

1. Why Infrastructures?

- Infrastructures can be used for **computation of fundamental units** and regulator (see below);
- Infrastructures can be used for public key cryptography, for example for key exchange [JSS07].

In the following, we will describe what an infrastructure is (in general) and describe Voronoi's algorithm for computing fundamental units (in unit rank two).

2. Infrastructures from Global Fields

Let *K* be a **global field**:

- either K is a number field; in that case, let S denote the set of archimedean places of K;
- or K is a function field with a finite field of constants \mathbb{F}_q ; in that case, write $K = \mathbb{F}_q(x, y)$ with $K/\mathbb{F}_q(x)$ being a finite separable extension and let S be the set of poles of x.

Write $S = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$. For every place $\mathfrak{p} \in S$, we have its degree $\deg p$ and an associated absolute value $|\bullet|_{n}$:

• if \mathfrak{p} is an archimedean place, let $\sigma : K \to \mathbb{C}$ be an associated embedding. Then

$$\deg \mathfrak{p} = \begin{cases} 1 & \text{if } \sigma(K) \subseteq \mathbb{R}, \\ 2 & \text{otherwise,} \end{cases} \quad \text{and} \quad |f|_{\mathfrak{p}} = |\sigma(f)|_{\mathfrak{p}} \end{cases}$$

• if \mathfrak{p} is a non-archimedean place, let $\nu_{\mathfrak{p}}: K^* \to \mathbb{Z}$ denote the normalized valuation for \mathfrak{p} , $\mathcal{O}_{\mathfrak{p}}$ the valuation ring and \mathfrak{m}_n the valuation ideal. Then

$$\deg \mathfrak{p} = [\mathcal{O}_{\mathfrak{p}}/\mathfrak{m}_{\mathfrak{p}}:\mathbb{F}_q] \quad \text{and} \quad |f|_{\mathfrak{p}} = q^{-
u_{\mathfrak{p}}(f)\cdot \deg \mathfrak{p}}.$$

Let \mathcal{O} denote the ring of integers (i.e. the integral closure of \mathbb{Z} resp. $\mathbb{F}_{q}(x)$; then its **unit group** \mathcal{O}^{*} is the direct product of the group of roots of unity, denoted by k^* , and a free abelian group of rank |S| - 1. Consider the map

$$\Phi: K \to \mathbb{R}^n_{\geq 0}, \qquad f \mapsto (|f|_{\mathfrak{p}_i})_i.$$

The image of \mathcal{O} under this map is a discrete set. We say that an element $\mu \in \mathcal{O} \setminus \{0\}$ is a **minimum** of \mathcal{O} if, for every $f \in \mathcal{O}$,

$$|f|_{\mathfrak{p}} \leq |\mu|_{\mathfrak{p}}$$
 for all $\mathfrak{p} \in S$
implies $f = 0$ or $|f|_{\mathfrak{p}} = |\mu|_{\mathfrak{p}}$ for all $\mathfrak{p} \in S$.

the equivalence relation

$$\mu \sim \mu' : \Longleftrightarrow \forall \mathfrak{p} \in S : |\mu|_{\mathfrak{p}} = |\mu'|_{\mathfrak{p}}.$$

$$X = \left\{ f \in \mathcal{O} \mid \forall \mathfrak{q} \in \mathcal{J} \\ \exists \mathfrak{q} \in \mathcal{J} \right\}$$

On X/\sim with $\mathfrak{p} = \mathfrak{p}_i$, consider the total order

$$[f]_{\sim} \leq_{i} [g]_{\sim} :\iff \begin{array}{c} (|f] \\ \leq_{\ell ex} (|g|) \end{array}$$

where $\leq_{\ell ex}$ is the usual lexicographic order on \mathbb{R}^n . One has that X/\sim contains a minimum with respect to \leq_i ; we denote this minimum by $bs_{\mathfrak{p}}([\mu]_{\sim})$ and call it the **baby** step of $[\mu]_{\sim}$ in p-direction. The set $\mathcal{E}(\mathcal{O})$ together with the function Φ , the equivalence relation \sim , the action of \mathcal{O}^* , and the baby steps $bs_{\mathfrak{p}}, \mathfrak{p} \in S$, is called the **infrastructure** of K.

- $\mu, \mu' \in \mathcal{E}(\mathcal{O})$, $\mu \sim \mu'$ if, and only if, $\frac{\mu}{\mu'} \in k^*$.
- the number of orbits is finite.

map

$$\Psi: K^* \to \mathbb{R}^{n-1}, \qquad f \mapsto (\log |f|_{\mathfrak{p}_1}, \dots, \log |f|_{\mathfrak{p}_{n-1}}).$$

We have that $\Psi(\mathcal{O}^*) \subseteq$ \mathbb{R}^{n-1} is a lattice and that Ψ is injective on $\mathcal{E}(\mathcal{O})/\sim$. In the following, we will always display $\Psi(\mathcal{E}(\mathcal{O}))$ together with $\Psi(\mathcal{O}^*)$, where every second translate of

Abstract Infrastructures of Unit Rank Two Felix Fontein

Institut für Mathematik, Universität Zürich

Let $\mathcal{E}(\mathcal{O})$ denote the set of all minima and let \sim denote

Let $[\mu]_{\sim} \in \mathcal{E}(\mathcal{O})/\sim$ and $\mathfrak{p} \in S$. Then we define the **baby step** of $[\mu]_{\sim}$ in p-direction as follows: consider the set

 $= S \setminus \{\mathfrak{p}\} : |f|_{\mathfrak{q}} \le |\mu|_{\mathfrak{q}} \\ = S \setminus \{\mathfrak{p}\} : |f|_{\mathfrak{q}} < |\mu|_{\mathfrak{q}} \}$

 $|_{\mathfrak{p}_{i}}, \ldots, |f|_{\mathfrak{p}_{n}}, |f|_{\mathfrak{p}_{1}}, \ldots, |f|_{\mathfrak{p}_{i-1}})$ $|g|_{\mathfrak{p}_i},\ldots,|g|_{\mathfrak{p}_n},|g|_{\mathfrak{p}_1},\ldots,|g|_{\mathfrak{p}_{i-1}}),$

Proposition. (See, for example, [Fon08b, Fon08a].)

1. Assume that $\deg \mathfrak{p} = 1$ for some $\mathfrak{p} \in S$. Then, for all

2. The unit group \mathcal{O}^* acts on $\mathcal{E}(\mathcal{O})$ by multiplication, and

3. The map $\mu \mapsto \frac{1}{\mu}O$ induces a bijection between $\mathcal{E}(\mathcal{O})/\mathcal{O}^*$ and the set of **reduced principal ideals**.

In the following, we will visualize $\mathcal{E}(\mathcal{O})/\sim$, \mathcal{O}^* and the baby steps as follows. If $S = \{p_1, \dots, p_n\}$, consider the

the fundamental mesh of $\Psi(\mathcal{O}^*)$ is marked. Moreover, the baby steps in the different directions will be drawn with different colors. In the example displayed here, |S| = 3. The arrows denote baby steps: red baby steps go in the p_1 -direction, green baby steps in the p_2 direction, and blue baby steps in the p_3 -direction.

3. Voronoĭ's Algorithm

In this section, we will explain Voronoi's algorithm, as it has been described in [Buc85] and [LSY03]. We assume that |S| = 3. Then $\mathcal{O}^* = k^* \oplus \langle \varepsilon_1, \varepsilon_2 \rangle$ for two nonconstant independent units $\varepsilon_1, \varepsilon_2 \in \mathcal{O}^*$. The aim is to compute ε_1 and ε_2 . Moreover, we assume that $\deg \mathfrak{p}' = 1$ for some $\mathfrak{p}' \in S$ for simplicity.

Let $\mu \in \mathcal{E}(\mathcal{O})$. Then, for $\mathfrak{p} \in S$ the sequence defined by $\mu_0 := \mu$ and $\mu_{n+1} := bs_{\mathfrak{p}}(\mu_n)$, $n \in \mathbb{N}$ will get periodic in $\mathcal{E}(\mathcal{O})/\mathcal{O}^*$. The sequence is called a **(one-sided** Voronoĭ) chain. By working with the reduced principal ideals $\frac{1}{\mu_n}O$ instead of μ_n and storing all of them until we found minimal $m, n \in \mathbb{N}$ with $0 \leq n < m$ and $\mu_n^{-1}\mathcal{O} = \mu_m^{-1}\mathcal{O}$, we obtain the pre-period n and the period m - n of the sequence $(\mathcal{O}^* \mu_i)_i$. Moreover, $\varepsilon_1 := \frac{\mu_m}{\mu} \in \mathcal{O}^*.$

If we replace μ by μ_n , we get a chain with pre-period n = 0. In that case, we can extend $(\mu_i)_{i \in \mathbb{N}}$ to a twosided (Voronoĭ) chain $(\mu_i)_{i\in\mathbb{Z}}$ by setting $\mu_{km+\ell} = \varepsilon^k \mu_\ell$ for $k \in \mathbb{Z}$, $\ell \in \{0, \ldots, m-1\}$. Consider the following example:

The pre-period for the blue direction is trivial (i.e. zero), while the pre-period for the other two directions is nontrivial. If we plot the translates of the chains by the unit group \mathcal{O}^* , we obtain the following situation:

Then we begin with $\mu' := \mu_n$ and choose $\mathfrak{q} \in S \setminus \{\mathfrak{p}\}$ such that $|\varepsilon_1|_{\mathfrak{q}} \neq 1$; by the product formula, such an \mathfrak{q} exists. In our example above, the unit obtained from the blue chain satisfies this both for $q = p_1$ and $q = p_2$.

We consider the one-sided chain $\mu'_0 := \mu', \ \mu'_{i+1} :=$ $bs_{\mathfrak{q}}(\mu'_i), i \in \mathbb{N}$. If we find the minimal $j \in \mathbb{N}, j > 0$ such that μ'_i lies on a translate of the chain $(\mu_i)_{i \in \mathbb{N}}$, i.e. there exists a $k \in \{0, 1, \dots, m-1\}$ with $\mu_k^{-1}\mathcal{O} = (\mu'_i)^{-1}\mathcal{O}$, then $\varepsilon_2 := \mu'_i/\mu_k \in \mathcal{O}^*$ and $\mathcal{O}^* = k^* \oplus \langle \varepsilon_1, \varepsilon_2 \rangle$ (see [Buc85, LSY03]).

In our example, both for $q = p_1$ and $q = p_2$ the chain $(\mu'_i)_{i \in \mathbb{N}}$ eventually meets a translate of the blue chain, as one can see in the picture above.

4. Regulator, Runtime and Outlook

- The **regulator** R of \mathcal{O} is (up to constants) the area of a fundamental mesh of $\Phi(\mathcal{O}^*)$. Hence, this algorithm has a running time of $\mathcal{O}(R)$ baby steps and needs a storage of $\mathcal{O}(R)$.
- In the case |S| = 2, D. Shanks introduced giant steps and applied his baby step-giant step algorithm, which needs $\mathcal{O}(\sqrt{R})$ baby and giant steps and $\mathcal{O}(\sqrt{R})$ storage. Therefore, one can ask:
- Q1) How can giant steps be generalized to the case |S| > 2?
- And more generally:
- Q2) Can one find an algorithm which computes \mathcal{O}^* in $\mathcal{O}(\sqrt{R})$ steps and using $\mathcal{O}(\sqrt{R})$ storage for |S| = 2?

References

[Buc85]	J. A. Buchmann. A generalization of Voronoi's
	unit algorithm I, II. J. Number Theory, 20:177-
	209, 1985.

- [Fon08a] F. Fontein. The infrastructure of a global field of arbitrary unit rank. In preparation.
- [Fon08b] F. Fontein. The infrastructure of a global field of unit rank one, 2008. In preparation.
- [JSS07] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Cryptographic protocols on real hyperelliptic curves. Adv. Math. Commun., 1(2):197-221, 2007.
- [LSY03] Y. Lee, R. Scheidler, and C. Yarrish. Computation of the fundamental units and the regulator of a cyclic cubic function field. Exp. Math., 12:211-225, 2003.