

Predicting the Sieving Effort for the Number Field Sieve

Willemien Ekkelkamp CWI, Amsterdam & UL, Leiden

Overview

- Aim of the method
- Number Field Sieve (summary)
- Technical details of the method
- Examples

Goal

- Predict the number of relations needed for factoring a given number N in practice.
- In practice := for a given implementation and for a given choice of the parameters in the NFS.
- The prediction should not be based on the number of relations used for factoring a number of comparable size.

- Polynomial selection
 - $f_1(m) \equiv f_2(m) \equiv 0 \pmod{N}$.
 - $f_1(x)$: linear polynomial (rational side).
 - $f_2(x)$: higher degree polynomial (algebraic side).
 - SNFS / GNFS

Sieving

- Choose a factorbase bound (F) and a large prime bound (L).
- Locate pairs (a, b) such that gcd(a, b) = 1 and such that $b^{deg(f_1)}f_1(a/b)$ and $b^{deg(f_2)}f_2(a/b)$ both have all their prime factors below F or at most two prime factors between F and L (so-called large primes).
- Line sieving / lattice sieving.

Linear algebra

- Singleton removal.
- Find a set of relations such that the product on both the rational and algebraic side is a square.

- Linear algebra
 - Singleton removal.
 - Find a set of relations such that the product on both the rational and algebraic side is a square.
- Square root
 - Find the square root of the two products.
 - Factor the number; in case of a trivial factorization: continue with the next set.

Outline of the method

- Short sieving test.
- Analysis of the relations from this test.
- Simulate relations (fast):
 - Functions that approximate the underlying distribution of the large primes.
 - Random number generator.
- Remove singletons.
- Stop simulating relations as soon as the number of relations after singleton removal exceeds the number of primes in the relations.

Short sieving test

- Representative selection.
- Sieving points should be spread over the entire sieving area.
- **S** Takes about ten minutes for a 120-digit N. (explained later)

- Ine sieving / lattice sieving
- Divide relations into nine sets, based on the number of large primes: $r_i a_j$ for $i, j \in 0, 1, 2$.
- The mutual ratios of their cardinalities determine the ratios by which we will simulate the relations.

- $r_0 a_0$
 - Count the number of relations in this set.
- $r_1 a_0$
 - To avoid expensive prime tests, switch to indices of primes ($i_p = \pi(p)$):
 - look-up table,
 - approximation $i_p \approx \frac{p}{\log p} + \frac{p}{\log^2 p} + \frac{2p}{\log^3 p}$. (Panaitopel, 2000)

- $G(x) = i_F a \log(1 x(1 e^{\frac{i_F i_L}{a}})), 0 \le x \le 1$
 - G(x) is the inverse of an exponential distribution function, which approximates the line of data.
 - Result after singleton removal was satisfactory.

- $r_0 a_1$
 - Algebraic primes: not all primes can occur, each prime that does occur can have up to $deg(f_2)$ different roots.
 - Heuristically the amount of pairs (*prime*, *root*) with
 F < *prime* < *L* is about equal to the amount of primes
 between *F* and *L*.
 - Same approach as for r_1a_0 .

 $r_0 a_1$

- $r_1 a_1$
 - The value of the index on the rational side is assumed to be independent of the value of the index on the algebraic side.
 - Combine the approaches of r_1a_0 and r_0a_1 .

- $r_1 a_1$
 - The value of the index on the rational side is assumed to be independent of the value of the index on the algebraic side.
 - Combine the approaches of r_1a_0 and r_0a_1 .
- $r_2 a_0$
 - Two rational primes q_1 and q_2 , $q_1 > q_2$.
 - Observation q_1 : linear distribution.

ho r_2a_0, q_1

■ $H_1(x) = i_F + x(i_L - i_F)$

• $H_1(x)$ approximates the inverse of the line of observation.

- ho r_2a_0, q_2
 - Exponential distribution.
 - Average value; based on q_2 -indices < q_1 .
 - List of averages a_{q_2} , where $a_{q_2}[j]$ contains the average of the first $j q_2$ -indices.

•
$$H_2(x) = i_F - a_{q_2}[j] \log(1 - x(1 - e^{\frac{i_F - i_L}{a_{q_2}[j]}}))$$

 $r_2 a_0, q_2$

• First compute q_1 , look up which average value to use and compute q_2 .

 $r_0 a_2$

- Same approach as used for r_2a_0 .
- - \bullet r_1a_0, r_0a_2
- - \bullet r_2a_0, r_0a_1
- ho $r_2 a_2$
 - \bullet r_2a_0, r_0a_2

- Sieve test: average number of relations per pair (special prime, root).
- Total number of relations to simulate.

- Sieve test: average number of relations per pair (special prime, root).
- Total number of relations to simulate.
- Select an appropriate interval.
- Divide this interval in a (small) number of sections.

- Sieve test: average number of relations per pair (special prime, root).
- Total number of relations to simulate.
- Select an appropriate interval.
- Divide this interval in a (small) number of sections.
- Per section select randomly the special primes.

Same model, add a special prime to each relation as follows:

- Sieve test: average number of relations per pair (special prime, root).
- Total number of relations to simulate.
- Select an appropriate interval.
- Divide this interval in a (small) number of sections.
- Per section select randomly the special primes.

This covers the entire interval of special primes, but leaves enough variation in the amount of relations per special prime.

- Goal: find dependencies in a matrix.
- Stop criterion: the number of relations after singleton removal exceeds the number of different primes that occur in the remaining relations.

- Goal: find dependencies in a matrix.
- Stop criterion: the number of relations after singleton removal exceeds the number of different primes that occur in the remaining relations.

• Oversquareness
$$O_r := rac{n_r}{n_l + n_F - n_f} imes 100 \,\%$$
,

- n_r : number of relations after singleton removal,
- n_l: number of different large primes after singleton removal,
- n_F : number of primes in the factorbase $(\pi(F_{rat}) + \pi(F_{alg})),$
- n_f : number of free relations from factorbase elements $(\frac{1}{g}\pi(\min(F_{rat}, F_{alg}))).$

- **Possible choices for** O_r (100 %, 102 %).
- **S** To minimize the resulting matrix, O_r should be larger.

- **Possible choices for** O_r (100 %, 102 %).
- **S** To minimize the resulting matrix, O_r should be larger.
- Lattice sieving / duplicates.
 - Act as if there are no duplicates.
 - Add a certain percentage to the number of necessary relations (Aoki, Franke, Kleinjung, Lenstra, Osvik, 2007).
 - Basic idea: run a sieve test and find out which relations have more than one prime in the special primes interval.
 - If such a relation would be found by more than one lattice, than this gives a duplicate relation.

Experiments

- Type 1: the complete data set for factoring N is known, simulate the same number of relations based on 0.1% of the relations.
- Type 2: assume only 0.1% is given; simulate relations until $O_r \ge 100\%$.

Experiments

- Type 1: the complete data set for factoring N is known, simulate the same number of relations based on 0.1% of the relations.
- Type 2: assume only 0.1 % is given; simulate relations until $O_r \ge 100 \%$.
- 0.1 %?
 - We started experiments based on 100% data and lowered the percentage until the result after singleton removal was too far from the real data.
 - In some cases we could go to 0.01% and still get good results.
 - Better solution is probably based on using the law of large numbers (work in progress).

Parameters

number	# dec. digits	F	L	g	$n_F - n_f$
13,220+	117	30M	400M	120	3700941

Parameters

number	# dec. digits	F	L	g	$n_F - n_f$
13,220+	117	30M	400M	120	3700941

Type 1 experiment

13,220+	Original data	Simulated data
# relations before s.r.	35 496 483	35 496 483
# relations after s.r.	21 320 864	21 394 640 (0.35%)
# large primes after s.r.	13781518	13950420 (1.22%)
oversquareness (%)	121.96	121.21 (-0.61%)

Timings

GNFS	13,220+
simulation (sec.)	224
singleton removal (sec.)	927
sieving (hrs.)	316

Timings

GNFS	13,220+
simulation (sec.)	224
singleton removal (sec.)	927
sieving (hrs.)	316

S Type 2 experiment

# rel. before s.r.	$O_r S(\%)$	$O_r O(\%)$	rel. diff. (%)
28M (13,220+)	99.66	99.87	-0.21
29M (13,220+)	103.15	103.29	-0.14

Parameters

number	# dec. digits	F	L	g	$n_F - n_f$
80,123-	150	55M	450M	18	6 383 294

Parameters

number	# dec. digits	F	L	g	$n_F - n_f$
80,123-	150	55M	450M	18	6 383 294

Type 1 experiment

80,123-	Original data	Simulated data
# relations before s.r.	36 552 655	36 552 655
<pre># relations after s.r.</pre>	20 288 292	20648909 (1.78%)
# large primes after s.r.	12810641	12973952 (1.27%)
oversquareness (%)	105.70	106.67 (0.92%)

Timings

SNFS	80,123-
simulation (sec.)	223
singleton removal (sec.)	771
sieving (hrs.)	200

Timings

SNFS	80,123-
simulation (sec.)	223
singleton removal (sec.)	771
sieving (hrs.)	200

J Type 2 experiments

# rel. before s.r.	$O_r S(\%)$	$O_r O(\%)$	rel. diff. (%)
34M (80,123–)	99.93	98.66	1.29
35M (80,123–)	102.82	101.50	1.30

Experiments: 7,333- (lattice sieving)

Parameters

	7,333-		
# dec. digits	177		
F	16777215		
L	250 000 000		
special primes	[16777333,29120617]		
	[60000013,73747441]		
g	6		
$n_F - n_f$	1 976 740		

Experiments: 7,333- (lattice sieving)

Experiments

# rel. before s.r.	$O_r S$ (%)	$O_r O(\%)$	rel. diff. (%)
17M	98.34	97.45	0.91
18M	103.96	103.08	0.85
25 1 1 2 5 4 3	135.39	136.64	-0.91

Implementation

- CWI line siever
- Bruce Dodson (lattice sieving)
- Thorsten Kleinjung (lattice sieving)

Conclusions / future work

- Summer Strain Strain
- Solution Experiments show that what we find with our simulation and singleton removal, agrees within 2% with real sieving data.

Conclusions / future work

- By specifying a model for the large primes in the relations, we can simulate relations efficiently.
- Solution Experiments show that what we find with our simulation and singleton removal, agrees within 2% with real sieving data.
- Find the correct model for the lattice sieve data sets of Kleinjung.
- Find a theoretical explanation for the occurrence of the various distributions.
- What is the optimal oversquareness for minimizing the resulting matrix.