Point counting on singular hypersurfaces

Remke Kloosterman

Institut für Algebraische Geometrie Leibniz Universität Hannover Germany

Banff, May 18, 2008

Leibniz Universität Hannover

[Point counting](#page-32-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Open questions](#page-31-0)

Contents

[Point counting algorithms](#page-2-0)

[Formulation of problem](#page-2-0) [Known results](#page-3-0)

[Monsky-Washnitzer cohomology](#page-5-0)

[Smooth hypersurfaces](#page-8-0)

[Direct method](#page-9-0) ψ [-function](#page-13-0) [Deformation method](#page-16-0)

[Singular hypersurfaces](#page-19-0)

[Direct method](#page-20-0) [Deformation method](#page-25-0)

[Conclusion](#page-30-0)

[Open questions](#page-31-0)

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) a/b [-function](#page-13-0) [Deformation method](#page-16-0)

Statement of problem

- \blacktriangleright Let $q = p^r$ be a prime power, \blacktriangleright finite field with q elements.
- ► Let $\overline{V}/\mathbf{F}_q$ be an *n*-dimensional variety, $n \geq 1$.
- Exerc
ion Let $Z(\overline{V},T)$ be the function

$$
\exp\left(\sum_{s=1}^\infty\#\overline{V}(\mathbf{F}_{q^s})\frac{T^i}{s}\right).
$$

Determine $Z(\overline{V},T)$ in polynomial time.

- Dwork: $Z(\overline{V}, T)$ is a rational function.
- \triangleright Weil conjectures: determining $Z(\overline{V},T)$ in polynomial time is equivalent to determining $\#\overline{V}(\mathbf{F}_q)$ in polynomial time.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Known results $I(\ell$ -adic)

Cases with complete solution to this problem:

 $\triangleright \overline{V}$ smooth genus g curve. $(g = 0 \text{ trivial}, g = 1 \text{ by})$ Schoof-Elkies-Atkin, $g > 1$ by Pila, but not practical.) [Point counting](#page-0-0) Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0) Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

4 / 33

- \triangleright Some exceptional cases (e.g., "Modular elliptic surfaces", Edixhoven).
- \triangleright Use étale cohomology (and Lefschetz trace formula). More complicated if $n > 1$.

Known Results II (p-adic)

Other approaches:

- ▶ AGM (Mestre), Canonical Lift (Satoh). Methods for curves.
- \triangleright Methods using Monsky-Washnitzer cohomology / rigid cohomology:
	- \triangleright Direct Method: Kedlaya (hyperelliptic curves), Lauder-Wan (Artin-Schreier curves), Denef-Vercauteren $(C_{a,b}$ -curves), Harvey (hyperelliptic curves), Abbott-Kedlaya-Roe (hypersurfaces).
	- \triangleright Deformation method: Lauder (hypersurfaces), Gerkmann (hypersurfaces), Hubrechts (hyperelliptic curves).
	- **B** Recursive method: Lauder

Main problem: most algorithms turn out to be exponential in $log(p)$, where p is the characteristic. But for p fixed, the complexity of p-adic algorithms is better than ℓ -adic.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem

[Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Monsky-Washnitzer cohomology: Preliminaries

Assume \overline{U} is a smooth affine variety. I.e., the coordinate ring \overline{R} of \overline{U} is of the form

$$
\mathbf{F}_q[x_1,\ldots,x_m]/(\overline{f}_1,\ldots,\overline{f}_k).
$$

Let $\mathbf{Z}_q = W(\mathbf{F}_q)$ (unramified extension of \mathbf{Z}_p of degree r), π the maximal ideal of Z_q . Let

$$
R_1 := \mathbf{Z}_q[x_1,\ldots,x_m]/J
$$

such that $R_1/\pi R_1\cong \overline{R}.$ (Existence follows from a theorem of Elkik.)

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

Monsky-Washnitzer [cohomology](#page-5-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Monsky-Washnitzer cohomology: Overconvergent power series

Set $\mathsf{Z}_q\langle \mathsf{x}_1,\ldots,\mathsf{x}_m \rangle^\dagger$ to be the ring of formal power series

$$
\sum_{i_1,\ldots,i_n=0}^{\infty} c_{i_1,\ldots,i_m} x_1^{i_1} \ldots x_m^{i_m} (c_l \in \mathbb{Z}_q)
$$

such that $v(c_1) + a(i_1 + \cdots + i_m) > b$ for some $a > 0, b$. Let R_1^{\dagger} n_1' be

$$
\mathbf{Z}_q \langle x_1,\ldots,x_m \rangle^{\dagger} / J \mathbf{Z}_q \langle x_1,\ldots,x_m \rangle^{\dagger}.
$$

A lift of Frobenius $F:R_1^\dagger\to R_1^\dagger$ \sum_{1}^{1} is a Z_q -linear map such that

 $F(x_i) \equiv x_i^q \mod \pi$.

(Better: take a lift of p-Frobenius, is semi-linear.)

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

Monsky-Washnitzer [cohomology](#page-5-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [Direct method](#page-20-0) [Deformation method](#page-25-0)

Monsky-Washnitzer cohomology

Let $R^\dagger := R_1^\dagger \otimes_{\mathsf{Z}_q} \mathsf{Q}_q$. Consider the de Rham complex

$$
0 \to R^{\dagger} \xrightarrow{d} \Omega^1_{R^{\dagger}} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n_{R^{\dagger}} \to 0.
$$

Monsky-Washnitzer cohomology is the cohomology of the above complex, i.e.,

$$
H^i(\overline{V}, \mathbf{Q}_q) = \frac{\ker(d: \Omega_{R^\dagger}^i \to \Omega_{R^\dagger}^{i+1})}{\mathrm{im}(d: \Omega_{R^\dagger}^{i-1} \to \Omega_{R^\dagger}^i)}.
$$

The lift F of Frobenius induces an action on $\Omega_{R^{\dagger}}^{i}$ and on $H^i(\overline{U}, {\bf Q}_q).$ Lefschetz Trace Formula gives

$$
\#\overline{U}(\mathbf{F}_{q^s})=\sum_{i=0}^n(-1)^i\operatorname{trace}(q^{ns}F^{-ns}\mid H^i(\overline{U},\mathbf{Q}_q)).
$$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

Monsky-Washnitzer [cohomology](#page-5-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Hypersurfaces

 \blacktriangleright $\overline{f} \in \mathbf{F}_q[X_0, \ldots, X_{n+1}]$ be a degree d homogeneous polynomial.

$$
\blacktriangleright \overline{V} \subset \mathsf{P}^{n+1} \text{ be the zero-set of } \overline{f}.
$$

 $\blacktriangleright \overline{U} = \mathsf{P}^{n+1} \setminus \overline{V}$. Then

$$
Z(\overline{U},T)Z(\overline{V},T)=Z(\mathbf{P}^{n+1},T)=\prod_{i=0}^{n+1}(1-p^iT).
$$

- $\blacktriangleright \overline{U}$ is smooth and affine, hence $H^i(\overline{U}, {\bf Q}_q)$ exists.
- \blacktriangleright Lefschetz hyperplane theorem (together with Poincaré duality on \overline{V}), gives for \overline{V} smooth

$$
H^i(\overline{U},\mathbf{Q}_q)=0 \text{ for } i\neq 0, n+1.
$$

- \blacktriangleright $H^0(\overline{U}, {\bf Q}_q)$ is one-dimensional, F acts trivially.
- \blacktriangleright In the smooth case: suffices to determine $H^{n+1}(\overline{U}, {\bf Q}_q).$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

Smooth [hypersurfaces](#page-8-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [Direct method](#page-20-0) [Deformation method](#page-25-0)

Direct method, example

Direct method (following AKR).

\n- Take
$$
q = p
$$
 an odd prime.
\n- Let $\overline{V} : \overline{f} := w^2 + x^2 + y^2 + z^2 = 0$ in **P**³.
\n- Let $f := w^2 + x^2 + y^2 + z^2 \in \mathbb{Z}_p[w, x, y, z]$ be a lift of \overline{f} .
\n

 \blacktriangleright Let Ω be

$$
wxyz \left(\frac{dx}{x} \wedge \frac{dy}{y} \wedge \frac{dz}{z} - \frac{dw}{w} \wedge \frac{dy}{y} \wedge \frac{dz}{z} + \dots \right.
$$

$$
\dots + \frac{dw}{w} \wedge \frac{dx}{x} \wedge \frac{dz}{z} - \frac{dw}{w} \wedge \frac{dx}{x} \wedge \frac{dy}{y} \right).
$$

 \blacktriangleright $H^3(\overline{U}, {\bf Q}_p)$ is one dimensional, spanned by

$$
\omega:=\frac{1}{f^2}\Omega.
$$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) a/b [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Conclusion](#page-30-0)

[Open questions](#page-31-0)

Lift of Frobenius

- Set $F(w) = w^p, F(x) = x^p, F(y) = y^p, F(z) = z^p$.
- Hence $F(\frac{dx}{x})$ $\frac{dx}{x}$) = $p\frac{dx}{x}$ $\frac{dX}{X}$.
- Set $\Delta := f(w, x, y, z)^p f(w^p, x^p, y^p, z^p)$. Then using geometric series we obtain

$$
F(\omega) = \left(\sum_{k=0}^{\infty} (k+1) \frac{(wxyz)^{p-1} \Delta^k}{f^{p(k+2)}}\right) \rho^3 \Omega.
$$

- ► From $\Delta \equiv 0$ mod p it follows that $v(c_1)$ is around $(i_1 + i_2 + i_3 + i_4)/p$ (and that this series is overconvergent).
- Aim: compute the class of $F(\omega)$ in $H^3(\overline{U}, {\bf Q}_q)$ modulo p^N .
- Need to start with $F(\omega)$ mod p^{N+M} with M roughly $log_p N$.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) a/b [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [Direct method](#page-20-0) [Deformation method](#page-25-0)

Lift of Frobenius II

$$
\blacktriangleright \ \mathsf{F}(\omega) \bmod p^{N+M} \ \text{equals:}
$$

$$
\sum_{j=0}^{N+M} \sum_{k=j}^{N+M} (k+1) {k \choose j} \frac{(wxyz)^{p-1} f(w^p, x^p, y^p, z^p)^j}{f^{p(j+2)}} p^3 \Omega.
$$

 \triangleright Reduction of pole order: g polynomial of degree 2t – 4, $t > 2$, write $g := f_w g_1 + f_x g_2 + f_v g_3 + f_z g_4$. (Possible since $\mathbf{Q}_{q}[w, x, y, z]/(f_{w}, f_{x}, f_{v}, f_{z}) = \mathbf{Q}_{q} \cdot \overline{1}$.) Then

$$
\frac{g}{f^t}\Omega=\frac{(g_1)_w+(g_2)_x+(g_3)_y+(g_4)_z}{(t-1)f^{t-1}}\Omega.
$$

 \triangleright Need $p(N + M + 2) - 2$ reductions to have pole order 2. Exponential in $log(p)$.

► In this case we obtain
$$
F(\omega) = p^2 \omega
$$
 and
\n $\# \overline{V}(\mathbf{F}_p) = p^2 + 2p + 1.$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Improvements

- \blacktriangleright Method works for affine varieties. Better: cover \overline{V} with affine varieties, and count on each affine piece. Computations take place in a polynomial ring with one variable less.
- \blacktriangleright Using that expressions like

$$
\sum_{j=0}^{N+M} \sum_{k=j}^{N+M} (k+1) {k \choose j} \frac{(xyzw)^{p-1} f(w^p, x^p, y^p, z^p)^j}{f^{p(j+2)}} p^3 \Omega.
$$

are sparse, Harvey obtained in the hyperelliptic case an algorithm with complexity $O(\sqrt{p})$ (g, r fixed).

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Improvements (Dwork's ψ -function I)

- ► Can replace F by ψ such that $\psi \circ F$ is the identity on $\Omega^{i}_{R_{\mathbf{Q}_{p}}}$ (left-inverse).
- \blacktriangleright Since F on $H^{n+1}(\overline{U},\mathbf{Q}_q)$ is invertible, we have that $\psi = F^{-1}$ on $H^{n+1}(\overline{U}, \mathbf{Q}_q)$.
- **D**efinition of ψ : $\psi(\frac{dx}{x})$ $\frac{dx}{x}) = \frac{1}{p}$ dx $\frac{dx}{x}$ and

$$
\psi(w^h x^i y^j z^k) = \begin{cases} w^{h/p} x^{i/p} y^{j/p} z^{k/p} & h, i, j, k \equiv 0 \mod p. \\ 0 & \text{otherwise.} \end{cases}
$$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) v_{r} [-function](#page-13-0) [Deformation method](#page-16-0)

Improvements (Dwork's ψ -function II)

 \blacktriangleright Hence $\psi(\omega)$ equals

$$
\sum_{k=0}^{\infty} \frac{\psi((- \Delta)^k f^{p-2} wxyz)}{f^{k+2}} \frac{\Omega}{p^3 wxyz}
$$

► Note
$$
v(c_1) \ge i_1 + i_2 + i_3 + i_4 - 2
$$
.

- $\blacktriangleright \psi(\omega)$ converges p times faster than $F(\omega)$.
- \triangleright Gain a factor p in the reduction algorithm, the reduction part is polynomial in $log(p)$.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) v_{r} [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Conclusion](#page-30-0)

Improvements (Dwork's ψ -function III)

► Expanding yields that $\psi(\omega)$ (modulo $\rho^{N+M-3})$ equals

$$
\sum_{j=0}^{N+M} \sum_{k=j}^{N+M} \frac{(-1)^j {k \choose j} \psi(f^{(j+1)p-2}wxyz)}{f^{j+1}} \frac{\Omega}{p^3wxyz}
$$

- ► Need to calculate $f(w, x, y, z)^{p(N+M+1)-2}$ in order to calculate $\psi(\omega)$.
	- Exponential in $log p$.

N

- \blacktriangleright Prevents applying Harvey's method.
- $\blacktriangleright \psi$ is defined for any *n*-dimensional smooth affine variety, namely $\psi := \frac{1}{p^n} F^{-1} \circ \textsf{trace}_{R^\dagger/F(R^\dagger)}.$
- $\blacktriangleright \psi$ is crucial for studying singular varieties.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) v_{r} [-function](#page-13-0) [Deformation method](#page-16-0)

Deformation method I

Second idea (Deformation method):

Assume $p \nmid d$. Let

$$
f_t := (1-t)(x_0^d + \cdots + x_{n+1}^d) + tf.
$$

$$
\blacktriangleright f_0 := x_0^d + \cdots + x_{n+1}^d
$$

$$
\blacktriangleright f_1 = f.
$$

- Action of $F_0 := F$ on $H^{n+1}(\overline{U}_0)$ is easy to calculate.
- ▶ Take $\overline{t_0} \in \mathbf{F}_q$ such that $f_{\overline{t_0}}$ is smooth.
- \blacktriangleright $t_0 \in \mathbf{Q}_q$ the Teichmüller lift of $\overline{t_0}$ $(t_0^q = t_0$ and $t_0 \equiv \overline{t_0} \mod \pi$.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Deformation method II

- \triangleright Can find a Picard-Fuchs equation (differential equation associated with a family of varieties).
- In Let $A(t)$ be a solution of the Picard-Fuchs equation with $A(0) = I$.
- \blacktriangleright The action of F on $H^{n+1}(\overline{U}_{\overline{t_0}})$ equals

 $\lim_{t \to t_0} A(t)^{-1} F_0 A(t^q).$

- \triangleright Advantage: A is a function in one variable, computation in $\mathbf{Q}_q\langle t\rangle^\dagger$ instead of $\mathbf{Q}_q\langle x_0,\ldots,x_{n+1}\rangle^\dagger$.
- \blacktriangleright Memory-efficient.
- \blacktriangleright Time complexity still $O(p)$ (r, d, n fixed).

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [Direct method](#page-20-0) [Deformation method](#page-25-0)

Deformation method, example

 \blacktriangleright Consider the family

$$
x^2 + y^2 + z^2 + (1-t)w^2
$$

 \blacktriangleright The Picard-Fuchs equation equals

$$
\frac{\partial \mathcal{A}}{\partial t} = \frac{-1}{2(t-1)} \mathcal{A}
$$

► Hence
$$
A(t) = (1 - t)^{-1/2}
$$
.
\n▶ $F_t = A(t)^{-1}F_0A(t^q) = p^2 \frac{\sqrt{1-t}}{\sqrt{1-t^q}}$ and

$$
F_{t_0} = \begin{cases} p^2 & \text{if } 1 - t_0 \text{ mod } p \text{ is a square} \\ -p^2 & \text{if } 1 - t_0 \text{ mod } p \text{ is not a square} \\ p^{3/2} & \text{if } t_0 = 1 \end{cases}
$$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) [Known results](#page-3-0)

[Direct method](#page-9-0) a/b [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Conclusion](#page-30-0)

[Open questions](#page-31-0)

Singular hypersurfaces

What goes wrong?

- Poincaré duality for \overline{V} might fail.
- \blacktriangleright Hence it is possible that $H^i(\overline{U}, {\bf Q}_q) \neq 0$ for $1 \leq i \leq n.$
- \blacktriangleright Need approaches to calculate $H^i(\overline{U}, {\bf Q}_p)$ for $1 \leq i \leq n.$
- \triangleright Today we ignore this issue. There are classes of singular varieties for which $H^i(\overline{U}, {\bf Q}_q) = 0$ for $i \neq 0, n+1$ holds. E.g., \overline{V} is a surface with so-called ADE singularities.
- \blacktriangleright Assume for the rest of this talk that $H^i(\overline{U}, {\bf Q}_p)=0$ for $i \neq 0$, $n + 1$.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Direct method

 \blacktriangleright The reduction part of the direct method uses certain relations between cohomology classes. E.g.,

$$
\frac{g f_{\times}}{f^t} \Omega = \frac{g_{\times}}{(t-1) f^{t-1}} \Omega
$$

- If \overline{V} is singular then there are "more" relations.
- \triangleright Ambitious solution: identify those extra relations. Very hard.
- \blacktriangleright Naive solution: pretend that \overline{V} were smooth and look what happens.
- \blacktriangleright To work with finite-dimensional vectors spaces we need that $\bigoplus_k R(f)_{kd-n-2}$ is finite-dimensional where

$$
R(f) := \mathbf{Q}_q[x_0,\ldots,x_{n+1}]/(f_{x_0},\ldots,f_{x_{n+1}}).
$$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0)

Direct method: Naive solution

- \triangleright We need that f is smooth lift of \overline{f}
- E.g., choose f such that f mod π^2 is smooth, i.e, $f_{x_0} \equiv 0 \mod \pi^2, \ldots, f_{x_n} \equiv 0 \mod \pi^2$ has no solution.
- \blacktriangleright In the smooth case we have

$$
H^{n+1}(\overline{U},\mathbf{Q}_q)=\oplus_{k=1}^{n+1}R(f)_{kd-n-2}.
$$

In singular case we have that

$$
\oplus_{k=1}^{n+1} R(f)_{kd-n-2} \to H^{n+1}(\overline{U},\mathbf{Q}_q)
$$

is surjective. The kernel corresponds to the missing relations between cohomology classes.

 \triangleright Naive approach: calculate F on $R(f)_{kd-n-2}$.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular

Direct Method: Naive Solution (Reduction)

 \triangleright For the reduction algorithm we need to write g of "high degree" as

$$
g=\sum g_i f_{x_i}, \text{ for some } g_i\in \mathbf{Q}_q[x_0,\ldots,x_{n+1}].
$$

- \triangleright We chose f to be smooth, hence $R(f)$ is finite dimensional. So g_i exist.
- \blacktriangleright Since \overline{V} is singular we have

$$
R(\overline{f}) = \mathbf{F}_q[x_0,\ldots,x_{n+1}]/(\overline{f}_{x_0},\ldots,\overline{f}_{x_{n+1}})
$$

is infinite-dimensional.

If $g \in \mathsf{Z}_q[x_0, \ldots, x_{n+1}]$ is such that \overline{g} in $R(\overline{f})$ is non-zero, then some of the g_i need to have coefficients with negative valuation.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

-
- [Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular

Direct Method: Naive Solution (Use ψ)

- Serious amount of division by elements of π in the reduction algorithm.
- \blacktriangleright The convergence of $F(\omega)$ is not sufficient to compensate.
- It is likely that for some ω , the reduction of $F(\omega)$ will diverge.
- ► F^{-1} acting on $\oplus R(f)_{kd-n-2}$ has a non-trivial kernel.
- ► Use ψ to determine kernel of F^{-1} .

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0)

Direct Method: Naive Solution (Result)

 \blacktriangleright Recall that ψ on $H^{n+1}(\overline{U}, {\bf Q}_q)$ is invertible, hence \mathcal{K}_1 the kernel of ψ : $\bigoplus R(f)_{kd-n-2} \to \bigoplus R(f)_{kd-n-2}$ is a subspace of

$$
K:=\ker\left(\oplus R(f)_{kd-n-2}\to H^{n+1}(\overline{U},\mathbf{Q}_q)\right).
$$

- \triangleright Can find examples where dim $K =$ dim K_1 . (See proceedings)
- If dim $K =$ dim K_1 then

$$
\textsf{trace}(\psi \mid \oplus R(f)_{kd-n-2}) = \textsf{trace}(\psi \mid \textit{H}^{n+1}(\overline{U}, \textbf{Q}_q))
$$

AKR with ψ counts the number of points correctly.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular

Deformation at singular varieties

- Recall: Family of HS V_t with complements U_t .
- Assume \overline{V}_1 is singular.
- Dimension of H^{n+1} drops, i.e., $\mathsf{dim}\,H^{n+1}(\overline{U}_1,\mathbf{Q}_p)<\mathsf{dim}\,H^{n+1}(\overline{U}_0,\mathbf{Q}_p).$
- \triangleright Naively applying deformation method yields an operator

 $\lim_{t\to 1} F_t$

on a vector space of dimension equal to dim $H^{n+1}(\overline{U}_0,\mathbf{Q}_p)$.

Expect F_t to have poles at $t = 1$.

- \triangleright Possible solution to these problems: calculate $\mathcal{F}^{-1}_{t_0} := \lim_{t \to 1} \mathcal{F}^{-1}_{t}$. Ignore its kernel K and hope that $\mathsf{dim}\, \mathcal{K} = \mathsf{dim}\, H^{n+1}(\overline{U}_0, \mathbf{Q}_p) - \mathsf{dim}\, H^{n+1}(\overline{U}_1, \mathbf{Q}_p).$
- \triangleright Not sufficient: there exist examples such that dim $\mathcal{K}<$ dim $H^{n+1}(\overline{U}_0,\mathbf{Q}_\rho)-$ dim $H^{n+1}(\overline{U}_t,\mathbf{Q}_\rho)$. (Even when AKR works.) Analytic continuation / Non-uniqueness of completion.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [Direct method](#page-20-0) [Deformation method](#page-25-0)

Deformation method: Main obstruction

- \triangleright Non-uniqueness of completion.
- \blacktriangleright Given a family of abstract varieties ${V}_t$, for $t\neq 1$. If we require that \overline{V}_1 is smooth, then \overline{V}_1 is (essentially) unique (if it exists).
- If we do not require that \overline{V}_1 is smooth then \overline{V}_1 is non-unique.
- \blacktriangleright The output of the deformation method is determined by V_t , for t close to 0.
- \triangleright Conclusion: there is a good change the deformation method will count the number of points of a different family.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Deformation method: Example

- \triangleright (Different from conference proceedings)
- ► Consider \overline{V}_t : $w^2 + x^2 + y^2 + z^+ t(t-2)w^2 \subset \mathbf{P}^3$, and $\overline{V}'_t \subset \mathsf{P}^6$ given by the vanishing of: $(s=1-t)$

$$
-x_5x_6+x_4^2-sx_1x_4, -x_4x_5+x_3x_6+sx_2x_4, x_2x_6-x_1x_4,
$$

$$
-x_5^2 + x_3x + 4 + s^2x_2^2, -x_2x_4 + x_1x_5 + sx_1x_2, -x_2x_5 + sx_2^2 + x_1x_3
$$

$$
\blacktriangleright \overline{V}_t \cong \overline{V}'_t \cong \mathbf{P}^1 \times \mathbf{P}^1 \text{ for } t \neq 1.
$$

- $\blacktriangleright \overline{V}_1$ is a cone over a conic.
- $\blacktriangleright \overline{V}'_1$ $\frac{1}{1}$ is the so-called second Hirzebruch surface (smooth). Actually, $\overline{V}'_1 \rightarrow \overline{V}_1$ is a resolution of singularities and $\#\overline{V}'_1$ $\frac{1}{1}(\mathsf{F}_q) = q^2 + 2q + 1 = \# \overline{V}_1(\mathsf{F}_q) + q.$

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [Direct method](#page-20-0) [Deformation method](#page-25-0)

Deformation method: Example

- Since $\overline{V}_t = \overline{V}'_t$ \hat{t}_t for t small, both families have the same Picard-Fuchs equation.
- \triangleright Subtlety: some poles of F_t can be resolved by changing the basis for $H^n(\overline{V}_t,{\bf Q}_q)$ in a neighborhood of $t=0$.
- \blacktriangleright One choice of basis for $H^n(\overline{V}_t,{\bf Q}_q)$ yields the following Picard-Fuchs equation

$$
\frac{\partial y}{\partial t} = \begin{pmatrix} \frac{-1}{1-t} & 0 \\ 0 & 0 \end{pmatrix} y.
$$

Output: q^2+q+1 . $(=\#\overline{V}_1(\mathsf{F}_q)$.)

 \triangleright A second choice of basis yields

$$
\frac{\partial y}{\partial t} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) y.
$$

Output: q^2+2q+1 . $(=\# \overline{V}'_1)$ $I_1(\mathsf{F}_q)$.)

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Deformation method: Example

- \blacktriangleright Issue: choice of basis.
- \blacktriangleright To get a good analytic continuation of $A(t^q)F_0A(t)^{-1}$ at $t = t_0$ in the smooth case we need to kill all possible singularities at $t = t_0$.
- In the singular case, might need to kill some of the singularities of PF-equation at $t = t_0$.
- \triangleright Seems hard to decide which singularities to kill and which not.
- In terms of differential equations: Suppose we have a differential equation $y' = \frac{a}{\sqrt{1-a}}$ $\frac{a}{(1-t)}$ y then changing basis (for $H^n(\overline{V}_t, \mathbf{Q}_q)$) corresponds to replace a with $a + k$, for an integer k.
- \triangleright Can get rid of integral residues.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Conclusion

- \triangleright AKR (slightly altered) extends to a class of singular varieties.
- \blacktriangleright There is an obstruction to extend the deformation method of Lauder and Gerkmann to singular varieties, due to the non-uniqueness of completion of families.
- \blacktriangleright The deformation method can be used in particular cases to calculate the number of points of a stable reduction, or a partial resolution of singularities of a singular hypersurface.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Conclusion](#page-30-0)

Open questions

- \triangleright Determine precisely for which classes varieties the above phenomena occur, specifically:
- ► Find classes of varieties for which AKR (with ψ) works.
- \blacktriangleright Find classes of varieties for which Lauder-Gerkmann calculates the number of points of a resolution of singularities.

► Find methods to calculate $H^i(\overline{U}, \mathbf{Q}_q)$ for $1 \leq i \leq n$, if \overline{V} is singular.

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u [-function](#page-13-0) [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Open questions](#page-31-0)

Thank you for your attention.

A corrected version of my paper will be soon available at http://www.iag.uni-hannover.de/~kloosterman

anashanashanna

Leibniz Universität Hannover

[Point counting](#page-0-0)

Remke Kloosterman

[Formulation of](#page-2-0) problem [Known results](#page-3-0)

[Direct method](#page-9-0) u_{r} function [Deformation method](#page-16-0)

Singular [hypersurfaces](#page-19-0) [Direct method](#page-20-0) [Deformation method](#page-25-0)

[Conclusion](#page-30-0)

[Open questions](#page-31-0)