

Predicting the Sieving Effort for theNumber Field Sieve

Willemien EkkelkampCWI, Amsterdam & UL, Leiden

Overview

- **C** Aim of the method
- **C** Number Field Sieve (summary)
- Technical details of the method \bullet
- **Examples**

Goal

- Predict the number of relations needed for factoring ^a given \bullet number N in practice.
- In practice $:=$ for a given implementation and for a given \bullet choice of the parameters in the NFS.
- The prediction should not be based on the number of relations used for factoring ^a number of comparable size.

- Polynomial selection \bullet
	- $f_1(m) \equiv f_2(m) \equiv 0 \text{(mod } N)$.
		- $f_1(x)$: linear polynomial (rational side).
		- $f_2(x)$: higher degree polynomial (algebraic side).
	- SNFS / GNFS

Sieving

- Choose a factorbase bound (F) and a large prime bound $(L).$
- Locate pairs (a, b) such that $\gcd(a, b) = 1$ and such that $b^{\deg(f_1)}f_1(a/b)$ and $b^{\deg(f_2)}f_2(a/b)$ both have all their prime factors below F or at most two prime factors
between F and I (se salled large primes) between F and L (so-called large primes).
- **Line sieving / lattice sieving.**

C Linear algebra

- Singleton removal.
- **•** Find a set of relations such that the product on both the rational and algebraic side is ^a square.

- **C** Linear algebra
	- **Singleton removal.**
	- Find ^a set of relations such that the product on both therational and algebraic side is ^a square.
- **Square root**
	- Find the square root of the two products.
	- Factor the number; in case of ^a trivial factorization: continue with the next set.

Outline of the method

- **Short sieving test.**
- Analysis of the relations from this test.
- Simulate relations (fast):
	- Functions that approximate the underlying distribution of the large primes.
	- Random number generator.
- Remove singletons.
- Stop simulating relations as soon as the number of relations after singleton removal exceeds the number of primes in therelations.

Short sieving test

- Representative selection. \bullet
- Sieving points should be spread over the entire sieving area. \bullet
- Takes about ten minutes for a 120-digit $N.$ (explained later)

- line sieving / lattice sieving \bullet
- Divide relations into nine sets, based on the number of largeprimes: r_ia_j for $i,j\in{0,1,2}.$
- The mutual ratios of their cardinalities determine the ratiosby which we will simulate the relations.

 r_0a_0

- Count the number of relations in this set.
- r_1a_0
	- **To avoid expensive prime tests, switch to indices of** primes $(i_p=\pi(p))$:
		- look-up table,
		- approximation $\it i$ $i_p \approx \frac{p}{\log p}$ $+~\frac{p}{\log^2}$ $\mathop{^-} p$ $\, + \,$ 2 $\frac{2p}{\log^3 p}$. (Panaitopel, 2000)

- $G(x)$ $=i_F-a\log(1$ ___ $x(1$ $-\;e$ $^i\,F$ $-\,i\,L$ \boldsymbol{a} $(\frac{u}{a})\big), 0 \leq x \leq 1$
	- \sim $G(x)$ is the inverse of an exponential distribution function, which approximates the line of data.
	- Result after singleton removal was satisfactory. \bullet

- r_0a_1
	- Algebraic primes: not all primes can occur, each primethat does occur can have up to $\deg(f_2)$ different roots.
	- Heuristically the amount of pairs $\left(prime, root \right)$ with $F is about equal to the amount of primes
between E and $I$$ between F and L .
	- Same approach as for $r_1a_0.$

 r_0a_1

- r_1a_1
	- **The value of the index on the rational side is assumed to** be independent of the value of the index on the algebraicside.
	- Combine the approaches of r_1a_0 $_0$ and $r_0a_1.$

- r_1a_1
	- The value of the index on the rational side is assumed to be independent of the value of the index on the algebraicside.
	- Combine the approaches of r_1a_0 $_0$ and $r_0a_1.$
- r_2a_0
	- Two rational primes q_1 q_1 and q_2 , $q_1>q_2$.
	- Observation q_1 : linear distribution. \bullet

 r_2a_0 , q_1

 $H_1(x)$ $=i_F+x(i_L-i_F)$

> \bullet $H_1(x)$ approximates the inverse of the line of observation.

- r_2a_0 , q_2
	- **Exponential distribution.**
	- Average value; based on q_2 -indices < $q_1.$
	- List of averages a_{q_2} , where $a_{q_2}[j]$ contains the average of the first $j\ q_2$ -indices.

•
$$
H_2(x) = i_F - a_{q_2}[j] \log(1 - x(1 - e^{\frac{i_F - i_L}{a_{q_2}[j]}}))
$$

 r_2a_0 , q_2

First compute q_1 , look up which average value to use \bullet and compute $q_2.$

 r_0a_2

- Same approach as used for r_2a_0 .
- r_1a_2
	- $r_1a_0, \, r_0a_2$
- r_2a_1
	- r_2a_0 , r_0a_1
- r_2a_2
	- r_2a_0 , r_0a_2

- Sieve test: average number of relations per pair $(special \ prime, root).$
- Total number of relations to simulate.

- Sieve test: average number of relations per pair $(special \ prime, root).$
- Total number of relations to simulate.
- **Select an appropriate interval.**
- Divide this interval in ^a (small) number of sections.

- Sieve test: average number of relations per pair $(special \ prime, root).$
- Total number of relations to simulate.
- **Select an appropriate interval.**
- Divide this interval in ^a (small) number of sections.
- **Per section select randomly the special primes.**

Same model, add ^a special prime to each relation as follows:

- Sieve test: average number of relations per pair $(special \ prime, root).$
- Total number of relations to simulate.
- Select an appropriate interval.
- Divide this interval in ^a (small) number of sections.
- **Per section select randomly the special primes.**

This covers the entire interval of special primes, but leavesenough variation in the amount of relations per special prime.

- Goal: find dependencies in ^a matrix. \bullet
- **Stop criterion: the number of relations after singleton** removal exceeds the number of different primes that occurin the remaining relations.

- Goal: find dependencies in ^a matrix.
- Stop criterion: the number of relations after singleton removal exceeds the number of different primes that occurin the remaining relations.

Oversquares
$$
O_r := \frac{n_r}{n_l + n_F - n_f} \times 100\%
$$
,

- $n_r\!\!:$ number of relations after singleton removal,
- $n_l\colon$ number of different large primes after singleton removal,
- n_F : number of primes in the factorbase $(\pi(F_{rat}) + \pi(F_{alg})),$
- $n_f\colon$ number of free relations from factorbase elements $(\frac{1}{g}\pi(\min(F_{rat},F_{alg})).$

- Possible choices for O_r $(100\,\% ,\,102\,\%)$. \bullet
- To minimize the resulting matrix, O_{r} should be larger.

- Possible choices for O_r $(100\,\% ,\,102\,\%)$.
- To minimize the resulting matrix, O_{r} should be larger.
- Lattice sieving / duplicates.
	- Act as if there are no duplicates.
	- Add a certain percentage to the number of necessary relations (Aoki, Franke, Kleinjung, Lenstra, Osvik, 2007).
	- Basic idea: run ^a sieve test and find out which relationshave more than one prime in the special primes interval.
	- If such a relation would be found by more than one lattice, than this gives ^a duplicate relation.

Experiments

- Type 1: the complete data set for factoring N is known,
aimulate the same number of relations beseed an 0.1 $\%$ simulate the same number of relations based on $0.1\,\%$ of
the relations the relations.
- Type 2: assume only $0.1\,\%$ is given; simulate relations until $\alpha \, > \,$ 100 $\%$ $O_r \ge 100\,\%$.

Experiments

- Type 1: the complete data set for factoring N is known,
aimulate the same number of relations beseed an 0.1 $\%$ simulate the same number of relations based on $0.1\,\%$ of
the relations the relations.
- Type 2: assume only $0.1\,\%$ is given; simulate relations until $\alpha \, > \,$ 100 $\%$ $O_r \ge 100\,\%$.
- $0.1\,\%$?
	- We started experiments based on $100\,\%$ data and
lowered the percentage until the result after single lowered the percentage until the result after singletonremoval was too far from the real data.
	- In some cases we could go to 0.01% and still get good
results results.
	- Better solution is probably based on using the law of large numbers (work in progress).

C Parameters

Parameters

C Type 1 experiment

C Timings

Timings \bullet

C Type 2 experiment

C Parameters

Parameters

C Type 1 experiment

C Timings

Timings \bullet

C Type 2 experiments

Experiments: 7,333- (lattice sieving)

Parameters \bullet

Experiments: 7,333- (lattice sieving)

C Experiments

Implementation

- **CWI line siever**
- Bruce Dodson (lattice sieving) \bullet
- Thorsten Kleinjung (lattice sieving) \bullet

Conclusions / future work

- By specifying a model for the large primes in the relations, we can simulate relations efficiently.
- Experiments show that what we find with our simulation andsingleton removal, agrees within $2\,\%$ with real sieving data.

Conclusions / future work

- By specifying a model for the large primes in the relations, we can simulate relations efficiently.
- Experiments show that what we find with our simulation andsingleton removal, agrees within $2\,\%$ with real sieving data.
- Find the correct model for the lattice sieve data sets of Kleinjung.
- **C** Find a theoretical explanation for the occurrence of the various distributions.
- What is the optimal oversquareness for minimizing theresulting matrix.