Computing zeta functions in families of $C_{a,b}$ curves using deformation

Ants VIII, Banff, May 18th, 2008

Throughout, let *k* be a perfect field and fix coprime $a, b \in \mathbb{Z}_{\geq 2}$.

A $C_{a,b}$ curve is a nonsingular curve in \mathbb{A}^2_k defined by

$$y^a + c_{b,0}x^b + \sum_{ai+bj < ab} c_{i,j}x^iy^j \in k[x,y],$$

with $c_{b,0} \neq 0$.

Wouter Castryck, Hendrik Hubrechts, Frederik Vercauteren Computing zeta functions in families of C_{a,b} curves

Properties:

There is a unique point at infinity, which is dominated by a single place P_{∞} and

$$\operatorname{div}_{\infty} x = aP_{\infty}, \quad \operatorname{div}_{\infty} y = bP_{\infty}.$$

Since gcd(a, b) = 1, the Weierstrass semigroup of P_{∞}

$$\{-\operatorname{ord}_{P_{\infty}} f \,|\, \operatorname{div}_{\infty} f = iP_{\infty} \text{ for some } i \in \mathbb{N}\}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

equals $a\mathbb{N} + b\mathbb{N}$.

- Riemann-Roch \rightsquigarrow the genus equals (a-1)(b-1)/2.
- Conversely, every curve having a rational place with semigroup $a\mathbb{N} + b\mathbb{N}$ is $C_{a,b}$.

... as generalizations of hyperelliptic curves.

- Every hyperelliptic curve of genus g having a rational Weierstrass point is C_{2,2g+1}.
- ... as steppingstones to nondegenerate curves.
 - $C_{a,b}$ curves are smooth degree *ab* curves in weighted projective space $\mathbb{P}(b, a, 1)$, which is an example of a toric surface.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

Let \mathbb{F}_q be a finite field, and let

$$\overline{C}(x,y) = y^{a} + \overline{c}_{b,0}x^{b} + \sum_{ai+bj < ab} \overline{c}_{i,j}x^{i}y^{j} \in \mathbb{F}_{q}[x,y]$$

define a $C_{a,b}$ curve.

This talk is about the efficient computation of the zeta function

$$Z_{\overline{C}}(T) = \exp\left(\sum_{k=1}^{\infty} \#\overline{C}(\mathbb{F}_{q^k})\frac{T^k}{k}\right) \in \mathbb{Q}[[T]]$$

which turns out to be a rational function and hence a finite, computable object.

The zeta function

Theorem (Weil):

One can write

$$Z_{\overline{C}}(T) = \frac{P(T)}{1 - qT}$$

for a degree 2g = (a - 1)(b - 1) polynomial $P(T) \in \mathbb{Z}[T]$. Moreover, one can write

$$P(T) = \prod_{i=1}^{2g} (1 - \alpha_i T)$$

where the $\alpha_i \in \mathbb{C}$ are algebraic integers such that

- $|\alpha_i| = \sqrt{q}$ (Riemann hypothesis)
- $\alpha_i \alpha_{2g-i} = q$ (Poincaré duality).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

Consequences:

The absolute values of the coefficients of P(T) are bounded by

$${m B}=inom{2g}{g} q^{m g},$$

so it suffices to compute P(T) modulo some N > 2B.

• One can recover
$$\#\overline{C}(\mathbb{F}_{q^k})$$
 as $q^k - \sum_{i=1}^{2g} \alpha_i^k$.

Theorem (Tate):

I

Let $Jac(\overline{C})$ be the Jacobian variety of \overline{C} . Then

$$\#\operatorname{Jac}(\overline{C})(\mathbb{F}_q) = P(1).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

1

State of the art

Two main applications in mind:

- **1** Direct: given a concrete curve $\overline{C}(x, y)$, efficiently determine $\#\overline{C}(\mathbb{F}_q), \#\operatorname{Jac}(\overline{C})(\mathbb{F}_q), \ldots$
- Indirect: find a curve with almost prime order Jacobian, for use in cryptographic applications based on the discrete logarithm problem.

State of the art before this research:

1 Denef-Vercauteren's generalization of Kedlaya's algorithm for hyperelliptic curves over fields of small characteristic.

E.g. computation of $Z_{\overline{C}}(T)$ for a $C_{3,4}$ curve \overline{C} over $\mathbb{F}_{2^{60}}$ took about 1.5 hours on a home PC.

2 Repeated application of the above algorithm.

Would take a couple of days to find a $C_{3,4}$ Jacobian suitable for use in cryptography.

< 回 > < E > < E > - E

Write $\#\mathbb{F}_q = q = p^n$ where *p* is the field characteristic.

Let \mathbb{Q}_q be the unramified degree *n* extension of \mathbb{Q}_p .

Let $\mathbb{Z}_q = \{ \alpha \in \mathbb{Q}_q \mid \nu_p(\alpha) \ge 0 \}$ be its valuation ring. It is a complete DVR with local parameter p and residue field \mathbb{F}_q .

Choose

$$C(x,y) = y^a + c_{b,0}x^b + \sum_{ai+bj < ab} c_{i,j}x^iy^j \in \mathbb{Z}_q[x,y]$$

such that it reduces to $\overline{C}(x, y)$ modulo $p \rightsquigarrow$ this automatically defines a $C_{a,b}$ curve over \mathbb{Q}_q .

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

Monsky-Washnitzer cohomology (absolute)

Write

$$\mathbb{Z}_{\boldsymbol{q}}\langle \boldsymbol{C}
angle^{\dagger} = rac{\mathbb{Z}_{\boldsymbol{q}}\langle \boldsymbol{x}, \boldsymbol{y}
angle^{\dagger}}{(\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y}))}$$

where $\mathbb{Z}_q \langle x, y \rangle^{\dagger}$ is the overconvergent power series ring

$$\left\{ \sum_{i,j\in\mathbb{N}} a_{ij} x^i y^j \middle| \exists \rho \in]0,1[:\frac{|a_{ij}|_{p}}{\rho^{i+j}} \to 0 \text{ if } i+j \to \infty \right\}$$

(converge fast enough for their integrals to converge as well).

Note that there is a natural reduction mod *p* map

$$\pi:\mathbb{Z}_q\langle \boldsymbol{C}\rangle^{\dagger}\to\mathbb{F}_q[\overline{\boldsymbol{C}}].$$

<□> < E> < E> = ● ○ < ○

Theorem (Monsky, Washnitzer):

There exists a \mathbb{Z}_q -algebra endomorphism \mathcal{F}_q on $\mathbb{Z}_q \langle C \rangle^{\dagger}$ that makes the following diagram commutative:

$$\begin{array}{cccc} \mathbb{Z}_q \langle \mathbf{C} \rangle^{\dagger} & \stackrel{\mathcal{F}_q}{\longrightarrow} & \mathbb{Z}_q \langle \mathbf{C} \rangle^{\dagger} \\ \pi \downarrow & & \downarrow \pi \\ \mathbb{F}_q[\overline{\mathbf{C}}] & \stackrel{\overline{\mathbf{a}} \mapsto \overline{\mathbf{a}}^q}{\longrightarrow} & \mathbb{F}_q[\overline{\mathbf{C}}]. \end{array}$$

The map \mathcal{F}_q is called a lift of Frobenius.

There is a constructive proof, and $\mathcal{F}_q(x)$ and $\mathcal{F}_q(y)$ can be effectively approximated using Newton iteration.

Monsky-Washnitzer cohomology (absolute)

Consider the module of differentials

$$D^{1}(\mathbb{Z}_{q}\langle C\rangle^{\dagger}) = \frac{\mathbb{Z}_{q}\langle C\rangle^{\dagger}dx + \mathbb{Z}_{q}\langle C\rangle^{\dagger}dy}{\left(\frac{\partial C}{\partial x}dx + \frac{\partial C}{\partial y}dy\right)}$$

and let $d : \mathbb{Z}_q \langle C \rangle^{\dagger} \to D^1(\mathbb{Z}_q \langle C \rangle^{\dagger})$ be the usual exterior derivation. Then define the cohomology space

$$H^1_{MW}(\overline{C}/\mathbb{Q}_q) = rac{D^1(\mathbb{Z}_q \langle C
angle^\dagger)}{d(\mathbb{Z}_q \langle C
angle^\dagger)} \otimes_{\mathbb{Z}_q} \mathbb{Q}_q.$$

Note that \mathcal{F}_q induces a \mathbb{Q}_q -vector space morphism

$$\mathcal{F}_q^*: H^1_{MW}(\overline{C}/\mathbb{Q}_q) o H^1_{MW}(\overline{C}/\mathbb{Q}_q): \mathit{fdg} \mapsto \mathcal{F}_q(f) \mathit{dF}_q(g)$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Theorem (Monsky, Washnitzer):

 $H^1_{MW}(\overline{C}/\mathbb{Q}_q)$ is a 2*g*-dimensional vector space on which \mathcal{F}_q^* acts bijectively. Moreover, if $\chi(T)$ is its characteristic polynomial, then

$$Z_{\overline{C}}(T) = \frac{T^{2g}\chi(1/T)}{1-qT}$$

Denef and Vercauteren prove that

$$\mathcal{B} = \{x^{r}y^{s}dx \mid r = 0, \dots, b-2; s = 1, \dots, a-1\}$$

is a basis for $H^1_{MW}(\overline{C}/\mathbb{Q}_q)$ and give an explicit procedure to reduce a given 1-form modulo exact differential forms.

▲□→ ▲ ヨ→ ▲ ヨ→ 二 ヨ

Algorithm to compute $Z_{\overline{C}}(T)$:

- **1** Compute $\mathcal{F}_q(x)$ and $\mathcal{F}_q(y)$...
- **2** Use this to determine $\mathcal{F}_q^*(x^r y^s dx)$ for all $x^r y^s dx \in \mathcal{B}$...
- 3 Reduce modulo exact differential forms to end up in terms of B again → matrix of F^{*}_q...
- Compute characteristic polynomial $\chi(T)$ and recover $Z_{\overline{C}}(T)$...
- ... modulo a sufficiently large *p*-adic precision.

Differential reduction takes q steps!!

 \rightsquigarrow One splits q^{th} power Frobenius into *n* copies of p^{th} power Frobenius

 \rightsquigarrow resulting algorithm takes $O(n^3p)$ steps.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

Step

2 Use $\mathcal{F}_q(x)$ and $\mathcal{F}_q(y)$ to determine $\mathcal{F}_q^*(x^r y^s dx) = \mathcal{F}_q(x)^r \mathcal{F}_q(y)^s d\mathcal{F}_q(x)$ for all $x^r y^s dx \in \mathcal{B}$... accounts for about 80% of the computation and makes the

algorithm slow in practice.

 \rightsquigarrow in contrast with Kedlaya's original algorithm for hyperelliptic curves, where it is possible to choose $\mathcal{F}_q(x) = x^q$ and only compute $\mathcal{F}_q(y)$ using Newton iteration

→ 2 minutes versus 1.5 hours

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

The deformation idea

Different approach (Lauder):

Consider a 1-parameter family of C_{a,b} curves

$$\overline{C}(x, y, t) = y^{a} + \overline{c}_{b,0}(t) x^{b} + \sum_{ai+bj < ab} \overline{c}_{i,j}(t) x^{i} y^{j} \quad \in \mathbb{F}_{q}[t][x, y],$$

and suppose that $\overline{C}(x, y, 0)$ has an easy-to-compute matrix of Frobenius $F_q(0)$;

2 Compute a relative matrix of Frobenius $F_q(t)$ from $F_q(0)$ by solving a differential equation of the type

$$N(t)F_q(t) - rac{d}{dt}F_q(t) = qt^{q-1}F_q(t)N(t^q)$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

(here N(t) is a matrix of the Gauss-Manin connection); 3 Evaluate $F_q(t)$ in the point of interest. Two advantages:

- One circumvents the costly computation of a lift of Frobenius;
- Once *F_q(t)* is computed, evaluation at different values of *t* is cheap → highly speeds up the search for a *C_{a,b}* curve with almost prime order Jacobian.

<□> < E> < E> = ● ○ < ○

Monsky-Washnitzer cohomology (relative)

 $\overline{C}(x, y, t)$ defines a flat family over an open subset Spec $\mathbb{F}_q[t, \overline{r}(t)^{-1}]$ of the affine *t*-line.

Choose

$$C(\mathbf{x}, \mathbf{y}, t) = \mathbf{y}^{\mathbf{a}} + c_{b,0}(t)\mathbf{x}^{\mathbf{b}} + \sum_{ai+bj < ab} c_{i,j}(t)\mathbf{x}^{i}\mathbf{y}^{j} \in \mathbb{Z}_{q}[t][\mathbf{x}, \mathbf{y}]$$

such that it reduces to $\overline{C}(x, y, t)$ modulo p. Choose $r(t) \in \mathbb{Z}_q[t]$ such that it reduces to $\overline{r}(t)$ modulo p_{red}

Wouter Castryck, Hendrik Hubrechts, Frederik Vercauteren Computing zeta functions in families of C_{a,b} curves

Monsky-Washnitzer cohomology (relative)

Write

$$\mathbb{Z}_{q}\langle t, r(t)^{-1} \rangle^{\dagger} \langle C \rangle^{\dagger} = \frac{\mathbb{Z}_{q}\langle t, z, x, y \rangle^{\dagger}}{(zr(t) - 1, C(x, y))}$$

where $\mathbb{Z}_q \langle x, y \rangle^{\dagger}$ is the overconvergent power series ring

$$\left\{ \sum_{i,j,k,\,\ell\in\mathbb{N}} a_{ijk\ell} x^i y^j t^k z^\ell \middle| \exists \rho \in]0,1[:\frac{|a_{ijk\ell}|_p}{\rho^{i+j+k+\ell}} \to 0 \text{ if } i+j+k+\ell \to \infty \right\}$$

(converge fast enough for their integrals to converge as well).

Note that there is a natural reduction mod p map

$$\pi: \mathbb{Z}_{\boldsymbol{q}}\langle t, \boldsymbol{r}(t)^{-1} \rangle^{\dagger} \langle \boldsymbol{C} \rangle^{\dagger} \to \mathbb{F}_{\boldsymbol{q}}[t, \overline{\boldsymbol{r}}(t)^{-1}][\overline{\boldsymbol{C}}].$$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = • • ○ Q ()~

Theorem:

There exists a \mathbb{Z}_q -algebra endomorphism \mathcal{F}_q on $\mathbb{Z}_q \langle t, r(t)^{-1} \rangle^{\dagger} \langle C \rangle^{\dagger}$ that makes the following diagram commutative:

$$\begin{array}{ccc} \mathbb{Z}_{q}\langle t, r(t)^{-1} \rangle^{\dagger} \langle C \rangle^{\dagger} & \stackrel{\mathcal{F}_{q}}{\longrightarrow} & \mathbb{Z}_{q}\langle t, r(t)^{-1} \rangle^{\dagger} \langle C \rangle^{\dagger} \\ & \pi \downarrow & & \downarrow \pi \\ \mathbb{F}_{q}[t, \overline{r}(t)^{-1}][\overline{C}] & \stackrel{\overline{a} \mapsto \overline{a}^{q}}{\longrightarrow} & \mathbb{F}_{q}[t, \overline{r}(t)^{-1}][\overline{C}] \end{array}$$

such that $\mathcal{F}_q(t) = t^q$. The map \mathcal{F}_q is called a lift of Frobenius.

There is a constructive proof, and explicit bounds on the convergence rates of $\mathcal{F}_q(x)$, $\mathcal{F}_q(y)$, $\mathcal{F}_q(z)$ and $\mathcal{F}_q(t)$ can be given.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

Monsky-Washnitzer cohomology (relative)

Consider the module of differentials

$$D^{1}(\mathbb{Z}_{q}\langle t, r(t)^{-1}\rangle^{\dagger}\langle C\rangle^{\dagger}) = \frac{\mathbb{Z}_{q}\langle t, r(t)^{-1}\rangle^{\dagger}\langle C\rangle^{\dagger}dx + \mathbb{Z}_{q}\langle t, r(t)^{-1}\rangle^{\dagger}\langle C\rangle^{\dagger}dy}{\left(\frac{\partial C}{\partial x}dx + \frac{\partial C}{\partial y}dy\right)}$$

and let $d : \mathbb{Z}_q \langle t, r(t)^{-1} \rangle^{\dagger} \langle C \rangle^{\dagger} \to D^1(\mathbb{Z}_q \langle t, r(t)^{-1} \rangle^{\dagger} \langle C \rangle^{\dagger})$ be the exterior derivation with *t* fixed. Then define the cohomology space

$$\mathcal{H}^1_{MW}(\overline{C}/\mathbb{S}^\dagger) = rac{D^1(\mathbb{Z}_q\langle t, r(t)^{-1}
angle^\dagger\langle C
angle^\dagger)}{d(\mathbb{Z}_q\langle t, r(t)^{-1}
angle^\dagger\langle C
angle^\dagger)} \otimes_{\mathbb{Z}_q} \mathbb{Q}_q,$$

where $S^{\dagger} = \mathbb{Z}_q \langle t, r(t)^{-1} \rangle^{\dagger} \otimes_{\mathbb{Z}_q} \mathbb{Q}_q$. Note that \mathcal{F}_q induces a \mathbb{Q}_q -linear morphism

$$\mathcal{F}_q^*: H^1_{MW}(\overline{C}/S^\dagger) o H^1_{MW}(\overline{C}/S^\dagger): \mathit{fdg} \mapsto \mathcal{F}_q(f) d\mathcal{F}_q(g).$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Theorem:

 $H^1_{MW}(\overline{C}/S^{\dagger})$ is a free 2*g*-dimensional module. For every $\overline{t}_0 \in \mathbb{F}_q$ for which $\overline{r}(\overline{t}_0) \neq 0$, let $\hat{t}_0 \in \mathbb{Z}_q$ be its Teichmüller representative. Then $H^1_{MW}(\overline{C}/S^{\dagger}) \mod t - \hat{t}_0$ can be identified with

 $H^1_{MW}(\overline{C}(x,y,\overline{t}_0)\,|\,\mathbb{Q}_q)$

on which the action of Frobenius is given by $\mathcal{F}_{q}^{*}(\hat{t}_{0})$.

Again

$$\mathcal{B} = \{x^{r}y^{s}dx \mid r = 0, \dots, b-2; s = 1, \dots, a-1\}$$

is a basis for $H^1_{MW}(\overline{C}/S^{\dagger})$ and there is an explicit procedure to reduce a given 1-form modulo exact differential forms.

If we don't let t be constant, then we have a map

$$d: D^{1}(\mathbb{Z}_{q}\langle t, r(t)^{-1}\rangle^{\dagger}\langle C\rangle^{\dagger}) \to D^{2}(\mathbb{Z}_{q}\langle t, r(t)^{-1}\rangle^{\dagger}\langle C\rangle^{\dagger}).$$

One can always write $d\omega = \varphi \wedge dt$, which induces a well-defined map

$$abla : H^1_{MW}(\overline{C}/S^\dagger) o H^1_{MW}(\overline{C}/S^\dagger)$$

that satisfies

$$abla \circ \mathcal{F}_q^* = qt^{q-1} \circ \mathcal{F}_q^* \circ
abla.$$

On the level of matrices, this reads

$$N(t)F_q(t) - rac{d}{dt}F_q(t) = qt^{q-1}F_q(t)N(t^q).$$

Computing the zeta function (relative)

Computing the zeta function of a concrete curve $\overline{C}_1(x, y)$:

Put the curve in a family

$$\overline{C}(x,y,t) = (1-t)\overline{C}_0(x,y) + t\overline{C}_1(x,y)$$

where $\overline{C}_0(x, y)$ is a superelliptic curve defined over \mathbb{F}_p ...

- **2** Compute $F_q(0)$ using known techniques (Gaudry-Gürel)...
- 3 Compute Gauss-Manin connection N...
- 4 Solve the differential equation

$$N(t)F_q(t) - rac{d}{dt}F_q(t) = qt^{q-1}F_q(t)N(t^q)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

and compute $F_q(1)$...

5 Compute characteristic polynomial and recover $Z_{\overline{C}}(T)$...

Finding a $C_{a,b}$ curve with almost prime order Jacobian:

- 1 Consider a 'random' family $\overline{C}(x, y, t) \in \mathbb{F}_{p}[t][x, y]$ with superelliptic $\overline{C}(x, y, 0)...$
- **2** Compute $F_q(0)$ using known techniques (Gaudry-Gürel)...
- 3 Compute Gauss-Manin connection N...
- 4 Solve the differential equation

$$N(t)F_q(t) - rac{d}{dt}F_q(t) = qt^{q-1}F_q(t)N(t^q)\dots$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ● ○ ○

to find $F_q(t)$

5 For randomly chosen $\overline{t}_0 \in \mathbb{F}_q$, compute $F_q(\hat{t}_0)$ and its characteristic polynomial $\chi(T)$, until $\chi(1)$ is almost prime.

Computing the zeta function (relative)

Implementation results:

- Direct application: not yet implemented...
 - Expected: only slight improvement upon Denef and Vercauteren's algorithm.
 - But: roughly same running time to be expected for nondegenerate curves (ongoing work by Tuitman).
- Indirect application:

equation	\mathbb{F}_{p^n}	g	precomp	time/curve	memory
$Y^3 + X^4 + (t+1)XY + 1$	2 ⁵⁹	3	553s	14.5s	56MB
$Y^3 + X^5 + X^2 + t + 1$	2 ⁴³	4	135s	6.5s	22MB
$Y^3 + X^4 + (t+1)XY + 1$	3 ³⁷	3	1064s	13s	54MB
$Y^3 + X^5 + XY + tY + 1$	3 ²⁹	4	4128s	22s	91MB
$Y^3 - X^4 + tX^2 + t - 1$	5 ²³	3	30.5s	2s	23MB
$Y^3 - X^5 - X^2 + tX - 1$	5 ¹⁹	4	837s	20s	56MB
$Y^3 + X^4 + tX - 1$	5 ²⁰⁰	3	515s	538s	288MB

 \rightsquigarrow finding $C_{a,b}$ curves with almost prime order Jacobian is now a matter of minutes instead of days