Genus 2 Curves with Split Jacobians

Nils Bruin and Kevin Doerksen

Split Jacobians are special. A genus 2 curve C has a *split Jacobian* if its Jacobian, J(C) is isogenous to the product of two elliptic curves. They can be recognized from the fact that C is a degree n cover of an elliptic curve for some integer n. If $\psi : C \longrightarrow E$ is a degree n cover then we say $J(C)$ is (n, n) split.

Department of Mathematics Simon Fraser University

kdoerkse@sfu.ca

1. Background of the Problem

- *Classify all genus 2 curves* C *with* (n, n)*-split Jacobians.*
- Classify the elliptic curves E_1 and E_2 which are subcovers of C and determine *the isogeny* $E_1 \times E_2 \longrightarrow J(C)$

Problem. *Let* n *be a natural number.*

The isogeny is of particular interest in number theory as it can be used to visualize elements of the Tate-Shafarevich group of an elliptic curve (see Bruin and Flynn [2] for an example).

Let $\pi_C: C \longrightarrow \mathbb{P}^1$ and $\pi_i: E_i \longrightarrow \mathbb{P}^1$ be the natural degree 2 projections for $i \in \{1,2\}$. Frey and Kani [3] and Kuhn [4] showed that exist covers ϕ_1 and ϕ_2 such that the following diagram commutes.

This problem has been considered by a number of people. Most notably, Frey and Kani [3] related the problem to maps between projective lines. The case for $n = 2$ is known; $n = 3$ was solved by Kuhn [4] and Shaska [5] over \overline{Q} , and recently $n = 5$ has been solved in a preprint by Shaska, Magaard and Völklein). Arikushi [1] generalized the $n = 3$ result to arbitrary fields by providing the correct twist on the curves.

2. The construction

Let C be a genus two curve with a (n, n) -split Jacobian and let E_1 and E_2 be two elliptic curves whose direct product is isogenous to $J(C)$. Then there are degree n covers ψ_1 and ψ_2 from C to E_1 and E_2 respectively.

> If there were an isogeny between $J(C_2)$ and $J(C_4)$, by the above set up, it would have to have a kernel of order 4:

Figure 1: *Commutative diagram*

The genera of $E_1,\;E_2$, and C impose relations between the ramification of the maps in Figure 1. Let $i \in \{1, 2\}$:

- π_C is ramified at the Weierstrass points of C.
- \bullet π_i is ramified at the 2-torsion points of $E_i.$
- By using the Riemann–Hurwitz formula, we find there are 2 ramification points to distribute in the ψ_i cover and $2n-2$ ramification points to distribute in the ϕ_i cover.

The genus 2 curve C_4 whose Jacobian is 4-isogenous to $E_1\times E_2$ has similar defining equations in one free parameter s . Unfortunately, these equations are far too large to fit on this poster, so we present a worked example instead.

 $4 - 32400x^3 + 77400x^2 - 3970000$ $(3x-26)^{2}(9x^{2}+300x+1300)$

Figure 2: One possible configuration of the ramification points of ϕ_1 for $n=4$. The red *lines correspond to the 6 Weierstrass points of* C*, and the X's are the 6 ramified points of* ϕ_1 . π_1 is ramified over q_1 , q_2 , q_3 , and ∞ .

3. The case $n = 4$

In order to deal with the degree 4 case, we observe that every pair of elliptic curves which have isomorphic 4-torsion would also have isomorphic 2-torsion. So if E_1 and E_2 were two elliptic curves with isomorphic 4-torsion, then there exist genus two curves C_2 and C_4 such that $E_1\times E_2$ is 2-isogenous to $J(C_2)$ and is 4-isogenous to $J(C_4)$ respectively. The obvious question is whether there is some sort of correspondence between C_2 and $C_4.$

Figure 3: *Finding a connection between the two genus two curves*

By using the isogenies between $E_1\times E_2$ and the two Jacobians of C_2 and C_4 , we have:

$$
E_1 \times E_2 \xrightarrow{4} J(C_2)
$$

$$
E_1 \times E_2 \xrightarrow{16} J(C_4)
$$

$$
E_1 \times E_2 \xrightarrow{4} J(C_2) \xrightarrow{4} J(C_4)
$$

Such an isogeny exists between $J(C_2)$ and $J(C_4)$; it is a *Richelot isogeny*. A Richelot isogeny splits multiplication by two on the Jacobian and can be described by a 2 by 2 correspondence between C_2 and C_4 . The form of genus 2 curves which admit Richelot isogenies is known. By using the Richelot isogeny, we were able to characterize genus two curves C_4 which are degree 4 covers of an arbitrary elliptic curve.

4-torsion is given by:

where

$$
E_2: y^2 = x^3 + \frac{3a^2 + b}{d}x^2 + \frac{3a}{d}x + \frac{1}{d}
$$

$$
a = \frac{b^2s^4 + 8cs^3 + 2bs^2 - 1}{4s\left(cs^3 + bs^2 + 1)\right)}
$$

$$
d = a^3 + ab + c
$$

and s is a free parameter.

3.1 A worked example

For simplicity, we begin with an elliptic curve which is a degree 2 subcover of a genus 2 curve that has rational Weierstrass points.

$$
E_1: v^2 = u^3 - \frac{1162084}{3}u - \frac{1044547504}{27}
$$

$$
= \left(u - \frac{2002}{3}\right)\left(u + \frac{308}{3}\right)\left(u + \frac{1694}{3}\right)
$$

A genus 2 curve which is a degree 2 cover of E_1 is given by:

$$
C_2: z^2 = w^6 - \frac{1400}{9}w^4 + \frac{490000}{81}w^2 - \frac{4000000}{81}w
$$

= $(w - 10)\left(w - \frac{20}{3}\right)\left(w - \frac{10}{3}\right)\left(w + \frac{10}{3}\right)\left(w + \frac{20}{3}\right)(w + 10)$

We can then obtain a genus 2 curve which is a degree 4 cover of E_1 is given by:

$$
C_4: y^2 = \left(x^2 + \frac{100}{3}x + \frac{1300}{9}\right)\left(x^2 - \frac{10}{3}x - \frac{350}{9}\right)\left(x^2 - \frac{60}{7}x + \frac{100}{21}\right)
$$

The degree 4 covering map from \mathbb{P}^1 to \mathbb{P}^1 is given by:

$$
u = \frac{1694}{75} \cdot \frac{3807x^4 - 31}{(3x - 1)^2}
$$

where $q_1=\frac{2002}{3}$ $\frac{102}{3}$, $q_2 = -\frac{308}{3}$ $\frac{08}{3}$, $q_3 = -\frac{1694}{3}$ $\frac{1094}{3}$.

This cover map has the configuration of ramification points that is displayed in Figure 2,

4. References

[1] K. ARIKUSHI, Elliptic Curves with isomorphic 3-torsion over Q. *Report* (2005) see http://www.math.sfu.ca/numthry/report/2005oct16.pdf [2] N. BRUIN AND E. V. FLYNN, Exhibiting SHA[2] on hyperelliptic Jacobians. *J. Number Theory* **118** (2006), no. 2, 266–291. [3] G. FREY AND E. KANI, Curves of genus 2 covering elliptic curves and an arithmetic application. *Arithmetic algebraic geometry* (*Textel* 1989), 153–176, *Progr. Math.,* 89, Birkhäuser Boston, MA, 1991 [4] M. R. KUHN, Curves of genus 2 with split Jacobian. *Trans. Amer. Math. Soc.* **307**, 41–49, 1988. [5] T. SHASKA, Genus 2 fields with degree 3 elliptic subfelds. *Forum Math.,* vol **16**, 2,

263–280, 2004.

Let E_1 be an elliptic curve over k with defining equation $E_1 : v^2 = u^3 + bu + c$ for arbitrary scalars $b, c \in k$. Then an appropriate elliptic curve E_2 with isogenous