal{M}$ then

$$\# \text{rows} - \text{rank}(M_R) = \sum_{\substack{S \subset R \\ M_S \in \mathcal{M}}} (-1)^{\# \text{ones}(S)}$$

How do we count the different type of matrices that arise?

Construct graph G = G(M): For each a_i a vertex $v_i \in G$, With $v_i \sim v_I$ of colour p_j if $p_j|(n_i, n_I)$ $-M_{i,j} = M_{I,j} = 1$.

Construct graph G = G(M): For each a_i a vertex $v_i \in G$, With $v_i \sim v_I$ of colour p_j if $p_j|(n_i, n_I)$ $-M_{i,j} = M_{I,j} = 1$.

If $M \in \mathcal{M}$, G(M) is simple, & only cycles in G(M) are monochromatic

Construct graph G = G(M): For each a_i a vertex $v_i \in G$, With $v_i \sim v_I$ of colour p_j if $p_j|(n_i, n_I)$ $-M_{i,j} = M_{I,j} = 1$. If $M \in \mathcal{M}, G(M)$ is simple, & only cycles in G(M) are monochromatic So cycles are subsets of the complete

graph of edges of that colour.

Construct graph G = G(M): For each a_i a vertex $v_i \in G$, With $v_i \sim v_I$ of colour p_j if $p_j|(n_i, n_I)$ $-M_{i,j} = M_{I,j} = 1$.

If $M \in \mathcal{M}$, G(M) is simple, & only cycles in G(M) are monochromatic

So cycles are subsets of the complete graph of edges of that colour.

Hence any two-connected subgraph of G(M) is a complete graph: This is known as a *Husimi graph*:

Construct graph G = G(M): For each a_i a vertex $v_i \in G$, With $v_i \sim v_I$ of colour p_j if $p_j|(n_i, n_I)$ $-M_{i,j} = M_{I,j} = 1$.

If $M \in \mathcal{M}$, G(M) is simple, & only cycles in G(M) are monochromatic

So cycles are subsets of the complete graph of edges of that colour.

Hence any two-connected subgraph of G(M) is a complete graph: This is known as a *Husimi graph*:

— Inspired combinatorics of 'species',

— Central to gas thermodynamics

Generating functions known for counting Husimi graphs with different parameters.

Generating functions known for counting Husimi graphs with different parameters. Leads to:For $T = \eta J_0$, the number of pseudosmooths is ~ $f(\eta)\pi(y_0)$ where $f(\eta)$ satisfies $\eta f'(\eta) = -\log(1 - f(\eta)).$

Generating functions known for counting Husimi graphs with different parameters. Leads to:For $T = \eta J_0$, the number of pseudosmooths is \sim $f(\eta)\pi(y_0)$ where $f(\eta)$ satisfies

 $\eta f'(\eta) = -\log(1 - f(\eta)).$

This implies

- $f(\eta)$ is monotone increasing,
- $f(e^{-\gamma}) = 1$, but
- $f(\eta)$ diverges for $\eta > e^{-\gamma}$.

Generating functions known for counting Husimi graphs with different parameters. Leads to:For $T = \eta J_0$, the number of pseudosmooths is \sim $f(\eta)\pi(y_0)$ where $f(\eta)$ satisfies

$$\eta f'(\eta) = -\log(1 - f(\eta)).$$

This implies

- $f(\eta)$ is monotone increasing,
- $f(e^{-\gamma}) = 1$, but
- $f(\eta)$ diverges for $\eta > e^{-\gamma}$.

Sadly we re-organized a non-abs cvgent series in our proof, and we have been unable to fix this proof!

In fact we swapped order of summation in applying

 $\# \mathrm{rows-rank}(M_R) = \sum_{\substack{S \subset R \\ M_S \in \mathcal{M}}} (-1)^{\# \mathrm{ones}(S)}$

LOWER BOUND ON TSuppose $T < (\frac{\pi}{4} - \epsilon) e^{-\gamma} J_0(x)$.

Suppose $T < \left(\frac{\pi}{4} - \epsilon\right) e^{-\gamma} J_0(x).$

Write each $a_i = b_i d_i$ where for each $p|a_i$ we have

$$p \leq y \Rightarrow p | b_i$$

$$p > y \Rightarrow p | d_i.$$

If $\prod_{i \in I} a_i = \Box$ then $\prod_{i \in I} d_i = \Box$.

Suppose $T < \left(\frac{\pi}{4} - \epsilon\right) e^{-\gamma} J_0(x).$

Write each $a_i = b_i d_i$ where for each $p|a_i$ we have

$$p \leq y \Rightarrow p | b_i$$

$$p > y \Rightarrow p | d_i.$$

If $\prod_{i \in I} a_i = \Box$ then $\prod_{i \in I} d_i = \Box$

Idea: For each k, Expected # of I with |I| = k & $\prod_{i \in I} a_i = \Box$ \leq Expected # of I with |I| = k & $\prod_{i \in I} d_i = \Box$.

Suppose $T < \left(\frac{\pi}{4} - \epsilon\right) e^{-\gamma} J_0(x).$

Write each $a_i = b_i d_i$ where for each $p|a_i$ we have

$$p \leq y \Rightarrow p | b_i$$

$$p > y \Rightarrow p | d_i.$$

If $\prod_{i \in I} a_i = \Box$ then $\prod_{i \in I} d_i = \Box$

Idea: For each k, Expected # of I with |I| = k & $\prod_{i \in I} a_i = \Box$ \leq Expected # of I with |I| = k & $\prod_{i \in I} d_i = \Box$. Bound this using "Rankin's trick".

Suppose $T < \left(\frac{\pi}{4} - \epsilon\right) e^{-\gamma} J_0(x).$

Write each $a_i = b_i d_i$ where for each $p|a_i$ we have

$$p \leq y \Rightarrow p | b_i$$

$$p > y \Rightarrow p | d_i.$$

If $\prod_{i \in I} a_i = \Box$ then $\prod_{i \in I} d_i = \Box$

Idea: For each k, Expected # of I with |I| = k & $\prod_{i \in I} a_i = \square$ \leq Expected # of I with |I| = k & $\prod_{i \in I} d_i = \square$. Bound this using "Rankin's trick".

Picking y = y(k) carefully we show the prob is $\ll T^2(\log x)/x$ over all $k \ge 2$

Suppose $T < \left(\frac{\pi}{4} - \epsilon\right) e^{-\gamma} J_0(x).$

Write each $a_i = b_i d_i$ where for each $p|a_i$ we have

$$p \leq y \Rightarrow p | b_i$$

$$p > y \Rightarrow p | d_i.$$

If $\prod_{i \in I} a_i = \Box$ then $\prod_{i \in I} d_i = \Box$

Idea: For each k, Expected # of I with |I| = k & $\prod_{i \in I} a_i = \Box$ \leq Expected # of I with |I| = k & $\prod_{i \in I} d_i = \Box$. Bound this using "Rankin's trick".

Picking y = y(k) carefully we show the prob is $\ll T^2(\log x)/x$ over all $k \ge 2$, so most likely is |I| = 1(which has probability $\approx T/\sqrt{x}$).

Vertices correspond to primes in (y, My), and *hyperedges* to the odd power prime factors of each a_i .

Vertices correspond to primes in (y, My), and *hyperedges* to the odd power prime factors of each a_i .

Viewpoint: Construction of a random hypergraph, using only a_i that are "helpful".

Vertices correspond to primes in (y, My), and hyperedges to the odd power prime factors of each a_i .

Viewpoint: Construction of a random hypergraph, using only a_i that are "helpful".

Use Poisson point processes. Translate our discrete problem to continuous setting – megatechnical!

Vertices correspond to primes in (y, My), and *hyperedges* to the odd power prime factors of each a_i .

Viewpoint: Construction of a random hypergraph, using only a_i that are "helpful".

Use Poisson point processes. Translate our discrete problem to continuous setting – megatechnical!

This very different approach yields the same answer

 $e^{-\gamma}J_0(x).$

Vertices correspond to primes in (y, My), and hyperedges to the odd power prime factors of each a_i .

Viewpoint: Construction of a random hypergraph, using only a_i that are "helpful".

Use Poisson point processes. Translate our discrete problem to continuous setting – megatechnical!

This very different approach yields the same answer

 $e^{-\gamma}J_0(x).$

And the same divergence now implies one gets many square products soon after getting the first!

POMERANCE'S APPLICATION

If one optimizes parameters in Pomerance's problem, then the running time of the factoring algorithm is dominated by finding the square product (i.e. *the matrix step*).

Matrix step: Wiedemann or Lanczos take time

 $\sim C \frac{y^2}{\log y \log \log y}$

POMERANCE'S APPLICATION

If one optimizes parameters in Pomerance's problem, then the running time of the factoring algorithm is dominated by finding the square product (i.e. *the matrix step*).

Matrix step: Wiedemann or Lanczos take time

$$\sim C \frac{y^2}{\log y \log \log y}$$

To optimize random squares need $y = y_1 = y_0^{1-(1+o(1))/\log\log x},$

much smaller than y_0 , so Pomerance's problem not so useful as had appeared!

POMERANCE'S APPLICATION

If one optimizes parameters in Pomerance's problem, then the running time of the factoring algorithm is dominated by finding the square product (i.e. *the matrix step*).

Matrix step: Wiedemann or Lanczos take time

$$\sim C \frac{y^2}{\log y \log \log y}$$

To optimize random squares need $y = y_1 = y_0^{1-(1+o(1))/\log\log x},$

much smaller than y_0 , so Pomerance's problem not so useful as had appeared! Expected running time is:

$$J_1 := J_0 \ y_0^{(1+o(1))/(\log\log x)^2}$$

PRACTICAL SPEED-UPS FOR RANDOM SQUARES ALGORITHM FROM LARGE PRIME VARIATIONS

neadebien in 1 obbainea.				
ℓ	$M = \infty$	M = 100	M = 10	
0	1	1	1	
1	.7499	.7517	.7677	
2	.6415	.6448	.6745	
3	.5962	.6011	.6422	
4	.5764	.5823	.6324	
5	.567	.575	.630	

Reduction in ${\boldsymbol{T}}$ obtained:

For ℓ -large primes variation, each large prime in (y, My).

PRACTICAL SPEED-UPS FOR RANDOM SQUARES ALGORITHM FROM LARGE PRIME VARIATIONS

l	$M = \infty$	M = 100	M = 10	
0	1	1	1	
1	.7499	.7517	.7677	
2	.6415	.6448	.6745	
3	.5962	.6011	.6422	
4	.5764	.5823	.6324	
5	.567	.575	.630	

Reduction in T obtained:

For ℓ -large primes variation, each large prime in (y, My).

If reduction in T here is a factor η , then the random squares algorithm is sped up by a factor

$$\approx \frac{1}{(\log x)^{\log(1/\eta)}}.$$

WHAT PRACTICAL PEOPLE SAY

Practical considerations (not theory): Design of the computer, Language & implementation, Memory issues (large arrays), swaps How "reports" handled Programmer's prejudices and prior experiences.

WHAT PRACTICAL PEOPLE SAY

Practical considerations (not theory):

Design of the computer,

Language & implementation,

Memory issues (large arrays), swaps How "reports" handled

Programmer's prejudices ar

Programmer's prejudices and prior experiences.

Recognizing y-smooths:

Quadratic sieve (& MPQS)

Early abort strategies

(for a_i 's with small y_2 -smooth part)

WHAT PRACTICAL PEOPLE SAY

Practical considerations (not theory):

Design of the computer,

Language & implementation,

Memory issues (large arrays), swaps How "reports" handled

Programmer's prejudices and prior experiences.

Recognizing y-smooths:

Quadratic sieve (& MPQS)

Early abort strategies (for a_i 's with small y_2 -smooth part)

Keep $a_i = b_i p_1 \dots p_j$, where b_i is ysmooth for $j \leq k$ and $p_\ell \in (y, My)$:

If M is large, then more a_j 's, more pseudosmooths, but slows down sieving (as there are more primes to test).

WHAT PRACTICAL PEOPLE SAY, II

Keep $a_i = b_i p_1 \dots p_j$, where b_i is y-smooth for $j \leq k$ and $p_\ell \in (y, My)$:

If k is large, then more a_j 's, but smaller proportion actually useful (lots of effort on useless a_j).

WHAT PRACTICAL PEOPLE SAY, II

Keep $a_i = b_i p_1 \dots p_j$, where b_i is ysmooth for $j \leq k$ and $p_\ell \in (y, My)$:

If k is large, then more a_j 's, but smaller proportion actually useful (lots of effort on useless a_j).

Fix: Discard if two larger prime factors

WHAT PRACTICAL PEOPLE SAY, II

Keep $a_i = b_i p_1 \dots p_j$, where b_i is y-smooth for $j \leq k$ and $p_\ell \in (y, My)$:

If k is large, then more a_j 's, but smaller proportion actually useful (lots of effort on useless a_j).

Fix: Discard if two larger prime factors

Speed-ups in practice (Lenstra et al):

.4 to .5 for k = 1;

.15 to .25 for k = 2;

.1 and .14 for k = 3.

What practical people say, II

Keep $a_i = b_i p_1 \dots p_j$, where b_i is y-smooth for $j \leq k$ and $p_\ell \in (y, My)$:

If k is large, then more a_j 's, but smaller proportion actually useful (lots of effort on useless a_j).

Fix: Discard if two larger prime factors

Speed-ups in practice (Lenstra et al):

.4 to .5 for k = 1;

.15 to .25 for k = 2;

.1 and .14 for k = 3.

For more: Willemien Ekkelkamp's talk

What practical people say, II

Keep $a_i = b_i p_1 \dots p_j$, where b_i is y-smooth for $j \leq k$ and $p_\ell \in (y, My)$:

If k is large, then more a_j 's, but smaller proportion actually useful (lots of effort on useless a_j).

Fix: Discard if two larger prime factors

Speed-ups in practice (Lenstra et al):

.4 to .5 for k = 1;

.15 to .25 for k = 2;

.1 and .14 for k = 3.

For more: Willemien Ekkelkamp's talk

For $x \approx 10^{180}$ our predictions: Speedups of .41, 0.25, 0.20 resp - not bad!

¿Run experiments on Pomerance's problem directly?

METHODS USED

First and second moment methods from probabilistic combinatorics.

Husimi graphs from statistical physics.

Lagrange inversion from algebraic combinatorics.

Analytic continuation of solutions to functional equations.

Comparative estimates on smooth numbers, via comparative estimates on saddle points.

Random graph theory, Poisson processes and conversion from continuous to discrete.