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Ca,b curves

Throughout, let k be a perfect field and fix coprime a, b ∈ Z≥2.

A Ca,b curve is a nonsingular curve in A2
k defined by

ya + cb,0xb +
∑

ai+bj<ab

ci,jx
iy j ∈ k [x , y ],

with cb,0 6= 0.

a

b

← typical Newton polytope ∆a,b
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Ca,b curves

Properties:

There is a unique point at infinity, which is dominated by a
single place P∞ and

div∞x = aP∞, div∞y = bP∞.

Since gcd(a, b) = 1, the Weierstrass semigroup of P∞

{−ordP∞
f |div∞f = iP∞ for some i ∈ N}

equals aN + bN.

Riemann-Roch the genus equals (a− 1)(b − 1)/2.

Conversely, every curve having a rational place with
semigroup aN + bN is Ca,b.
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Ca,b curves

. . . as generalizations of hyperelliptic curves.

Every hyperelliptic curve of genus g having a rational
Weierstrass point is C2,2g+1.

. . . as steppingstones to nondegenerate curves.

Ca,b curves are smooth degree ab curves in weighted
projective space P(b, a, 1), which is an example of a toric
surface.

∆ toric surface P∆

e.g. P∆a,b = P(b, a, 1)
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The zeta function

Let Fq be a finite field, and let

C(x , y) = ya + cb,0xb +
∑

ai+bj<ab

c i,jx
iy j ∈ Fq[x , y ]

define a Ca,b curve.

This talk is about the efficient computation of the zeta function

ZC(T ) = exp

(

∞
∑

k=1

#C(Fqk )
T k

k

)

∈ Q[[T ]]

which turns out to be a rational function and hence a finite,
computable object.

Wouter Castryck, Hendrik Hubrechts, Frederik Vercauteren Computing zeta functions in families of Ca,b curves



The zeta function

Theorem (Weil):

One can write

ZC(T ) =
P(T )

1− qT

for a degree 2g = (a− 1)(b − 1) polynomial P(T ) ∈ Z[T ].
Moreover, one can write

P(T ) =

2g
∏

i=1

(1− αiT )

where the αi ∈ C are algebraic integers such that

|αi | =
√

q (Riemann hypothesis)

αiα2g−i = q (Poincaré duality).
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The zeta function

Consequences:

The absolute values of the coefficients of P(T ) are
bounded by

B =

(

2g
g

)

qg ,

so it suffices to compute P(T ) modulo some N > 2B.

One can recover #C(Fqk ) as qk −∑2g
i=1 αk

i .

Theorem (Tate):

Let Jac(C) be the Jacobian variety of C. Then

#Jac(C)(Fq) = P(1).
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State of the art

Two main applications in mind:

1 Direct: given a concrete curve C(x , y), efficiently
determine #C(Fq), #Jac(C)(Fq), . . .

2 Indirect: find a curve with almost prime order Jacobian, for
use in cryptographic applications based on the discrete
logarithm problem.

State of the art before this research:

1 Denef-Vercauteren’s generalization of Kedlaya’s algorithm
for hyperelliptic curves over fields of small characteristic.

E.g. computation of ZC(T ) for a C3,4 curve C over F260

took about 1.5 hours on a home PC.

2 Repeated application of the above algorithm.
Would take a couple of days to find a C3,4 Jacobian
suitable for use in cryptography.
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Monsky-Washnitzer cohomology (absolute)

Write #Fq = q = pn where p is the field characteristic.

Let Qq be the unramified degree n extension of Qp.

Let Zq = {α ∈ Qq | νp(α) ≥ 0} be its valuation ring. It is a
complete DVR with local parameter p and residue field Fq.

Choose

C(x , y) = ya + cb,0xb +
∑

ai+bj<ab

ci,jx
iy j ∈ Zq[x , y ]

such that it reduces to C(x , y) modulo p  this automatically
defines a Ca,b curve over Qq.
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Monsky-Washnitzer cohomology (absolute)

Write

Zq〈C〉† =
Zq〈x , y〉†
(C(x , y))

where Zq〈x , y〉† is the overconvergent power series ring






∑

i,j∈N

aijx
iy j

∣

∣

∣

∣

∣

∣

∃ρ ∈ ]0, 1[ :
|aij |p
ρi+j → 0 if i + j →∞







(converge fast enough for their integrals to converge as well).

Note that there is a natural reduction mod p map

π : Zq〈C〉† → Fq[C].
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Monsky-Washnitzer cohomology (absolute)

Theorem (Monsky, Washnitzer):

There exists a Zq-algebra endomorphism Fq on Zq〈C〉† that
makes the following diagram commutative:

Zq〈C〉†
Fq−→ Zq〈C〉†

π ↓ ↓ π

Fq[C]
a 7→aq

−→ Fq[C].

The map Fq is called a lift of Frobenius.

There is a constructive proof, and Fq(x) and Fq(y) can be
effectively approximated using Newton iteration.
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Monsky-Washnitzer cohomology (absolute)

Consider the module of differentials

D1(Zq〈C〉†) =
Zq〈C〉†dx + Zq〈C〉†dy
(

∂C
∂x dx + ∂C

∂y dy
)

and let d : Zq〈C〉† → D1(Zq〈C〉†) be the usual exterior
derivation. Then define the cohomology space

H1
MW (C/Qq) =

D1(Zq〈C〉†)
d(Zq〈C〉†)

⊗Zq Qq.

Note that Fq induces a Qq-vector space morphism

F∗
q : H1

MW (C/Qq)→ H1
MW (C/Qq) : fdg 7→ Fq(f )dFq(g).
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Monsky-Washnitzer cohomology (absolute)

Theorem (Monsky, Washnitzer):

H1
MW (C/Qq) is a 2g-dimensional vector space on which F∗

q
acts bijectively. Moreover, if χ(T ) is its characteristic
polynomial, then

ZC(T ) =
T 2gχ(1/T )

1− qT
.

Denef and Vercauteren prove that

B = {x r ysdx | r = 0, . . . , b − 2; s = 1, . . . , a− 1}

is a basis for H1
MW (C/Qq) and give an explicit procedure to

reduce a given 1-form modulo exact differential forms.
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Computing the zeta function (absolute)

Algorithm to compute ZC(T ):

1 Compute Fq(x) and Fq(y). . .

2 Use this to determine F∗
q (x r ysdx) for all x r ysdx ∈ B. . .

3 Reduce modulo exact differential forms to end up in terms
of B again matrix of F∗

q . . .

4 Compute characteristic polynomial χ(T ) and recover
ZC(T ). . .

. . . modulo a sufficiently large p-adic precision.

Differential reduction takes q steps!!
 One splits qth power Frobenius into n copies of pth power
Frobenius
 resulting algorithm takes O(n3p) steps.
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Computing the zeta function (absolute)

Step

2 Use Fq(x) and Fq(y) to determine
F∗

q (x r ysdx) = Fq(x)rFq(y)sdFq(x) for all x r ysdx ∈ B. . .

accounts for about 80% of the computation and makes the
algorithm slow in practice.

 in contrast with Kedlaya’s original algorithm for hyperelliptic
curves, where it is possible to choose Fq(x) = xq and only
compute Fq(y) using Newton iteration

 2 minutes versus 1.5 hours
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The deformation idea

Different approach (Lauder):

1 Consider a 1-parameter family of Ca,b curves

C(x , y , t) = ya+cb,0(t)x
b+

∑

ai+bj<ab

c i,j(t)x
iy j ∈ Fq[t ][x , y ],

and suppose that C(x , y , 0) has an easy-to-compute
matrix of Frobenius Fq(0);

2 Compute a relative matrix of Frobenius Fq(t) from Fq(0) by
solving a differential equation of the type

N(t)Fq(t)− d
dt

Fq(t) = qtq−1Fq(t)N(tq)

(here N(t) is a matrix of the Gauss-Manin connection);

3 Evaluate Fq(t) in the point of interest.
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The deformation idea

Two advantages:

One circumvents the costly computation of a lift of
Frobenius;

Once Fq(t) is computed, evaluation at different values of t
is cheap highly speeds up the search for a Ca,b curve
with almost prime order Jacobian.
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Monsky-Washnitzer cohomology (relative)

C(x , y , t) defines a flat family over an open subset
Spec Fq[t , r(t)−1] of the affine t-line.

t0, r(t0) 6= 0

t1, r(t1) = 0

Spec S

Choose

C(x , y , t) = ya + cb,0(t)x
b +

∑

ai+bj<ab

ci,j(t)x
iy j ∈ Zq[t ][x , y ]

such that it reduces to C(x , y , t) modulo p.
Choose r(t) ∈ Zq[t ] such that it reduces to r(t) modulo p
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Monsky-Washnitzer cohomology (relative)

Write

Zq〈t , r(t)−1〉†〈C〉† =
Zq〈t , z, x , y〉†

(zr(t)− 1, C(x , y))

where Zq〈x , y〉† is the overconvergent power series ring






∑

i,j,k, `∈N

aijk`x iy j tk z`

∣

∣

∣

∣

∣

∣

∃ρ ∈ ]0, 1[ :
|aijk`|p

ρi+j+k + `
→ 0 if i + j+k + `→∞







(converge fast enough for their integrals to converge as well).

Note that there is a natural reduction mod p map

π : Zq〈t , r(t)−1〉†〈C〉† → Fq[t , r(t)−1][C].
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Monsky-Washnitzer cohomology (relative)

Theorem:

There exists a Zq-algebra endomorphism Fq on
Zq〈t , r(t)−1〉†〈C〉† that makes the following diagram
commutative:

Zq〈t , r(t)−1〉†〈C〉† Fq−→ Zq〈t , r(t)−1〉†〈C〉†
π ↓ ↓ π

Fq[t , r(t)−1][C]
a 7→aq

−→ Fq[t , r(t)−1][C]

such that Fq(t) = tq. The map Fq is called a lift of Frobenius.

There is a constructive proof, and explicit bounds on the
convergence rates of Fq(x), Fq(y), Fq(z) and Fq(t) can be
given.
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Monsky-Washnitzer cohomology (relative)

Consider the module of differentials

D1(Zq〈t , r(t)−1〉†〈C〉†) =
Zq〈t , r(t)−1〉†〈C〉†dx + Zq〈t , r(t)−1〉†〈C〉†dy

(

∂C
∂x dx + ∂C

∂y dy
)

and let d : Zq〈t , r(t)−1〉†〈C〉† → D1(Zq〈t , r(t)−1〉†〈C〉†) be the
exterior derivation with t fixed. Then define the cohomology
space

H1
MW (C/S†) =

D1(Zq〈t , r(t)−1〉†〈C〉†)
d(Zq〈t , r(t)−1〉†〈C〉†)

⊗Zq Qq,

where S† = Zq〈t , r(t)−1〉† ⊗Zq Qq.
Note that Fq induces a Qq-linear morphism

F∗
q : H1

MW (C/S†)→ H1
MW (C/S†) : fdg 7→ Fq(f )dFq(g).
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Monsky-Washnitzer cohomology (relative)

Theorem:

H1
MW (C/S†) is a free 2g-dimensional module. For every t0 ∈ Fq

for which r(t0) 6= 0, let t̂0 ∈ Zq be its Teichmüller representative.
Then H1

MW (C/S†) mod t − t̂0 can be identified with

H1
MW (C(x , y , t0) |Qq)

on which the action of Frobenius is given by F∗
q (̂t0).

Again

B = {x r ysdx | r = 0, . . . , b − 2; s = 1, . . . , a− 1}

is a basis for H1
MW (C/S†) and there is an explicit procedure to

reduce a given 1-form modulo exact differential forms.
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The Gauss-Manin connection

If we don’t let t be constant, then we have a map

d : D1(Zq〈t , r(t)−1〉†〈C〉†)→ D2(Zq〈t , r(t)−1〉†〈C〉†).

One can always write dω = ϕ ∧ dt , which induces a
well-defined map

∇ : H1
MW (C/S†)→ H1

MW (C/S†)

that satisfies
∇ ◦ F∗

q = qtq−1 ◦ F∗
q ◦ ∇.

On the level of matrices, this reads

N(t)Fq(t)− d
dt

Fq(t) = qtq−1Fq(t)N(tq).
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Computing the zeta function (relative)

Computing the zeta function of a concrete curve C1(x , y):

1 Put the curve in a family

C(x , y , t) = (1− t)C0(x , y) + tC1(x , y)

where C0(x , y) is a superelliptic curve defined over Fp. . .

2 Compute Fq(0) using known techniques (Gaudry-Gürel). . .

3 Compute Gauss-Manin connection N. . .

4 Solve the differential equation

N(t)Fq(t)− d
dt

Fq(t) = qtq−1Fq(t)N(tq)

and compute Fq(1). . .

5 Compute characteristic polynomial and recover ZC(T ). . .
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Computing the zeta function (relative)

Finding a Ca,b curve with almost prime order Jacobian:

1 Consider a ‘random’ family C(x , y , t) ∈ Fp[t ][x , y ] with
superelliptic C(x , y , 0). . .

2 Compute Fq(0) using known techniques (Gaudry-Gürel). . .

3 Compute Gauss-Manin connection N. . .

4 Solve the differential equation

N(t)Fq(t)− d
dt

Fq(t) = qtq−1Fq(t)N(tq) . . .

to find Fq(t)

5 For randomly chosen t0 ∈ Fq, compute Fq (̂t0) and its
characteristic polynomial χ(T ), until χ(1) is almost prime.
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Computing the zeta function (relative)

Implementation results:
Direct application: not yet implemented. . .

Expected: only slight improvement upon Denef and
Vercauteren’s algorithm.
But: roughly same running time to be expected for
nondegenerate curves (ongoing work by Tuitman).

Indirect application:
equation Fpn g precomp time/curve memory
Y 3 + X 4 + (t + 1)XY + 1 259 3 553s 14.5s 56MB
Y 3 + X 5 + X 2 + t + 1 243 4 135s 6.5s 22MB
Y 3 + X 4 + (t + 1)XY + 1 337 3 1064s 13s 54MB
Y 3 + X 5 + XY + tY + 1 329 4 4128s 22s 91MB
Y 3 − X 4 + tX 2 + t − 1 523 3 30.5s 2s 23MB
Y 3 − X 5 − X 2 + tX − 1 519 4 837s 20s 56MB

Y 3 + X 4 + tX − 1 5200 3 515s 538s 288MB

 finding Ca,b curves with almost prime order Jacobian is
now a matter of minutes instead of days
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