

fields with nontrivial class group

L. Dembélé and Steve Donnelly

May 21, 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline	Hilbert modular forms	Modularity conjectures	Algorithm	Examples
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Hilbert modular forms
- Modularity conjecture
- Brandt modules
- Algorithm
- Examples

Outline	Hilbert modular forms	Modularity conjectures	Algorithm	Examples
Notation				

- Let *F* be a totally real number field of even degree *g*.
- Let v_i, i = 1,..., g, be all the real embeddings of F. And, for every a ∈ F, let a_i = v_i(a) be the image of a under v_i.
- We let \mathcal{O}_F be the ring of integers of F.
- Let \mathfrak{N} be an integral ideal of F.
- Let \$\vee\$i, i = 1,..., h⁺, be a complete set of representatives of the narrow class group Cl⁺(F).
- For each ideal \mathfrak{N}_i , we define the group

$$\mathsf{F}_{\mathsf{0}}(\mathfrak{N},\,\mathfrak{N}_{i}) = \left\{ \gamma \in \begin{pmatrix} \mathcal{O}_{\mathsf{F}} & \mathfrak{N}_{i}^{-1} \\ \mathfrak{N}\mathfrak{N}_{i} & \mathcal{O}_{\mathsf{F}} \end{pmatrix} : \mathsf{det}(\gamma) \in \mathcal{O}_{\mathsf{F}}^{\times},\,\mathsf{det}(\gamma) \gg \mathsf{0} \right\}.$$

Let 𝔅 = {x + iy ∈ ℂ : y > 0} be the Poincaré upper half-plane.

Definition

A classical Hilbert modular form of level $\Gamma_0(\mathfrak{N}, \mathfrak{N}_i)$ and parallel weight 2 is a holomorphic function $f : \mathfrak{H}^g \to \mathbb{C}$ given by a power series

$$f(z) = \sum_{\mu=0,\ \mu\gg 0} a_{\mu}^{(i)} e^{2\pi i (\mu_1 z_1 + \dots + \mu_g z_g)}$$

such that

$$f\left(\frac{a_1z_1+b_1}{c_1z_1+d_1},\cdots,\frac{a_gz_g+b_g}{c_gz_g+d_g}\right) = \left(\prod_{i=1}^g \det(\gamma_i)^{-1}(c_iz_i+d_i)^2\right) \times f(z_1,\cdots,z_g),$$
for all $\gamma \in \Gamma(\mathfrak{N},\mathfrak{N}_i).$

Hilbert modular forms

Definition

The space of Hilbert modular forms is given by

$$M_2(\mathfrak{N}) = \bigoplus_{i=1}^{h^+} M_2(\Gamma_0(\mathfrak{N}, \mathfrak{N}_i)).$$

In other words, a Hilbert modular form of parallel weight 2 and level \mathfrak{N} is an h^+ -tuple of classical Hilbert modular forms.

Let $f = (f_1, ..., f_{h^+})$ be a Hilbert modular form. We say that f is a cusp form if $a_0^{(i)} = 0$ for all i = 1, ..., g.

We denote the space of cusp forms by $S_2(\mathfrak{N})$.

Hilbert modular forms

Definition

Let $f = (f_1, ..., f_{h^+})$ be a Hilbert cusp form of parallel weight 2 and level \mathfrak{N} .

Let \mathfrak{m} be an integral ideal, and \mathfrak{N}_i be the unique representative such that $\mathfrak{m} = (\mu)\mathfrak{N}_i^{-1}$. Then $a_{\mu}^{(i)}$ only depends on \mathfrak{m} .

We call it the Fourier coefficient of f at \mathfrak{m} and denote it by $a_{\mathfrak{m}}(f)$.

The L-series attached to f is defined by

$$L(f, s) := \sum_{\mathfrak{m} \subseteq \mathcal{O}_F} \frac{a_{\mathfrak{m}}(f)}{\mathrm{N}(\mathfrak{m})^s}.$$

This converges for Re(s) large enough.

Hilbert modular forms

There is a commuting family of diagonalizable operators called the **Hecke operators** which acts on the space of Hilbert modular forms $M_2(\mathfrak{N})$.

We say that a cusp form *f* is a **newform** if it is a common eigenvector of the Hecke operators and $a_{(1)}(f) = 1$.

This theorem explains in parts the interest of number theorists into modular forms.

Theorem (Shimura)

Let *f* be a newform. Then the coefficients $a_m(f)$ are algebraic integers. More specifically, $\mathbb{Q}(a_m(f), \mathfrak{m} \subseteq \mathcal{O}_F)$ is a number field, and L(f, s) admits an Euler product.

Modularity over totally real number fields

Let A be an abelian variety over F.

As in the classical setting, we can define the *L*-series of *A* again by counting points.

We say that *A* is **modular** if there exists an integral ideal \mathfrak{N} in *F* and a newform *f* of level \mathfrak{N} and parallel weight 2 such that L(A, s) = L(f, s).

Conjecture (Shimura-Taniyama)

Let A/F be an abelian variety (of GL_2 -type). Then, there exists an integral ideal \mathfrak{N} and a newform f of level \mathfrak{n} and weight (2,2) such that

$$L(A, s) = L(f, s).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Modularity over totally real number fields

In the classical setting, this is now a theorem of Khare-Wintenberger et al.

The totally real case is very less understood. Hence the need to experiment.

Experimentation was crucial in the understanding of the classical case.

- We let B be a division quaternion algebra over F such that B ⊗ ℝ ≃ ℍ^g, where ℍ is the Hamilton quaternion algebra, and such that the completion of B at any finite prime p is the matrix algebra.
- We choose a maximal order *R* of *B*.
- Let CI(*R*) denote a complete set of representatives of all the right ideal classes of *R* (**appropriately chosen**).

(日) (日) (日) (日) (日) (日) (日)

- For any $a \in Cl(R)$, we let R_a be the left order of a.
- We fix an isomorphism $R \otimes (\mathcal{O}_F/\mathfrak{N}) \cong M_2(\mathcal{O}_F/\mathfrak{N})$.

Let $M_2^{R_a}(\mathfrak{N}) := \mathbb{Z}[\Gamma_a \setminus \mathbf{P}^1(\mathcal{O}_F/\mathfrak{N})]$, where $\Gamma_a = R_a^{\times}/\mathcal{O}_F^{\times}$ is a finite group.

For each $\mathfrak{a}, \mathfrak{b} \in \mathrm{Cl}(R)$ and any prime \mathfrak{p} in \mathcal{O}_F , put

$$\Theta^{(S)}(\mathfrak{p}; \mathfrak{a}, \mathfrak{b}) := \boldsymbol{R}_{\mathfrak{a}}^{\times} \setminus \left\{ u \in \mathfrak{a}\mathfrak{b}^{-1} : \ \frac{(\operatorname{nr}(u))}{\operatorname{nr}(\mathfrak{a})\operatorname{nr}(\mathfrak{b})^{-1}} = \mathfrak{p} \right\},$$

where R_{a}^{\times} acts by multiplication on the left.

We define the linear map $T_{\mathfrak{a},\mathfrak{b}}(\mathfrak{p}): M_2^{R_{\mathfrak{b}}}(\mathfrak{N}) \to M_2^{R_{\mathfrak{a}}}(\mathfrak{N})$ by

$$T_{\mathfrak{a},\mathfrak{b}}(\mathfrak{p})f(x) = \sum_{u\in\Theta^{(S)}(\mathfrak{p};\mathfrak{a},\mathfrak{b})}f(ux).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Brandt modules

Theorem (Shimizu, Jacquet-Langlands)

There is an isomorphism of Hecke modules

$$M_2(\mathfrak{N})\simeq igoplus_{\mathfrak{a}\in\mathrm{Cl}(R)}M_2^{R_\mathfrak{a}}(\mathfrak{N}),$$

where the action of the Hecke operator $T(\mathfrak{p})$ on the right is given by the collection of linear maps $(T_{\mathfrak{a}, \mathfrak{b}}(\mathfrak{p}))$ for all $\mathfrak{a}, \mathfrak{b} \in \mathrm{Cl}(R)$.

- - **1** Find a set of prime ideals S not dividing \mathfrak{N} that generate $Cl^+(F)$.
 - Find a presentation of the quaternion algebra B/F ramified at precisely the infinite places, and compute a maximal order R of B.
 - Compute a complete set Cl(R) of representatives a for the right ideal classes of R such that the primes dividing nr(a)belong to S.
 - Solution For each representative $\mathfrak{a} \in \operatorname{Cl}(R)$, compute its left order $R_{\mathfrak{a}}$, and compute the unit group $\Gamma_{\mathfrak{a}} = R_{\mathfrak{a}}^{\times} / \mathcal{O}_{\mathfrak{F}}^{\times}$.
 - Sompute the sets $\Theta^{(S)}(\mathfrak{p}; \mathfrak{a}, \mathfrak{b})$, for all primes \mathfrak{p} with $N\mathfrak{p} \leq b$ and all $\mathfrak{a}, \mathfrak{b} \in \mathrm{Cl}(R)$.

Compute a splitting isomorphisms

$$(R \otimes \mathcal{O}_F/\mathfrak{N})^{\times} \cong \mathbf{GL}_2(\mathcal{O}_F/\mathfrak{N}).$$

2 For each $\mathfrak{a} \in \operatorname{Cl}(R)$, compute $M_2^{R_{\mathfrak{a}}}(\mathfrak{N})$ as the module

$$M_2^{R_{\mathfrak{a}}}(\mathfrak{N}) = \mathbb{Z}[\Gamma_{\mathfrak{a}} \setminus \mathbf{P}^1(\mathcal{O}_F/\mathfrak{N})].$$

Ombine the results of step (2), forming the direct sum

$$M_2(\mathfrak{N}) = \bigoplus_{\mathfrak{a} \in \mathrm{Cl}(R)} M_2^{R_\mathfrak{a}}(\mathfrak{N}).$$

For every prime p, compute the Brandt matrix of T_p acting on M₂(𝔅).

Brandt modules

Remark

- The main improvement to the current algorithm lies in the precomputation phase.
- An improvement of the lattice enumeration process led to a substantial speed up in this phase.
- The complexity of this phase depends only on the base field F.
- The main part of the algorithm is essentially linear algebra.

(日) (日) (日) (日) (日) (日) (日)

Example: $\mathbb{Q}(\sqrt{10})$

Theorem

Let F be the real quadratic field $\mathbb{Q}(\sqrt{10})$ and $H = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ its Hilbert class field. Then, we have the followings:

- a) Up to isogeny, there is a unique modular abelian variety A over F with everywhere good reduction; and it is a simple abelian surface with real multiplication by Z[√2].
- b) The abelian surface A is of the form $A = \text{Res}_{H/F}(E)$, where E is an elliptic curve with everywhere good reduction over H.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example: $\mathbb{Q}(\sqrt{10})$

Ideas of the proof:

- We compute all the Hilbert newforms of level 1 and weight (2,2) and weight (2,2,2,2) over *F* and *H* respectively. Then we obtained the tables below.
- We observe that all the form on *H* are base change from *F*.
- We then search for the corresponding motives.
- Finally, we prove that the motives we found are modular.

The Hilbert class field of F is $H := \mathbb{Q}(\sqrt{2}, \sqrt{5}) = \mathbb{Q}(\alpha)$, where the minimal polynomial of α is $x^4 - 2x^3 - 5x^2 + 6x - 1$. We consider the integral basis

$$\begin{array}{rcl} \alpha_1 & := & 1, \\ \alpha_2 & := & \frac{1}{3}(2\alpha^3 - 3\alpha^2 - 10\alpha + 7), \\ \alpha_3 & := & \frac{1}{3}(-2\alpha^3 + 3\alpha^2 + 13\alpha - 7), \\ \alpha_4 & := & \frac{1}{3}(-\alpha^3 + 3\alpha^2 + 5\alpha - 8). \end{array}$$

Then E/H is given by

	a ₁	a ₂	a ₃	a ₄	a ₆
<i>E</i> :	[0, 0, 1, 0]	[1,0,1,-1]	[0, 1, 0, 0]	[-15, -44, -21, -26]	[-91, -123, -48, -97]

Example: $\mathbb{Q}(\sqrt{10})$

N(p)	p	<i>f</i> ₁	f ₂	<i>f</i> ₃
2	(2, ω ₄₀)	-3	3	$-\sqrt{2}$
3	$(3, \omega_{40} + 4)$	4	4	$\sqrt{2}$
3	$(3, \omega_{40} + 2)$	4	4	$\sqrt{2}$
5	$(5, \omega_{40})$	-6	6	$-2\sqrt{2}$
13	$(13, \omega_{40} + 6)$	-14	14	0
13	$(13, \omega_{40} + 7)$	-14	14	0
31	$(31, \omega_{40} + 14)$	32	32	4
31	$(31, \omega_{40} + 17)$	32	32	4
37	$(37, \omega_{40} + 11)$	-38	38	$6\sqrt{2}$
37	$(37, \omega_{40} + 26)$	-38	38	$6\sqrt{2}$

Table: Hilbert modular forms of level 1 and weight (2, 2) over $\mathbb{Q}(\sqrt{10})$.

(ロ) (同) (三) (三) (三) (○) (○)

Example: $\mathbb{Q}(\sqrt{10})$

Table: Hilbert modular forms of level 1 and weight (2, 2, 2, 2) over the Hilbert class field *H* of $\mathbb{Q}(\sqrt{10})$.

Example: $\mathbb{Q}(\sqrt{257})$

N(p)	p	EIS1	257A	257B	257C	EIS2
2	$(2, \omega_{257})$	3	-1	$\frac{1+\sqrt{13}}{2}$	$\frac{1+\sqrt{-3}}{2}$	$\frac{-3+3\sqrt{-3}}{2}$
2	$(2, 1 - \omega_{257})$	3	-1	$\frac{1-\sqrt{13}}{2}$	$\frac{1-\sqrt{-3}}{2}$	$\frac{-3-3\sqrt{-3}}{2}$
9	(3)	10	4	-4	4	² 10
11	$(11, 4 + \omega_{257})$	12	0	1	0	$-6 + 6\sqrt{-3}$
11	$(11, 5 - \omega_{257})$	12	0	1	0	$-6 - 6\sqrt{-3}$
13	$(13, 9 + \omega_{257})$	14	2	$\sqrt{13}$	$-1 + \sqrt{-3}$	$-7 - 7\sqrt{-3}$
13	$(13, 10 - \omega_{257})$	14	2	$-\sqrt{13}$	$-1 - \sqrt{-3}$	$-7 + 7\sqrt{-3}$
17	$(17, 11 + \omega_{257})$	18	4	$4 + \sqrt{13}$	$-2 - 2\sqrt{-3}$	$-9 + 9\sqrt{-3}$
17	$(17, 12 - \omega_{257})$	18	4	$4 - \sqrt{13}$	$-2 + 2\sqrt{-3}$	$-9 - 9\sqrt{-3}$

Table: Hilbert modular forms of level 1 and weight (2, 2) over $\mathbb{Q}(\sqrt{257})$.

・ロト・(四ト・(日下・(日下・))への)

(日) (日) (日) (日) (日) (日) (日)

Example $\mathbb{Q}(\sqrt{257})$

N(p)	p	257D
2	$(2, \omega_{257})$	β
2	$(2, 1 - \omega_{257})$	$(\beta^3 + \beta^2 + 4\beta - 3)/3$
9	(3)	-4
11	$(11, 4 + \omega_{257})$	$(-\beta^3 - 4\beta^2 - 4\beta - 9)/12$
11	$(11, 5 - \omega_{257})$	$(\beta^3 + 4\beta^2 + 4\beta - 3)/12$
13	$(13, 9 + \omega_{257})$	$(-7\beta^3 - 4\beta^2 - 28\beta + 21)/12$
13	$(13, 10 - \omega_{257})$	$(-\beta^3 - 4\beta^2 - 28\beta - 9)/12$
17	$(17, 11 + \omega_{257})$	$(-\beta^3 - 4\beta^2 + 4\beta - 9)/4$
17	$(17, 12 - \omega_{257})$	$(11\beta^3 + 20\beta^2 + 44\beta - 33)/12$

Table: Hilbert modular forms of level 1 and weight (2, 2) over $\mathbb{Q}(\sqrt{257})$ (cont'd). (Here the minimal polynomial of β is given by $x^4 + x^3 + 4x^2 - 3x + 9$.)

Example: $\mathbb{Q}(\sqrt{401})$

In this case $h_F = h_F^+ = 5$.

Our algorithm gives the dimensions dim $M_2(1) = 125$ and dim $S_2(1) = 120$.

The forms that are base change come from the space of classical modular forms $S_2(401, (\frac{401}{2}))$, which has dimension 32.

Thus the dimension of the subspace of newforms that are not base change is 120 - 32/2 = 104.