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Factoring algorithms

• Dixon’s random squares algorithm
• The quadratic sieve
•Multiple polynomial quadratic sieve
• The number field sieve

. All have a common central idea



Factoring algorithms

• Dixon’s random squares algorithm
• The quadratic sieve
•Multiple polynomial quadratic sieve
• The number field sieve

Idea: Generate a pseudo-random se-
quence of integers a1, a2, ..., with each

ai ≡ b2
i (mod n),

until the product of a subseq of the
ai’s is a square,

say Y 2 = ai1 · · · aik.



Factoring algorithms

• Dixon’s random squares algorithm
• The quadratic sieve
•Multiple polynomial quadratic sieve
• The number field sieve

Idea: Generate a pseudo-random se-
quence of integers a1, a2, ..., with each

ai ≡ b2
i (mod n),

until the product of a subseq of the
ai’s is a square,

say Y 2 = ai1 · · · aik.

Now, set X2 = (bi1 · · · bik)2
and then

n | Y 2 −X2 = (Y −X)(Y + X).



Factoring algorithms

• Dixon’s random squares algorithm
• The quadratic sieve
•Multiple polynomial quadratic sieve
• The number field sieve

Idea: Generate a pseudo-random se-
quence of integers a1, a2, ..., with each

ai ≡ b2
i (mod n),

until the product of a subseq of the
ai’s is a square,

say Y 2 = ai1 · · · aik.

Now, set X2 = (bi1 · · · bik)2
and then

n | Y 2 −X2 = (Y −X)(Y + X).

≥ 50% chance gcd(n, Y − X)
is a non-trivial factor of n.



Analysis of running times

1994 ICM, Pomerance: In the (heuris-
tic) running time analysis of such
factoring algorithms one assumes that
the pseudo-random sequence a1, a2, ...
is close enough to random, to make
predictions based on this assumption.

. Why not study this as an abstract problem?
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Prob(aj = m) =
1

x
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Stop at aT as soon as there exists

ai1 · · · aik = Y 2

What is expected stopping time?
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Pomerance’s problem

Select integers a1, a2, · · · ≤ x in-
dependently at random; i.e.

Prob(aj = m) =
1

x
∀ 1 ≤ m ≤ x;

Stop at aT as soon as there exists

ai1 · · · aik = ¤
Expected stopping time?

Interesting because...
• If this expected stopping time is
far less than what is obtained by the
algorithms currently used, maybe we
can speeding up factoring algorithms.

• Even if not, a good understanding
might lead to better choice of param-
eters for most factoring algorithms.

• Possibility of proving something with-
out assumption.
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π(y) = number of primes up to y.
n is y-smooth if p|n ⇒ p ≤ y
Ψ(x, y) = #y-smooths up to x.

Choose y0 = y0(x) to maximize Ψ(x, y)/y,
and let

J0(x) :=
π(y0)

Ψ(x, y0)
· x.

1985 Schroeppel: As x →∞,

Prob(T < (1 + ε)J0(x)) → 1.

1994 Pomerance: As x →∞,

Prob(T > J0(x)1−ε) → 1.

(
J0(x) ≈ e

√
2 log x log log x )



Pomerance’s problem

Select integers a1, a2, · · · ≤ x in-
dependently at random; i.e.

Prob(aj = m) =
1

x
∀ 1 ≤ m ≤ x;

Stop at aT as soon as there exists
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Expected stopping time, T?

Schroeppel-Pomerance: With prob-
ability going to 1, we have

J0(x)1−ε < T < (1 + ε)J0(x)
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Pomerance’s problem

Select integers a1, a2, · · · ≤ x in-
dependently at random; i.e.

Prob(aj = m) =
1

x
∀ 1 ≤ m ≤ x;

Stop at aT as soon as there exists

ai1 · · · aik = ¤
Expected stopping time, T?

Schroeppel-Pomerance: With prob-
ability going to 1, we have

J0(x)1−ε < T < (1 + ε)J0(x)

Recently, in probability theory, re-
sults showing “sharp transitions”;
i.e. random algorithms tend to stop
at a certain precise time with prob-
ability going to 1.
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Pomerance’s problem

Expected stopping time, T?

From Schroeppel and Pomerance:

J0(x)1−ε < T < (1 + ε)J0(x).

with probability going to 1.

———————

Guess: There exists f (x), s.t.

(1− ε)f (x) < T < (1 + ε)f (x),

with probability going to 1.

———————

Conjecture: f (x) = e−γJ0(x), i.e.

(1−ε)e−γJ0(x) < T < (1+ε)e−γJ0(x),

with probability going to 1.

———————

Theorem: Almost proved it!(π

4
− ε

)
e−γJ0(x) < T < (1+ε)e−γJ0(x),

with probability going to 1.
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Pomerance’s problem

Theorems: With prob going to 1:

• π

4

(
e−γ − ε

)
J0(x) < T < (e−γ+ε)J0(x).

• All numbers in the square product
ai1 · · · aik are y2+ε

0 -smooth.

•There are k = y
1+o(1)
0 different ai’s

in the square product

• If T <
(π

4 − ε
)
e−γJ0(x) then the

square product is just one ai, a square.



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k
Form the matrix with rows (ei,1, ei,2, . . . , ei,k)



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k
Form the matrix with rows (ei,1, ei,2, . . . , ei,k)

A subset of the y-smooth ai’s forms
a square product if and only if the
sum of those rows is 0 (mod 2).



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k
Form the matrix with rows (ei,1, ei,2, . . . , ei,k)

A subset of the y-smooth ai’s forms
a square product if and only if the
sum of those rows is 0 (mod 2).

So ∃ a square product if > k rows.

. How soon would we expect this?



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k
Form the matrix with rows (ei,1, ei,2, . . . , ei,k)

A subset of the y-smooth ai’s forms
a square product if and only if the
sum of those rows is 0 (mod 2).

So ∃ a square product if > k rows.

Prob(ai is y−smooth) = ψ(x, y)/x.
∴ E(# of rows) = Tψ(x, y)/x,



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k
Form the matrix with rows (ei,1, ei,2, . . . , ei,k)

A subset of the y-smooth ai’s forms
a square product if and only if the
sum of those rows is 0 (mod 2).

So ∃ a square product if > k rows.

Prob(ai is y−smooth) = ψ(x, y)/x.
∴ E(# of rows) = Tψ(x, y)/x,

This is > k = π(y) for T > xπ(y)/Ψ(x, y).
Minimized at y = y0, so T > J0(x).



Schroeppel’s 1985 approach

Study only the y-smooth ai’s.

Factor each as ai = 2ei,13ei,2 . . . p
ei,k

k
Form the matrix with rows (ei,1, ei,2, . . . , ei,k)

A subset of the y-smooth ai’s forms
a square product if and only if the
sum of those rows is 0 (mod 2).

So ∃ a square product if > k rows.

Prob(ai is y−smooth) = ψ(x, y)/x.
∴ E(# of rows) = Tψ(x, y)/x,

This is > k = π(y) for T > xπ(y)/Ψ(x, y).
Minimized at y = y0, so T > J0(x).

Technique works, with prob 1, for

T > (1 + ε)J0(x)
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Schroeppel’s 1985 approach

Factor base: Primes up to y

Keep only y-smooth ai’s
Square product after ≥ k such ai’s

Practical to implement

New result: By time (1+ε)J0(x) one
has not one square product, but many,
about επ(y0), with prob → 1.

Key Variant: Large Prime Variation

Also keep ai = pbi where bi is y-
smooth and p is a prime > y.

With two, pbi and pbj, their product

p2bibj is a y-pseudosmooth and can
be used as a row in our matrix.

Theorem: Speed up by factor
.74997591747934498263 . . . ≈ 3

4

. Will prove this later
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Can try two large primes: ai = pqbi,
bi is y-smooth, p, q primes > y.

And three large primes, etc.

Practical issues: Upper bound on ex-
tra primes, say y < p < My.
How to find pseudosmooths?
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` M = ∞ M = 100 M = 10
0 1 1 1
1 .7499 .7517 .7677
2 .6415 .6448 .6745
3 .5962 .6011 .6422
4 .5764 .5823 .6324
5 .567 .575 .630

For `-large primes variation,

each large prime in (y, My).

. Speed-up for # of ai’s searched, not for factoring algorithm
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Speed-ups
` M = ∞ M = 100 M = 10

0 1 1 1
1 .7499 .7517 .7677
2 .6415 .6448 .6745
3 .5962 .6011 .6422
4 .5764 .5823 .6324
5 .567 .575 .630

For `-large primes variation,

each large prime in (y, My).

As `,M →∞ (M slowly), our speed
up factor → e−γ = .5614594836 . . .

How big are y0 and J0?

For L(x) =e

√
1
2 log x log log x

,

y0(x) = L(x)1+o(1)and J0(x) = L(x)2+o(1)

. These estimates can be made more precise but not to asymptotics
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and similar qns where the variables

involved are close in size.

Our results here make full use of their estimates,



Such precise estimates?

If we cannot be precise about the
value of J0, how can we determine
these speed-up constants?

1986 Hildebrand and Tenenbaum: Even
if we cannot give an asymptotic for-
mula for Ψ(x, y), we can do so for

Ψ(2x, y)

Ψ(x, y)
and similar qns where the variables

involved are close in size.

Our results here make full use of their estimates,

But still cannot estimate J0 accu-
rately – maybe value can be com-
puted (Bernstein) in any example.
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Prob(a = pb ≤ x : b is y − smooth) =
Ψ(x/p, y)
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=
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∼ log y

p
· Ψ(x, y)

x
for y < p < y log y.
∴ Expected # of k-tuples, from the
T = ηJ0 values of ai, that are p
times a y-smooth:

∼
(

T

k

)(
log y

p
· Ψ(x, y)

x

)k

∼ 1

k!

(
ηy

p

)k

as J0 log yΨ(x, y)/x ∼ y.
∴ Expected number of k-tuples, in-
cluding all p > y, is

∼ (ηy)k

k!

∑
p>y

1

pk
∼ (ηy)k

k!

1

(k − 1)yk−1 log y

∼ ηk

(k − 1)k!
π(y)
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Analysis; one large prime, II

Sps pb1, pb2, . . . , pbr amongst ai’s,
each bj is y-smooth. These yield ex-
actly r−1 mult indep pseudosmooths,

(pb1)(pb2), (pb1)(pb3), . . . , (pb1)(pbr).

Use identity

r − 1 =
∑

I⊂{1,...,r}
|I|≥2

(−1)|I|;

so total # smooths and pseudo-smooths:


η +

∑

k≥2

(−1)k
ηk

(k − 1)k!


 π(y)

Constant = 1 for η = .74997591747934498263 . . .

. And for two large primes?
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Expected # pairs pqb1 & pqb2, and
Expected # triples pqb1, prb2, qrb3,

bounded, so not useful!

Expected # triples pb1, pqb2, qb3,
is ∼ η3π(y).

How do you tell the difference?
Construct matrix M for p, pq, p, with
≥ 2 ones in each col:


1 0
1 1
0 1




Expect cπ(y) such triples iff

#ones = #rows + #columns− 1.

Yields exactly

#rows− rank(M)

mult indep pseudosmooths
. Combinatorial identity like in one large prime case?
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Before used

r − 1 =
∑

I⊂{1,...,r}
|I|≥2

(−1)|I|.

Generalization: M := matrices s.t.

#ones = #rows + #columns− 1.

MR has rows R. If MR ∈ M then

#rows− rank(MR) =
∑

S⊂R
MS∈M

(−1)#ones(S)

How do we count the different type
of matrices that arise?
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For each ai a vertex vi ∈ G,
With vi ∼ vI of colour pj if pj|(ni, nI)
– Mi,j = MI,j = 1.

If M ∈ M, G(M) is simple, & only
cycles in G(M) are monochromatic

So cycles are subsets of the complete
graph of edges of that colour.

Hence any two-connected subgraph
of G(M) is a complete graph: This
is known as a Husimi graph:

— Inspired combinatorics of ‘species’,

— Central to gas thermodynamics
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Generating functions known for count-
ing Husimi graphs with different pa-
rameters. Leads to:For T = ηJ0,
the number of pseudosmooths is ∼
f (η)π(y0) where f (η) satisfies

ηf ′(η) = − log(1− f (η)).

This implies
• f (η) is monotone increasing,
• f (e−γ) = 1, but
• f (η) diverges for η > e−γ.

Sadly we re-organized a non-abs
cvgent series in our proof, and we
have been unable to fix this proof!

In fact we swapped order of sum-
mation in applying

#rows−rank(MR) =
∑

S⊂R
MS∈M

(−1)#ones(S)
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Suppose T <
(π

4 − ε
)
e−γJ0(x).

Write each ai = bidi where for each
p|ai we have

p ≤ y ⇒ p|bi
p > y ⇒ p|di.

If
∏

i∈I ai = ¤ then
∏

i∈I di = ¤.

Idea: For each k,
Expected # of I with |I| = k &∏

i∈I ai = ¤
≤ Expected # of I with |I| = k &∏

i∈I di = ¤.
Bound this using “Rankin’s trick”.

Picking y = y(k) carefully we show
the prob is ¿ T 2(log x)/x over all
k ≥ 2, so most likely is |I| = 1
(which has probability ≈ T/

√
x).
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Viewpoint: Construction of a ran-
dom hypergraph, using only ai that
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Use Poisson point processes. Trans-
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This very different approach yields
the same answer

e−γJ0(x).

And the same divergence now im-
plies one gets many square products
soon after getting the first!
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If one optimizes parameters in Pomer-
ance’s problem, then the running time
of the factoring algorithm is domi-
nated by finding the square product
(i.e. the matrix step).

Matrix step: Wiedemann or Lanc-
zos take time

∼ C
y2

log y log log y

To optimize random squares need

y = y1 = y
1−(1+o(1))/ log log x
0 ,

much smaller than y0, so Pomerance’s
problem not so useful as had appeared!
Expected running time is:

J1 := J0 y
(1+o(1))/(log log x)2

0



Practical speed-ups for random squares
algorithm from large prime variations

Reduction in T obtained:

` M = ∞ M = 100 M = 10
0 1 1 1
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Reduction in T obtained:

` M = ∞ M = 100 M = 10
0 1 1 1
1 .7499 .7517 .7677
2 .6415 .6448 .6745
3 .5962 .6011 .6422
4 .5764 .5823 .6324
5 .567 .575 .630

For `-large primes variation,

each large prime in (y, My).

If reduction in T here is a factor η,
then the random squares algorithm
is sped up by a factor

≈ 1

(log x)log(1/η)
.
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For x ≈ 10180 our predictions: Speed-
ups of .41, 0.25, 0.20 resp – not bad!

¿Run experiments on Pomerance’s

problem directly?



Methods used

First and second moment methods
from probabilistic combinatorics.

Husimi graphs from statistical physics.

Lagrange inversion from algebraic
combinatorics.

Analytic continuation of solutions
to functional equations.

Comparative estimates on smooth
numbers, via comparative estimates
on saddle points.

Random graph theory, Poisson pro-
cesses and conversion from continu-
ous to discrete.
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