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1. Why Infrastructures?

• Infrastructures can be used for computation of fun-
damental units and regulator (see below);
• Infrastructures can be used for public key crypto-

graphy, for example for key exchange [JSS07].
In the following, we will describe what an infrastructure
is (in general) and describe Voronoı̆’s algorithm for com-
puting fundamental units (in unit rank two).

2. Infrastructures from Global Fields

Let K be a global field:
• either K is a number field; in that case, let S denote

the set of archimedean places of K;
• or K is a function field with a finite field of con-

stants Fq; in that case, write K = Fq(x, y) with
K/Fq(x) being a finite separable extension and let
S be the set of poles of x.

Write S = {p1, . . . , pn}. For every place p ∈ S, we have
its degree deg p and an associated absolute value |•|p:
• if p is an archimedean place, let σ : K → C be an

associated embedding. Then

deg p =

{
1 if σ(K) ⊆ R,
2 otherwise,

and |f |p = |σ(f )|;

• if p is a non-archimedean place, let νp : K∗ → Z de-
note the normalized valuation for p, Op the valuation
ring and mp the valuation ideal. Then

deg p = [Op/mp : Fq] and |f |p = q−νp(f)·deg p.

Let O denote the ring of integers (i.e. the integral clo-
sure of Z resp. Fq(x)); then its unit group O∗ is the
direct product of the group of roots of unity, denoted by
k∗, and a free abelian group of rank |S| − 1. Consider
the map

Φ : K → Rn
≥0, f 7→ (|f |pi)i.

The image of O under this map is a discrete set. We
say that an element µ ∈ O \ {0} is a minimum of O if,
for every f ∈ O,

|f |p ≤ |µ|p for all p ∈ S
implies f = 0 or |f |p = |µ|p for all p ∈ S.
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Here, K = Q(
√

2). The big
dots mark the visible minima
of O = Z[

√
2].

Let E(O) denote the set of all minima and let ∼ denote
the equivalence relation

µ ∼ µ′ :⇐⇒ ∀p ∈ S : |µ|p = |µ′|p.

Let [µ]∼ ∈ E(O)/∼ and p ∈ S. Then we define the baby
step of [µ]∼ in p-direction as follows: consider the set

X =

{
f ∈ O

∣∣∣∣ ∀q ∈ S \ {p} : |f |q ≤ |µ|q
∃q ∈ S \ {p} : |f |q < |µ|q

}
.

On X/∼ with p = pi, consider the total order

[f ]∼ ≤i [g]∼ :⇐⇒
(|f |pi, . . . , |f |pn, |f |p1

, . . . , |f |pi−1
)

≤`ex (|g|pi, . . . , |g|pn, |g|p1
, . . . , |g|pi−1

),

where ≤`ex is the usual lexicographic order on Rn. One
has that X/∼ contains a minimum with respect to ≤i;
we denote this minimum by bsp([µ]∼) and call it the baby
step of [µ]∼ in p-direction.
The set E(O) together with the function Φ, the equiv-
alence relation ∼, the action of O∗, and the baby
steps bsp, p ∈ S, is called the infrastructure of K.

Proposition. (See, for example, [Fon08b, Fon08a].)

1. Assume that deg p = 1 for some p ∈ S. Then, for all
µ, µ′ ∈ E(O), µ ∼ µ′ if, and only if, µ

µ′ ∈ k
∗.

2. The unit groupO∗ acts on E(O) by multiplication, and
the number of orbits is finite.

3. The map µ 7→ 1
µO induces a bijection between

E(O)/O∗ and the set of reduced principal ideals.

In the following, we will visualize E(O)/∼, O∗ and the
baby steps as follows. If S = {p1, . . . , pn}, consider the
map

Ψ : K∗ → Rn−1, f 7→ (log |f |p1
, . . . , log |f |pn−1

).

We have that Ψ(O∗) ⊆
Rn−1 is a lattice and that
Ψ is injective on E(O)/∼.
In the following, we will al-
ways display Ψ(E(O)) to-
gether with Ψ(O∗), where
every second translate of
the fundamental mesh of Ψ(O∗) is marked. Moreover,
the baby steps in the different directions will be drawn
with different colors. In the example displayed here,
|S| = 3. The arrows denote baby steps: red baby
steps go in the p1-direction, green baby steps in the p2-
direction, and blue baby steps in the p3-direction.

3. Voronoı̆’s Algorithm

In this section, we will explain Voronoı̆’s algorithm, as
it has been described in [Buc85] and [LSY03]. We as-
sume that |S| = 3. Then O∗ = k∗ ⊕ 〈ε1, ε2〉 for two non-
constant independent units ε1, ε2 ∈ O∗. The aim is to
compute ε1 and ε2. Moreover, we assume that deg p′ = 1
for some p′ ∈ S for simplicity.
Let µ ∈ E(O). Then, for p ∈ S the sequence defined
by µ0 := µ and µn+1 := bsp(µn), n ∈ N will get peri-
odic in E(O)/O∗. The sequence is called a (one-sided
Voronoı̆) chain. By working with the reduced princi-
pal ideals 1

µn
O instead of µn and storing all of them

until we found minimal m,n ∈ N with 0 ≤ n < m
and µ−1

n O = µ−1
m O, we obtain the pre-period n and

the period m − n of the sequence (O∗µi)i. Moreover,
ε1 := µm

µn
∈ O∗.

If we replace µ by µn, we get a chain with pre-period
n = 0. In that case, we can extend (µi)i∈N to a two-
sided (Voronoı̆) chain (µi)i∈Z by setting µkm+` = εkµ`
for k ∈ Z, ` ∈ {0, . . . ,m − 1}. Consider the following
example:
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The pre-period for the blue direction is trivial (i.e. zero),
while the pre-period for the other two directions is non-
trivial. If we plot the translates of the chains by the unit
group O∗, we obtain the following situation:

Then we begin with µ′ := µn and choose q ∈ S \ {p}
such that |ε1|q 6= 1; by the product formula, such an q
exists. In our example above, the unit obtained from
the blue chain satisfies this both for q = p1 and q = p2.
We consider the one-sided chain µ′0 := µ′, µ′i+1 :=
bsq(µ

′
i), i ∈ N. If we find the minimal j ∈ N, j > 0

such that µ′j lies on a translate of the chain (µi)i∈N, i.e.
there exists a k ∈ {0, 1, . . . ,m−1} with µ−1

k O = (µ′j)
−1O,

then ε2 := µ′j/µk ∈ O∗ and O∗ = k∗ ⊕ 〈ε1, ε2〉 (see
[Buc85, LSY03]).
In our example, both for q = p1 and q = p2 the
chain (µ′i)i∈N eventually meets a translate of the blue
chain, as one can see in the picture above.

4. Regulator, Runtime and Outlook

The regulator R of O is (up to constants) the area of a
fundamental mesh of Φ(O∗). Hence, this algorithm has
a running time of O(R) baby steps and needs a storage
of O(R).
In the case |S| = 2, D. Shanks introduced giant steps
and applied his baby step-giant step algorithm, which
needs O(

√
R) baby and giant steps and O(

√
R) stor-

age. Therefore, one can ask:
Q1) How can giant steps be generalized to the case
|S| > 2?

And more generally:
Q2) Can one find an algorithm which computes O∗ in
O(
√
R) steps and using O(

√
R) storage for |S| = 2?
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