Point counting on singular hypersurfaces

Remke Kloosterman

Institut für Algebraische Geometrie Leibniz Universität Hannover Germany

Banff, May 18, 2008

Leibniz Universität Hannover

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Contents

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Open questions

11 102 1004

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation metho

Singular hypersurfaces Direct method Deformation method

Conclusion

Statement of problem

- Let q = p^r be a prime power, F_q finite field with q elements.
- Let $\overline{V}/\mathbf{F}_q$ be an *n*-dimensional variety, $n \ge 1$.
- Let $Z(\overline{V}, T)$ be the function

$$\exp\left(\sum_{s=1}^{\infty} \#\overline{V}(\mathbf{F}_{q^s})\frac{T^i}{s}\right)$$

Determine $Z(\overline{V}, T)$ in polynomial time.

- Dwork: $Z(\overline{V}, T)$ is a rational function.
- ▶ Weil conjectures: determining Z(V, T) in polynomial time is equivalent to determining #V(F_q) in polynomial time.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Known results I (ℓ -adic)

Cases with complete solution to this problem:

- ► V smooth genus g curve. (g = 0 trivial, g = 1 by Schoof-Elkies-Atkin, g > 1 by Pila, but not practical.)
- Some exceptional cases (e.g., "Modular elliptic surfaces", Edixhoven).
- Use étale cohomology (and Lefschetz trace formula).
 More complicated if n > 1.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem

Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Known Results II (p-adic)

Other approaches:

- AGM (Mestre), Canonical Lift (Satoh). Methods for curves.
- Methods using Monsky-Washnitzer cohomology / rigid cohomology:
 - Direct Method: Kedlaya (hyperelliptic curves), Lauder-Wan (Artin-Schreier curves), Denef-Vercauteren (*C_{a,b}*-curves), Harvey (hyperelliptic curves), Abbott-Kedlaya-Roe (hypersurfaces).
 - Deformation method: Lauder (hypersurfaces), Gerkmann (hypersurfaces), Hubrechts (hyperelliptic curves).
 - Recursive method: Lauder.

Main problem: most algorithms turn out to be exponential in $\log(p)$, where p is the characteristic. But for p fixed, the complexity of p-adic algorithms is better than ℓ -adic.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem

Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method

 ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Monsky-Washnitzer cohomology: Preliminaries

Assume \overline{U} is a *smooth affine* variety. I.e., the coordinate ring \overline{R} of \overline{U} is of the form

$$\mathbf{F}_q[x_1,\ldots,x_m]/(\overline{f}_1,\ldots,\overline{f}_k).$$

Let $\mathbf{Z}_q = W(\mathbf{F}_q)$ (unramified extension of \mathbf{Z}_p of degree r), π the maximal ideal of \mathbf{Z}_q . Let

$$R_1 := \mathbf{Z}_q[x_1, \ldots, x_m]/J$$

such that $R_1/\pi R_1 \cong \overline{R}$. (Existence follows from a theorem of Elkik.)

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Monsky-Washnitzer cohomology: Overconvergent power series

 \sim

Set $\mathbf{Z}_q \langle x_1, \ldots, x_m \rangle^{\dagger}$ to be the ring of formal power series

$$\sum_{i_1,\ldots,i_n=0}^{\infty} c_{i_1,\ldots,i_m} \ x_1^{i_1}\ldots x_m^{i_m} \ (c_l \in \mathbf{Z}_q)$$

such that $v(c_l) + a(i_1 + \dots + i_m) > b$ for some a > 0, b. Let R_1^{\dagger} be

$$\mathbf{Z}_{q}\langle x_{1},\ldots,x_{m}\rangle^{\dagger}/J\mathbf{Z}_{q}\langle x_{1},\ldots,x_{m}\rangle^{\dagger}.$$

A lift of Frobenius $F: R_1^\dagger \to R_1^\dagger$ is a \mathbf{Z}_q -linear map such that

$$F(x_i) \equiv x_i^q \mod \pi$$

(Better: take a lift of *p*-Frobenius, is semi-linear.)

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Monsky-Washnitzer cohomology

Let $R^{\dagger} := R_1^{\dagger} \otimes_{\mathbf{Z}_q} \mathbf{Q}_q$. Consider the de Rham complex

$$0 \to R^{\dagger} \xrightarrow{d} \Omega^{1}_{R^{\dagger}} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n}_{R^{\dagger}} \to 0$$

Monsky-Washnitzer cohomology is the cohomology of the above complex, i.e.,

$$H^{i}(\overline{V},\mathbf{Q}_{q}) = \frac{\ker(d:\Omega_{R^{\dagger}}^{i} \to \Omega_{R^{\dagger}}^{i+1})}{\operatorname{im}(d:\Omega_{R^{\dagger}}^{i-1} \to \Omega_{R^{\dagger}}^{i})}.$$

The lift F of Frobenius induces an action on $\Omega^i_{R^{\dagger}}$ and on $H^i(\overline{U}, \mathbf{Q}_q)$. Lefschetz Trace Formula gives

$$\#\overline{U}(\mathbf{F}_{q^s}) = \sum_{i=0}^n (-1)^i \operatorname{trace}(q^{ns} \mathcal{F}^{-ns} \mid H^i(\overline{U}, \mathbf{Q}_q)).$$

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Hypersurfaces

▶ $\overline{f} \in \mathbf{F}_q[X_0, ..., X_{n+1}]$ be a degree *d* homogeneous polynomial.

•
$$\overline{V} \subset \mathbf{P}^{n+1}$$
 be the zero-set of \overline{f} .

▶ $\overline{U} = \mathbf{P}^{n+1} \setminus \overline{V}$. Then

$$Z(\overline{U},T)Z(\overline{V},T)=Z(\mathbf{P}^{n+1},T)=\prod_{i=0}^{n+1}(1-p^{i}T).$$

- \overline{U} is smooth and affine, hence $H^i(\overline{U}, \mathbf{Q}_q)$ exists.
- Lefschetz hyperplane theorem (together with Poincaré duality on V), gives for V smooth

$$H^i(\overline{U}, \mathbf{Q}_q) = 0$$
 for $i \neq 0, n+1$.

- $H^0(\overline{U}, \mathbf{Q}_q)$ is one-dimensional, F acts trivially.
- ▶ In the smooth case: suffices to determine $H^{n+1}(\overline{U}, \mathbf{Q}_q)$.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Direct method, example

Direct method (following AKR).

Let Ω be

$$wxyz\left(\frac{dx}{x}\wedge\frac{dy}{y}\wedge\frac{dz}{z}-\frac{dw}{w}\wedge\frac{dy}{y}\wedge\frac{dz}{z}+\ldots\right)$$
$$\cdots+\frac{dw}{w}\wedge\frac{dx}{x}\wedge\frac{dz}{z}-\frac{dw}{w}\wedge\frac{dx}{x}\wedge\frac{dy}{y}\right).$$

• $H^3(\overline{U}, \mathbf{Q}_p)$ is one dimensional, spanned by

$$\omega := \frac{1}{f^2} \Omega.$$

-1

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Lift of Frobenius

- Set $F(w) = w^p$, $F(x) = x^p$, $F(y) = y^p$, $F(z) = z^p$.
- Hence $F(\frac{dx}{x}) = p\frac{dx}{x}$.
- Set ∆ := f(w, x, y, z)^p − f(w^p, x^p, y^p, z^p). Then using geometric series we obtain

$$F(\omega) = \left(\sum_{k=0}^{\infty} (k+1) \frac{(wxyz)^{p-1} \Delta^k}{f^{p(k+2)}}\right) p^3 \Omega.$$

- From $\Delta \equiv 0 \mod p$ it follows that $v(c_l)$ is around $(i_1 + i_2 + i_3 + i_4)/p$ (and that this series is overconvergent).
- Aim: compute the class of F(ω) in H³(U, Q_q) modulo p^N.
- ▶ Need to start with $F(\omega) \mod p^{N+M}$ with M roughly $\log_p N$.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Lift of Frobenius II

$$F(\omega) \mod p^{N+M} \text{ equals:}$$

$$\sum_{j=0}^{N+M} \sum_{k=j}^{N+M} (k+1) \binom{k}{j} \frac{(wxyz)^{p-1} f(w^p, x^p, y^p, z^p)^j}{f^{p(j+2)}} p^3 \Omega.$$

▶ Reduction of pole order: g polynomial of degree 2t - 4, t > 2, write g := f_wg₁ + f_xg₂ + f_yg₃ + f_zg₄. (Possible since Q_q[w, x, y, z]/(f_w, f_x, f_y, f_z) = Q_q ⋅ 1.) Then

$$\frac{g}{f^t}\Omega = \frac{(g_1)_w + (g_2)_x + (g_3)_y + (g_4)_z}{(t-1)f^{t-1}}\Omega.$$

Need p(N + M + 2) − 2 reductions to have pole order 2. Exponential in log(p).

In this case we obtain
$$F(\omega) = p^2 \omega$$
 and
 $\#\overline{V}(\mathbf{F}_p) = p^2 + 2p + 1.$

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Improvements

- Method works for affine varieties. Better: cover V with affine varieties, and count on each affine piece. Computations take place in a polynomial ring with one variable less.
- Using that expressions like

$$\sum_{j=0}^{N+M} \sum_{k=j}^{N+M} (k+1) \binom{k}{j} \frac{(xyzw)^{p-1} f(w^p, x^p, y^p, z^p)^j}{f^{p(j+2)}} p^3 \Omega.$$

are sparse, Harvey obtained in the hyperelliptic case an algorithm with complexity $O(\sqrt{p})$ (g, r fixed).

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Improvements (Dwork's ψ -function I)

- Can replace F by ψ such that $\psi \circ F$ is the identity on $\Omega^{i}_{R_{\mathbf{Q}_{p}}}$ (left-inverse).
- ▶ Since F on $H^{n+1}(\overline{U}, \mathbf{Q}_q)$ is invertible, we have that $\psi = F^{-1}$ on $H^{n+1}(\overline{U}, \mathbf{Q}_q)$.
- Definition of ψ : $\psi(\frac{dx}{x}) = \frac{1}{p}\frac{dx}{x}$ and

$$\psi(w^h x^i y^j z^k) = \begin{cases} w^{h/p} x^{i/p} y^{j/p} z^{k/p} & h, i, j, k \equiv 0 \mod p. \\ 0 & \text{otherwise.} \end{cases}$$

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Improvements (Dwork's ψ -function II)

• Hence $\psi(\omega)$ equals

$$\sum_{k=0}^{\infty} \frac{\psi((-\Delta)^{k} f^{p-2} wxyz)}{f^{k+2}} \frac{\Omega}{p^{3} wxyz}$$

• Note
$$v(c_I) \ge i_1 + i_2 + i_3 + i_4 - 2$$
.

- $\psi(\omega)$ converges p times faster than $F(\omega)$.
- Gain a factor p in the reduction algorithm, the reduction part is polynomial in log(p).

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method \$\psi_function

Deformation method

hypersurfaces Direct method Deformation method

Conclusion

Improvements (Dwork's ψ -function III)

• Expanding yields that $\psi(\omega)$ (modulo p^{N+M-3}) equals

$$\sum_{j=0}^{N+M} \sum_{k=j}^{N+M} \frac{(-1)^{j} {k \choose j} \psi(f^{(j+1)p-2} wxyz)}{f^{j+1}} \frac{\Omega}{p^{3} wxyz}$$

- Need to calculate f(w, x, y, z)^{p(N+M+1)−2} in order to calculate ψ(ω).
 - Exponential in log p.
 - Prevents applying Harvey's method.
- ↓ ψ is defined for any n-dimensional smooth affine variety, namely ψ := ¹/_{pⁿ} F⁻¹ ∘ trace_{R[†]/F(R[†])}.
- ψ is crucial for studying singular varieties.

102

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method I

Second idea (Deformation method):

• Assume $p \nmid d$. Let

$$f_t := (1-t)(x_0^d + \cdots + x_{n+1}^d) + tf.$$

•
$$f_0 := x_0^d + \dots + x_{n+1}^d$$

•
$$f_1 = f_1$$

- Action of $F_0 := F$ on $H^{n+1}(\overline{U}_0)$ is easy to calculate.
- Take $\overline{t_0} \in \mathbf{F}_q$ such that $f_{\overline{t_0}}$ is smooth.
- ► $t_0 \in \mathbf{Q}_q$ the Teichmüller lift of $\overline{t_0}$ $(t_0^q = t_0$ and $t_0 \equiv \overline{t_0} \mod \pi$).

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method II

- Can find a Picard-Fuchs equation (differential equation associated with a family of varieties).
- Let A(t) be a solution of the Picard-Fuchs equation with A(0) = I.
- The action of F on $H^{n+1}(\overline{U}_{\overline{t_0}})$ equals

 $\lim_{t\to t_0} A(t)^{-1} F_0 A(t^q).$

- ► Advantage: A is a function in one variable, computation in Q_q⟨t⟩[†] instead of Q_q⟨x₀,..., x_{n+1}⟩[†].
- Memory-efficient.
- Time complexity still O(p) (r, d, n fixed).

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method, example

Consider the family

$$x^2 + y^2 + z^2 + (1 - t)w^2$$

The Picard-Fuchs equation equals

$$\frac{\partial A}{\partial t} = \frac{-1}{2(t-1)}A$$

$$F_{t_0} = \left\{ egin{array}{cc} p^2 & ext{if } 1-t_0 egin{array}{cc} ext{mod } p ext{ is a square} \ -p^2 & ext{if } 1-t_0 egin{array}{cc} ext{mod } p ext{ is not a square} \ p^{3/2} & ext{if } t_0 = 1 \end{array}
ight.$$

102

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Singular hypersurfaces

What goes wrong?

- Poincaré duality for V might fail.
- Hence it is possible that $H^i(\overline{U}, \mathbf{Q}_q) \neq 0$ for $1 \leq i \leq n$.
- ▶ Need approaches to calculate $H^i(\overline{U}, \mathbf{Q}_p)$ for $1 \le i \le n$.
- ► Today we ignore this issue. There are classes of singular varieties for which Hⁱ(U, Q_q) = 0 for i ≠ 0, n + 1 holds. E.g., V is a surface with so-called ADE singularities.

Assume for the rest of this talk that $H^i(\overline{U}, \mathbf{Q}_p) = 0$ for $i \neq 0, n+1$.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Direct method

 The reduction part of the direct method uses certain relations between cohomology classes. E.g.,

$$rac{gf_{X}}{f^{t}}\Omega = rac{g_{X}}{(t-1)f^{t-1}}\Omega$$

- If \overline{V} is singular then there are "more" relations.
- Ambitious solution: identify those extra relations. Very hard.
- Naive solution: pretend that V were smooth and look what happens.
- ► To work with finite-dimensional vectors spaces we need that ⊕_kR(f)_{kd-n-2} is finite-dimensional where

$$R(f) := \mathbf{Q}_q[x_0, \ldots, x_{n+1}]/(f_{x_0}, \ldots, f_{x_{n+1}}).$$

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Direct method: Naive solution

- We need that f is smooth lift of \overline{f} .
- E.g., choose f such that $f \mod \pi^2$ is smooth, i.e, $f_{x_0} \equiv 0 \mod \pi^2, \ldots, f_{x_n} \equiv 0 \mod \pi^2$ has no solution.
- In the smooth case we have

$$H^{n+1}(\overline{U},\mathbf{Q}_q)=\oplus_{k=1}^{n+1}R(f)_{kd-n-2}.$$

In singular case we have that

$$\oplus_{k=1}^{n+1} R(f)_{kd-n-2} \to H^{n+1}(\overline{U}, \mathbf{Q}_q)$$

is surjective. The kernel corresponds to the missing relations between cohomology classes.

▶ Naive approach: calculate F on $R(f)_{kd-n-2}$.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces

Direct method ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Direct Method: Naive Solution (Reduction)

 For the reduction algorithm we need to write g of "high degree" as

$$g = \sum g_i f_{x_i}, ext{ for some } g_i \in \mathbf{Q}_q[x_0, \dots, x_{n+1}].$$

- ▶ We chose f to be smooth, hence R(f) is finite dimensional. So g_i exist.
- Since \overline{V} is singular we have

$$R(\overline{f}) = \mathbf{F}_q[x_0, \dots, x_{n+1}]/(\overline{f}_{x_0}, \dots, \overline{f}_{x_{n+1}})$$

is infinite-dimensional.

If g ∈ Z_q[x₀,...,x_{n+1}] is such that ḡ in R(f̄) is non-zero, then some of the g_i need to have coefficients with negative valuation.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method *w*-function

 ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Direct Method: Naive Solution (Use ψ)

- Serious amount of division by elements of π in the reduction algorithm.
- The convergence of F(ω) is not sufficient to compensate.
- It is likely that for some ω, the reduction of F(ω) will diverge.
- ▶ F^{-1} acting on $\oplus R(f)_{kd-n-2}$ has a non-trivial kernel.
- Use ψ to determine kernel of F^{-1} .

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Direct Method: Naive Solution (Result)

▶ Recall that ψ on $H^{n+1}(\overline{U}, \mathbf{Q}_q)$ is invertible, hence K_1 the kernel of $\psi : \oplus R(f)_{kd-n-2} \to \oplus R(f)_{kd-n-2}$ is a subspace of

$$K := \ker \left(\oplus R(f)_{kd-n-2} \to H^{n+1}(\overline{U}, \mathbf{Q}_q) \right).$$

- Can find examples where dim K = dim K₁. (See proceedings)
- If dim $K = \dim K_1$ then

$$\mathsf{trace}(\psi \mid \oplus \mathsf{R}(f)_{\mathsf{\mathit{kd}}-\mathsf{\mathit{n}}-2}) = \mathsf{trace}(\psi \mid \mathsf{\mathit{H}}^{\mathsf{\mathit{n}}+1}(\overline{U}, \mathbf{Q}_{q}))$$

• AKR with ψ counts the number of points correctly.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces

Direct method Deformation method

Conclusion

Deformation at singular varieties

- Recall: Family of HS \overline{V}_t with complements \overline{U}_t .
- Assume V
 ₁ is singular.
- ► Dimension of H^{n+1} drops, i.e., dim $H^{n+1}(\overline{U}_1, \mathbf{Q}_p) < \dim H^{n+1}(\overline{U}_0, \mathbf{Q}_p)$.
- Naively applying deformation method yields an operator

 $\lim_{t \to 0} F_t$

on a vector space of dimension equal to dim $H^{n+1}(\overline{U}_0, \mathbf{Q}_p)$.

- Expect F_t to have poles at t = 1.
- ▶ Possible solution to these problems: calculate $F_{t_0}^{-1} := \lim_{t \to 1} F_t^{-1}$. Ignore its kernel K and hope that dim K = dim $H^{n+1}(\overline{U}_0, \mathbf{Q}_p) - \dim H^{n+1}(\overline{U}_1, \mathbf{Q}_p)$.
- ► Not sufficient: there exist examples such that dim K < dim Hⁿ⁺¹(U
 0, Qp) - dim Hⁿ⁺¹(U
 t, Qp). (Even when AKR works.) Analytic continuation / Non-uniqueness of completion.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method: Main obstruction

- Non-uniqueness of completion.
- Given a family of abstract varieties V
 _t, for t ≠ 1. If we require that V
 ₁ is smooth, then V
 ₁ is (essentially) unique (if it exists).
- ► If we do not require that V
 ₁ is smooth then V
 ₁ is non-unique.
- The output of the deformation method is determined by \overline{V}_t , for t close to 0.
- Conclusion: there is a good change the deformation method will count the number of points of a different family.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method: Example

- (Different from conference proceedings)
- Consider $\overline{V}_t : w^2 + x^2 + y^2 + z^+ t(t-2)w^2 \subset \mathbf{P}^3$, and $\overline{V}'_t \subset \mathbf{P}^6$ given by the vanishing of: (s = 1 t)

$$-x_5x_6 + x_4^2 - sx_1x_4, -x_4x_5 + x_3x_6 + sx_2x_4, x_2x_6 - x_1x_4,$$

$$-x_5^2 + x_3x + 4 + s^2 x_2^2, -x_2 x_4 + x_1 x_5 + s x_1 x_2, -x_2 x_5 + s x_2^2 + x_1 x_3$$

$$\overline{V} \sim \overline{V}' \sim \mathbf{P}^1 \times \mathbf{P}^1 \text{ for } t \neq 1$$

$$\blacktriangleright \overline{V}_t \cong \overline{V}'_t \cong \mathbf{P}^1 \times \mathbf{P}^1 \text{ for } t \neq 1.$$

- \overline{V}_1 is a cone over a conic.
- ▶ \overline{V}'_1 is the so-called second Hirzebruch surface (smooth). Actually, $\overline{V}'_1 \rightarrow \overline{V}_1$ is a resolution of singularities and $\#\overline{V}'_1(\mathbf{F}_q) = q^2 + 2q + 1 = \#\overline{V}_1(\mathbf{F}_q) + q.$

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method: Example

- ► Since V_t = V'_t for t small, both families have the same Picard-Fuchs equation.
- Subtlety: some poles of Ft can be resolved by changing the basis for Hⁿ(Vt, Qq) in a neighborhood of t = 0.
- ► One choice of basis for Hⁿ(V_t, Q_q) yields the following Picard-Fuchs equation

$$\frac{\partial y}{\partial t} = \begin{pmatrix} \frac{-1}{1-t} & 0\\ 0 & 0 \end{pmatrix} y$$

Output: $q^2 + q + 1$. $(= \#\overline{V}_1(\mathbf{F}_q).)$

A second choice of basis yields

$$\frac{\partial y}{\partial t} = \left(\begin{array}{cc} 0 & 0\\ 0 & 0 \end{array}\right) y$$

Output: $q^2 + 2q + 1$. (= $\# \overline{V}'_1(\mathbf{F}_q)$.)

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Deformation method: Example

- Issue: choice of basis.
- To get a good analytic continuation of A(t^q)F₀A(t)⁻¹ at t = t₀ in the smooth case we need to kill all possible singularities at t = t₀.
- ► In the singular case, might need to kill some of the singularities of PF-equation at t = t₀.
- Seems hard to decide which singularities to kill and which not.
- In terms of differential equations: Suppose we have a differential equation y' = ^a/_(1-t)y then changing basis (for Hⁿ(V_t, Q_q)) corresponds to replace a with a + k, for an integer k.
- Can get rid of integral residues.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation method

Singular hypersurfaces Direct method Deformation method

Conclusion

Conclusion

- AKR (slightly altered) extends to a class of singular varieties.
- There is an obstruction to extend the deformation method of Lauder and Gerkmann to singular varieties, due to the non-uniqueness of completion of families.
- The deformation method can be used in particular cases to calculate the number of points of a stable reduction, or a partial resolution of singularities of a singular hypersurface.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation metho

Singular hypersurfaces Direct method Deformation method

Conclusion

Open questions

- Determine precisely for which classes varieties the above phenomena occur, specifically:
- Find classes of varieties for which AKR (with ψ) works.
- Find classes of varieties for which Lauder-Gerkmann calculates the number of points of a resolution of singularities.
- Find methods to calculate $H^i(\overline{U}, \mathbf{Q}_q)$ for $1 \le i \le n$, if \overline{V} is singular.

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation metho

Singular hypersurfaces Direct method Deformation method

Conclusion

Thank you for your attention.

A corrected version of my paper will be soon available at http://www.iag.uni-hannover.de/~kloosterman

> Leibniz Universität Hannover

Point counting

Remke Kloosterman

Point counting algorithms

Formulation of problem Known results

Monsky-Washnitzer cohomology

Smooth hypersurfaces Direct method ψ -function Deformation metho

Singular hypersurfaces Direct method Deformation method

Conclusion