Institut de **M**athématiques de Luminy

Weight Distribution

Definition 1 The h-distribution of points of a projective variety \mathcal{V} is the decreasing sequence of the number of points in the section of \mathcal{V} by all hypersurfaces of degree h. • Let $X \subset \mathbb{P}^m(\overline{\mathbb{F}}_q)$ and $N = \#X(\mathbb{F}_q)$

$$c: \mathcal{F}_h(V, \mathbb{F}_q) \longrightarrow \mathbb{F}_q^N$$
$$f \longmapsto c(f) = (f(P_1), \dots, f(P_N))$$

 $C_h(X) = \operatorname{Im} c$

• **definition** Let c(f) be a codeword

$$cw(f) = \#\{P \in X \mid f(P) = 0\}$$
$$w(c(f)) = \#X(\mathbb{F}_q) - cw(f)$$
$$distC_h(X) = \#X(\mathbb{F}_q) - \max_{f \in \mathcal{F}_h} cw(f)$$

• **Proposition** The parameters of $C_h(X)$: lenght $C_h(X) = \#X(\mathbb{F}_q)$,

$$\dim C_h(X) = \dim \mathcal{F}_h - \dim \ker c,$$

 $\operatorname{dist}C_h(X) = \#X(\mathbb{F}_q) - \max_{f \in \mathcal{F}_h} \#X_{Z(f)}(\mathbb{F}_q)$ If c injective $\Rightarrow \dim C_h(X) = \binom{m+h}{h}$

The study of $C_2(X)$ over F_q

 $X: x_0^{t+1} + x_1^{t+1} + x_2^{t+1} + x_3^{t+1} = 0$

• 1. Number of points of X $\#X(\mathbb{F}_q) = (t^2 + 1)(t^3 + 1)$, 1966

• 2. Injectivity of the application c Tsfasman-Serre-Sørensen Bound $\Rightarrow h \leq t$.

• 3. History of $C_h(X)$

$$h = 2, t = 2$$

 $\begin{cases} R. Tobias, 1985 \\ P. Spurr, 1986 \end{cases}$

h = 2, t = 2 A. B. Sørensen, 1991 Conjecture: $\#X_{Z(f)}(\mathbb{F}_q) \le h(t^3 + t^2 - t) + t + 1$

G. Lachaud, A.G.C.T-4, 1993 $|| \# X_{Z(f)}(\mathbb{F}_q) \le h(t^3 + t^2 + t + 1)|$

The weight distribution over F_4

• The code $C_2(X)$ defined on \mathbb{F}_4 is $[45, 10, 22]_4$ -code. And it is a even-weight code. We have the following formula:

$$w_i = (10+i) \times 2$$
 $i = 1, ..., 12$

 $A_{w_1} = 2.160, A_{w_2} = 2.970, A_{w_3} = 4.320, A_{w_4} = 40.500, A_{w_5} = 122.976, A_{w_6} = 233.415, A_{w_7} = 285.120, A_{w_8} = 233.400, A_{w_8} = 233.400,$ $A_{w_9} = 97.200, A_{w_{10}} = 20.574, A_{w_{11}} = 4.320, A_{w_{12}} = 1.620$

Computing the 2-distribution of points on Hermitian surfaces (ANTS-8, Banff, CA) Frédéric Aka-Bilé Edoukou IML-CNRS (UMR CNRS 6206) - Université de La Méditerranée - France, edoukou@iml.univ-mrs.fr

Resolution of Sørensen Conjecture ($h \le 2$ **and** $t = p^a$ **)**

Definition 2

For any projective algebraic variety \mathcal{V} , the maximum dimension $g(\mathcal{V})$ of linear subspaces lying on \mathcal{V} , is called the projective index of \mathcal{V} . The largest dimensional spaces contained in \mathcal{V} are called the generators of \mathcal{V} .

For Q a degenerate quadric and r(Q)=r, Q is a cone $\prod_{n-r}Q_{r-1}$ with vertex $\prod_{n-r}Q_{n-1}$ (the set of singular points of Q) and base Q_{r-1} in a subspace $\prod_{r=1}$ skew to $\prod_{n=r}$.

Definition 3

For $\mathcal{Q} = \prod_{n=r} \mathcal{Q}_{r-1}$ a degenerate quadric with $r(\mathcal{Q}) = r$, \mathcal{Q}_{r-1} is called the nondegenerate quadric associated to Q. The degenerate quadric Q will be said to be of hyperbolic type (resp. elliptic, parabolic) if its associated non-degenerate quadric is of *that type.*

Table 1: Quadrics in PG(3,q)

r(Q)	Description			
1	repeated plane			
	$\Pi_2 \mathcal{P}_0$			
2	pair of distinct planes			
	$\Pi_2 \mathcal{H}_1$			
2	line			
	$\Pi_1 \mathcal{E}_1$			
3	cone quadric			
	$\Pi_0 \mathcal{P}_2$			
4	hyperbolic quadric			
	$\mathcal{H}_3(\mathcal{R},\mathcal{R'})$			
4	elliptic quadric			
	\mathcal{E}_3			

Some values of $\#X_{Z(f)}(\mathbb{F}_q)$

 $s(t) = 2t^3 + 2t^2 - t + 1,$ $s_2(t) = 2t^3 + t^2 + 1$, $s_3(t) = 2t^3 + t^2 - t + 1$, $s_4(t) = 2t^3 + 1$, $s_5(t) = 2t^3 - t + 1$

The methods used

• 1. Hyperplane section of non-singular Hermitian variety.

• 2. The trace on a hyperplane of the two varieties and a special covering of PG(3,q).

• 3. The structure of two reguli, each one generating the hyperbolic quadric and the upper bound on the number of skew lines contained in a regulus and the non-singular Hermitian surface.

• 4. The geometrical structure of a cone quadric of rank 3 which is in fact a union of q + 1 lines through a vertex and the upper bound on the number of common lines of the two varieties.

Resolution of Sørensen Conjecture ($h \ge 3$ **and** $t = p^a$ **)**

(elliptic)

DE LA RECHERCHE SCIENTIFIQUE

bution (w_i , A_{w_i}) of $C_2(X)$ (\mathbb{F}_{t^2})					
$= t^5 - t^3 - t^2 + t$					
of 2 tan planes to X and $l \cap X = (t+1)$ points.					
$-1)[\frac{1}{2}(t^5+t^3+t^2+1)t^5]$					
$w_2 = t^5 - t^3$					
$ds << w_2 >>$ are given by:					
lic containning <mark>lll</mark> of X.					
planes tan of X and $l \subset X$.					
<i>he second</i> \overline{n} <i>-tan to</i> X <i>and</i> $l \cap X = 1$ point.					
$+t^3+t^2+1)(3t^2-t+1)t^2]$					
$v_3 = t^5 - t^3 + t$					
cs which are union of 2 planes one <mark>tan</mark> , the second					
and $l \cap X = (t+1)$ points.					
$1)(t^5 + t^3 + t^2 + 1)(t^6 - t^5)$					
ecture on w_4 and w_5					

The codewords $\langle w_4 \rangle >$ are given by quadrics which are union of 2 planes tan to

Divisibility by *t* of the others weights ? (Theorem of Ax (1964))

Table 2: Quadratic section of *X*

Гуре	$\#X_{Z(\mathcal{Q})}(\mathbb{F}_q)$	$\#X_{Z(\mathcal{Q})}(\mathbb{F}_4)$	Weight over \mathbb{F}_q	Weight over \mathbb{F}_4
1	$t^3 + t^2 + 1$	13	t^5	32
2	$t^3 + 1$	9	$t^{5} + t^{2}$	36
3	1	1	$t^5 + t^3 + t^2$	44
4	t+1	3	$t^5 + t^3 + t^2 - t$	42
5	$t^2 + 1$	5	$t^{5} + t^{3}$	40
6	$s_4(t)$	17	$t^5 - t^3 + t^2$	28
	$s_5(t)$	15	$t^5 - t^3 + t^2 + t$	30
	$s_3(t)$	19	$t^{5} - t^{3} + t$	26
7	$s_2(t)$	21	$t^{5} - t^{3}$	24
	s(t)	23	$t^5 - t^3 - t^2 + t$	22
8	$s_2(t)$	21	$t^{5} - t^{3}$	24
9	$\leq t^3 + t^2 + t$	≤ 15	$\geq t^5 - t$	$30 \le w \le 44$
	$+1 < s_4(t)$			
10	$t^3 + t^2 + 1$	13	t^5	32
	$t^3 + 2t^2 - t + 1$	15	$t^{5} - t^{2} + t$	30
11	$s_2(t)$	21	$t^{5} - t^{3}$	24
12	$\leq t^3 + 3t^2 - t$	≤ 19	$\geq t^5 - t^3$	$26 \le w \le 32$
	$+1 \leq s_3(t)$			
13	$\leq t^3 + 2t^2$	≤ 17	$\geq t^5 - t^2$	$28 \le w \le 36$
	$+1 \leq s_4(t)$			
14	$\leq t^3 + t^2 +$	≤ 15	$\geq t^5 - t$	$30 \le w \le 40$
	$t+1 < s_4(t)$			
	$\leq 2t^3 + 2t$		$\geq t^5 - t^3 + t^2$	
15	$+2 < s_2(t)$	≤ 17	-2t - 1	$28 \le w \le 45$