Abstract Infrastructures of Unit Rank Two Felix Fontein

Institut für Mathematik, Universität Zürich

Let $\mathcal{E}(\mathcal{O})$ denote the set of all minima and let \sim denote

1. Why Infrastructures?

- Infrastructures can be used for **computation of fundamental units** and regulator (see below);
- Infrastructures can be used for **public key cryptography**, for example for key exchange [JSS07].

In the following, we will describe what an infrastructure is (in general) and describe Voronoï's algorithm for computing fundamental units (in unit rank two).

2. Infrastructures from Global Fields

• if p is an archimedean place, let $\sigma: K \to \mathbb{C}$ be an associated embedding. Then

Let K be a **global field**:

- \bullet either K is a number field; in that case, let S denote the set of archimedean places of K ;
- or K is a function field with a finite field of constants \mathbb{F}_q ; in that case, write $K = \mathbb{F}_q(x, y)$ with $K/\mathbb{F}_q(x)$ being a finite separable extension and let S be the set of poles of x .

Write $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_n}$. For every place $\mathfrak{p} \in S$, we have its **degree** deg **p** and an associated **absolute value** $|\bullet|_{\mathfrak{p}}$:

Let $\mathcal O$ denote the ring of integers (i.e. the integral closure of $\mathbb Z$ resp. $\mathbb F_q(x)$); then its **unit group** $\mathcal O^*$ is the direct product of the group of roots of unity, denoted by k^* , and a free abelian group of rank $|S|-1$. Consider the map

$$
\deg \mathfrak{p} = \begin{cases} 1 & \text{if } \sigma(K) \subseteq \mathbb{R}, \\ 2 & \text{otherwise}, \end{cases} \quad \text{and} \quad |f|_{\mathfrak{p}} = |\sigma(f)|;
$$

• if p is a non-archimedean place, let $\nu_p: K^* \to \mathbb{Z}$ denote the normalized valuation for p, \mathcal{O}_p the valuation ring and m_p the valuation ideal. Then

 $\forall \mathfrak{q} \in S \setminus \{\mathfrak{p}\} : \left|f\right|_{\mathfrak{q}} \leq \left|\mu\right|_{\mathfrak{q}}$ $\exists \mathfrak{q} \in S \setminus \{\mathfrak{p}\} : \left|f\right|_{\mathfrak{q}} < \left|\mu\right|_{\mathfrak{q}}$ \bigcap .

 $(|f|_{\mathfrak{p}_i}, \ldots, |f|_{\mathfrak{p}_n}, |f|_{\mathfrak{p}_1}, \ldots, |f|_{\mathfrak{p}_{i-1}})$ $\leq_{\ell ex} (|g|_{\mathfrak{p}_i}, \ldots, |g|_{\mathfrak{p}_n}, |g|_{\mathfrak{p}_1}, \ldots, |g|_{\mathfrak{p}_{i-1}}),$

$$
\deg \mathfrak{p} = [\mathcal{O}_{\mathfrak{p}}/\mathfrak{m}_{\mathfrak{p}} : \mathbb{F}_q] \quad \text{and} \quad |f|_{\mathfrak{p}} = q^{-\nu_{\mathfrak{p}}(f) \cdot \deg \mathfrak{p}}.
$$

- $\mu,\mu'\in\mathcal{E}(\mathcal{O}),\,\mu\sim\mu'$ if, and only if, $\frac{\mu}{\mu'}\in k^*.$
- *the number of orbits is finite.*
-

$$
\Phi: K \to \mathbb{R}^n_{\geq 0}, \qquad f \mapsto (|f|_{\mathfrak{p}_i})_i.
$$

The image of O under this map is a discrete set. We say that an element $\mu \in \mathcal{O} \setminus \{0\}$ is a **minimum** of $\mathcal O$ if, for every $f \in \mathcal{O}$,

 $\left\vert f\right\vert _{\mathfrak{p}}\leq \left\vert \mu \right\vert _{\mathfrak{p}}$ for all $\mathfrak{p}\in S$ implies $f=0$ or $\left|f\right|_{\mathfrak{p}}=\left|\mu\right|_{\mathfrak{p}}$ for all $\mathfrak{p}\in S.$

We have that $\Psi(\mathcal{O}^*) \subseteq$ \mathbb{R}^{n-1} is a lattice and that Ψ is injective on $\mathcal{E}(\mathcal{O})/\sim$. In the following, we will always display $\Psi(\mathcal{E}(\mathcal{O}))$ together with $\Psi(\mathcal{O}^*)$, where every second translate of

the equivalence relation

$$
\mu \sim \mu' :\Longleftrightarrow \forall \mathfrak{p}
$$

$$
:\Longleftrightarrow \forall \mathfrak{p}\in S:|\mu|_{\mathfrak{p}}=|\mu'|_{\mathfrak{p}}.
$$

Let $[\mu]_ ∼ ∈ E(\mathcal{O})/∼$ and $\mathfrak{p} ∈ S$. Then we define the **baby** step of $[\mu]_{\sim}$ in p-direction as follows: consider the set

$$
X = \left\{ f \in \mathcal{O} \mid \frac{\forall \mathfrak{q} \in \mathcal{O}}{\exists \mathfrak{q} \in \mathcal{O}} \right\}
$$

On $X/\!\!\sim$ with $\mathfrak{p}=\mathfrak{p}_i$, consider the total order

$$
[f]_{\sim} \leq_i [g]_{\sim} : \Longleftrightarrow \left(\bigg|f\right) \leq_{\ell ex} ([g
$$

where $\leq_{\ell ex}$ is the usual lexicographic order on $\mathbb{R}^n.$ One has that $X/\mathord\sim$ contains a minimum with respect to $\leq_i;$ we denote this minimum by $bs_p([\mu]_{\sim})$ and call it the **baby step of** [µ][∼] **in** p**-direction**. The set $\mathcal{E}(\mathcal{O})$ together with the function Φ , the equivalence relation \sim , the action of \mathcal{O}^* , and the baby steps bs_p , $p \in S$, is called the **infrastructure** of K.

If we replace μ by μ_n , we get a chain with pre-period $n = 0$. In that case, we can extend $(\mu_i)_{i \in \mathbb{N}}$ to a two- $\textsf{sided (Voronoi) chain} \,\, (\mu_i)_{i \in {\mathbb Z}}$ by setting $\mu_{km+\ell} \, = \, \varepsilon^k \mu_\ell$ for $k \in \mathbb{Z}$, $\ell \in \{0, \ldots, m-1\}$. Consider the following example:

The pre-period for the blue direction is trivial (i.e. zero), while the pre-period for the other two directions is nontrivial. If we plot the translates of the chains by the unit group \mathcal{O}^* , we obtain the following situation:

Then we begin with $\mu' := \mu_n$ and choose $\mathfrak{q} \in S \setminus \{\mathfrak{p}\}\$ such that $\left|\varepsilon_{1}\right|_{\mathfrak{q}}\,\neq\,1;$ by the product formula, such an \mathfrak{q} exists. In our example above, the unit obtained from the blue chain satisfies this both for $q = p_1$ and $q = p_2$.

We consider the one-sided chain μ_0^{\prime} μ_0' $\; := \; \mu', \; \mu_i'$ i_{i+1} := $bs_{\mathsf{q}}(\mu'_i)$ i,j , $i \in \mathbb{N}$. If we find the minimal $j \in \mathbb{N}$, $j > 0$ such that μ_3' $'_{j}$ lies on a translate of the chain $(\mu_{i})_{i\in\mathbb{N}},$ i.e. there exists a $k\in\{0,1,\ldots,m-1\}$ with $\mu_k^{-1}\mathcal{O}=(\mu'_j)$ $'_{j})^{-1}\mathcal{O},$ then ε_2 := μ_4' \mathcal{O}_{j}/μ_{k} \in \mathcal{O}^{\ast} and \mathcal{O}^{\ast} $=$ k^{\ast} \oplus $\langle \varepsilon_{1}, \varepsilon_{2} \rangle$ (see [Buc85, LSY03]).

Proposition. *(See, for example, [Fon08b, Fon08a].)*

1. Assume that $\deg p = 1$ for some $p \in S$. Then, for all

In our example, both for $q = p_1$ and $q = p_2$ the chain (μ_i') $\langle \rho_i \rangle_{i\in \mathbb{N}}$ eventually meets a translate of the blue chain, as one can see in the picture above.

2. The unit group O[∗] *acts on* E(O) *by multiplication, and*

3. The map μ $\mapsto \frac{1}{\mu}{\cal O}$ induces a bijection between $E(\mathcal{O})/\mathcal{O}^*$ and the set of **reduced principal ideals**.

In the following, we will visualize $\mathcal{E}(\mathcal{O})/\sim$, \mathcal{O}^* and the baby steps as follows. If $S = \{p_1, \ldots, p_n\}$, consider the

the fundamental mesh of $\Psi(\mathcal{O}^*)$ is marked. Moreover, the baby steps in the different directions will be drawn with different colors. In the example displayed here, $|S| = 3$. The arrows denote baby steps: red baby steps go in the p_1 -direction, green baby steps in the p_2 direction, and blue baby steps in the p_3 -direction.

3. Voronoï's Algorithm

In this section, we will explain Voronoï's algorithm, as it has been described in [Buc85] and [LSY03]. **We assume that** $|S| = 3$. Then $\mathcal{O}^* = k^* \oplus \langle \varepsilon_1, \varepsilon_2 \rangle$ for two nonconstant independent units $\varepsilon_1, \varepsilon_2 \in \mathcal{O}^*$. The aim is to compute ε_1 and ε_2 . Moreover, we assume that $\deg \mathfrak{p}' = 1$ for some $\mathfrak{p}' \in S$ for simplicity.

Let $\mu \in \mathcal{E}(\mathcal{O})$. Then, for $\mathfrak{p} \in S$ the sequence defined by $\mu_0 := \mu$ and $\mu_{n+1} := bs_p(\mu_n)$, $n \in \mathbb{N}$ will get periodic in $\mathcal{E}(\mathcal{O})/\mathcal{O}^*$. The sequence is called a **(one-sided Voronoï) chain.** By working with the reduced principal ideals $\frac{1}{4}$ $\frac{1}{\mu_n} \mathcal{O}$ instead of μ_n and storing all of them until we found minimal $m, n \in \mathbb{N}$ with $0 \leq n \leq m$ and $\mu_n^{-1}\mathcal{O}~=~\mu_m^{-1}\mathcal{O},$ we obtain the pre-period n and the period $m - n$ of the sequence $(\mathcal{O}^*\mu_i)_i$. Moreover, $\varepsilon_1 := \frac{\mu_m}{\mu_n}$ $\frac{\mu_m}{\mu_n}\in\mathcal{O}^*.$

map

$$
\Psi: K^* \to \mathbb{R}^{n-1}, \qquad f \mapsto (\log |f|_{\mathfrak{p}_1}, \dots, \log |f|_{\mathfrak{p}_{n-1}}).
$$

4. Regulator, Runtime and Outlook

- The **regulator** R of \mathcal{O} is (up to constants) the area of a fundamental mesh of $\Phi(\mathcal{O}^*)$. Hence, this algorithm has a running time of $\mathcal{O}(R)$ baby steps and needs a storage of $\mathcal{O}(R)$.
- In the case $|S| = 2$, D. Shanks introduced giant steps and applied his baby step-giant step algorithm, which needs $\mathcal{O}(\sqrt{R})$ baby and giant steps and $\mathcal{O}(\sqrt{R})$ storage. Therefore, one can ask:
- Q1) How can giant steps be generalized to the case $|S| > 2$?
- And more generally:
- Q2) Can one find an algorithm which computes \mathcal{O}^* in $\mathcal{O}(\sqrt{R})$ steps and using $\mathcal{O}(\sqrt{R})$ storage for $|S|=2$?

References

- [Buc85] J. A. Buchmann. A generalization of Voronoi's unit algorithm I, II. *J. Number Theory*, 20:177– 209, 1985.
- [Fon08a] F. Fontein. The infrastructure of a global field of arbitrary unit rank. In preparation.
- [Fon08b] F. Fontein. The infrastructure of a global field of unit rank one, 2008. In preparation.
- [JSS07] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Cryptographic protocols on real hyperelliptic curves. *Adv. Math. Commun.*, 1(2):197–221, 2007.
- [LSY03] Y. Lee, R. Scheidler, and C. Yarrish. Computation of the fundamental units and the regulator of a cyclic cubic function field. *Exp. Math.*, 12:211–225, 2003.