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Cyclotomic Polynomials

Definition 1. The n;j, cyclotomic polynomial, ©,,(z) is defined as follows:

It is the monic polynomial whose distinct ¢(n) zeros are the n;;, complex primitive roots of unity.
Its coefficients are all integer-valued. For n > 1, the coefficients of ®,(z) are palindromic about
¢(n). That is, the coefficients read the same backwards as they do forwards. Here are the first ten
cyclotomic polynomials:

Dy(z)=2—1 Og(2) = 22 — 2 +1

Po(2) =2+ 1 Or(2) =+ 224+ + 22+ 22+ 241
O3(z) = 22+ 2 +1 Og(z) = 24 +1

Dy(2) = z2 +1 Og(z) = 20+ 27 + 1

Os(z) =2+ 22+ 22+ 241 Dp(z) =2t — 22+ 22 — 2 +1

Observe that the coefficients are all -1, 0, or 1. This is true for orders up to n = 104. For n = 105,
however, we have:

O15(2) = 12422421 —2"—2 —22 28— o 10 A —220—222—224—226
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Definition 2. The height of ®(n), A(n), is the maximum of the absolute values of the coefficients

of ®(n). That is, for d(n) = Zzgg arz", Aln) = 1<2n§;<< )|ak|.

It is known that A(n) can get arbitrarily large. In fact, Paul Erdos proved the following result:

Theorem 1. For any constant ¢ > 0 there exists n such that A(n) > n°.

The question is, how large does n have to be before A(n) > n? Can we find n such that A(n) > n??

In this poster we describe two algorithms for computing $,,(z) and we list some results of our

search for large A(n) including the first n such that A(n) > n and one n for which A(n) > n’.

Constructing ®,(2)

Here are some properties of cyclotomic polynomials that are useful in their computation.
Lemma 1. Let n > 1 be odd. Then ®9y,(2) = P (—2)

Lemma 2. Let p be a prime. Then p(z) = Zp Lop = _11
Lemma 3. Let n € N and p be a prime. Then CIan 2(2) = Ppp(2P)

Lemma 4. Let n € N and p be a prime that does not divide n. Then ®pp(z) = )

The reader should check these lemmas against the examples above.

Lemma 3 provides an easy means of generating $,,(z) for arbitrary n, assuming we already have
the cyclotomic polynomials of square-free order. We present the following two algorithms to
generate ,,(z) for odd, square-free integers n:
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Algorithm 1. Let n = pps...p;, for distinct odd primes py, po, ..., pj, where p; < ps < ... < pj.
Letn; = Hlszl pp- Then n; 18 then simply n.

We know from lemma 2 that ¢, (2) = ]21:_01 2. We can then solve for ®,,(z) recursively using
lemma 4. This algorithm does a sequence of polynomial divisions.
: ®,,(2P)
from 2 to j: P = -l
For £ from 2 to j: ®y,, (2) )

Number of operations: O(

Algorithm 2. (Bloom)

We’ll illustrate this algorithm with an example. Consider primes p, g, 7 with p < g < r
_ Dp(2")
By lemma 4, ©)(2) = WO

We can apply lemma 4 repeatedly:

P, ((2")4) ®y((27) )) (q)l(zp))
Dy (2) Po(z") | Dp(277) - Dp(2) Oy(27) /A Dy(2)
" b)) () il @)
Dy(2) Dy (z7) S\ Dy(z7)

Oy (2P17) - 1 (2F) - Py(29) - y(2")
D1 (2P1) - D(2P7) - Py (29P) - Dy(2)

(P~ 1) (= 1) (24— 1) - (< — 1)
(P 1) (7" — 1) (20— 1) (= — 1)

In general, we can express $(2) for arbitrary n = pypo...p; in this fashion.

P (z) = H (2" — 1)”<%> = ( H (2" — 1)> + ( H (2" — 1))
- —1

€N p()=1 ()=
where u(k) is the Moebius function (¢ : N — {—1,0,1}. w(1) = 0 and u(k) = 0 if k isn’t
square-free, otherwise (k) = 1 if k£ has an even number of prime factors, and p(k) = —1 if £ has

an odd number of prime factors).

We can then solve for ®,,(z) as a power series evaluated up to degree @, half the degree ®,,(2).
Using the reciprocity of cyclotomic polynomial coefficients, we effectively know all the coeffi-
cients for a cycltomic polynomial if we’ve determined the first half. We multiply the terms in the
numerator and then divide by the terms in the denominator, all individually, so as to preserve the
sparseness of each of the terms. A product of j distinct primes py, p2, ..., p; has 27 positive divisors.

In total, both the numerator and denominator in the equation above have 2)~1 terms of the form
m—1.
Number of operations: O(2/n)

Theoretical Bounds on the Height of ®,,(z2)

Theorem 2. (A.S.Bang, 1895) Let p, q,r be odd primes satisfying p < q < r. Then A(n) < p — 1.

Theorem 3. (Bloom, 1968) Let p, q,r, s be odd primes such that p < q < r < s.
Then A(pgrs) < p(pqg — 1)(q — 1).

Theorem 4. (P.T. Bateman, 1982) Let n = p1p...p;, for primes pj,, 1 < k < j, such that 2 < p1 <
p2 < ... < pj. Then,

Computed Heights of Cyclotomic Polynomials

Using algorithm 1, we were able to compute the heights of cyclotomic polynomials. Here are some
results we computed:

n| A(n) n A(n)
n A(n)
10; ; 132322 ggg 10555545 88835350
85 3| 171717, 434 | 10163195 1376877780831
13441645 1475674234751

1365 4 | 255255 532
15069565 1666495909761

1785 5 | 279565 1182
30489585 2201904353336

2805 6 327845 31010
37495115 2286541988726

3135) 7| 707455 35111
40324935 2699208408726

6545 9 | 886445 44125
oses| 14 osreas|  sosjs | 43730115 86255063889087493 1
169828113 31484567640915734941

11305 23| |1181895|14102773
17255 25 1752465 14703500  L5°020077 42337944402802720258
here 37 aenonol seonarss 416690095 80103182105128365570406901971
ecer. 5ol 30706e0 aouoass| 437017385 |86711753206816303264095919005

We have verified that ®1 181 g95(2) is the first cyclotomic polynomial whose height exceeds its or-
der. ®43 730.115(2) is the first cyclotomic polynomial to have a height greater than its order squared;
b 437017385(2) is the first with a height greater than its order cubed. It is the tallest cyclotomic poly-
nomial with order less than 10”. Below are the heights of cyclotomic polynomials whose orders
are products of the first £ odd prime numbers.

n factorization of n A(n)

105 357 3

1155 3-5-7-11 3

15015 3-5-7-11-13 23
255255 3:-5-7-11-13-17 532
4849845 3:5-7-11-13-17-19 669606*
111546435 3-5-7-11-13-17-19-23 8161018310%**
32348466153 -5-7-11-13-17-19-23-29|2888582082500892851**

x( K oshiba, 2002). x x(Monagan, 2007).

To compute large cyclotomic polynomials, we implemented algorithm 1 using the fast Fourier
Dy, p(27)
(I)n /p(Z) ’
that N > ¢(n/p) - p, the degree of the numerator. We then find a prime, ¢, of the form a/N + 1,

and w, an Ny, root of unity modulo q. Given these parameters, we use the FFT to find ¢, /p((wk)p)

transform (FFT). To compute ®,(z) = we first find the smallest power of two, /N, such

mod ¢ and ¢, /p(wk) mod ¢, for 0 < k < N in O(nlg(n)) operations. We then compute for
Oy (wh) = q)n/p((wk)p) + @n/p(wk) mod ¢, for 0 < k& < n. We then apply the inverse FFT to
interpolate $,,(z) mod q.

Often the theoretical bound for A(n) exceeds our choice of prime ¢. In such case we solve ®,,(2)
mod ¢ for two primes, ¢q; and ¢o. We then solve for ®,(z) with the Chinese remainder Theorem.
After we have obtained a result by Chinese remaindering (call it H,,(z)), we can check that H,(z)
is infact the correct solution by solving Hn(z)d)%(z) — ®n(2P) mod a third prime, ¢3, where CID%(z)

1s the polynomial that resulted from the second last division step of the algorithm. We know
Py (2 )CIDn( ) — @n(zp) = 0, so if we obtain that H,(2)®=»(z) — $n(2P) = 0 mod g3, then we can
p p

assume with confidence that H n(z) is infact ®,(2).

For polynomials of degree less than 227 we used primes q; = 15- 2274 Tand go = 17227+ 1. For
degree greater than 227 we used g1 = 10 - 238 4 1 and g = 15- 238 1+ 1. To use the FFT for a prime
q greater than 32 bits, we needed to encode multiplication over Z, so as to avoid integer overflow
while running on a 64-bit computer. By breaking integers into their upper and lower bits, we were
able to perform arithmetic in Z, for primes q as large as 42 bits. Our 42-bit multiplication requires
two division operations.



