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Statement of problem

I Let q = pr be a prime power, Fq finite field with q
elements.

I Let V /Fq be an n-dimensional variety, n ≥ 1.

I Let Z (V ,T ) be the function

exp

( ∞∑
s=1

#V (Fqs )
T i

s

)
.

Determine Z (V ,T ) in polynomial time.

I Dwork: Z (V ,T ) is a rational function.

I Weil conjectures: determining Z (V ,T ) in polynomial
time is equivalent to determining #V (Fq) in polynomial
time.
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Known results I (`-adic)

Cases with complete solution to this problem:

I V smooth genus g curve. (g = 0 trivial, g = 1 by
Schoof-Elkies-Atkin, g > 1 by Pila, but not practical.)

I Some exceptional cases (e.g., “Modular elliptic
surfaces”, Edixhoven).

I Use étale cohomology (and Lefschetz trace formula).
More complicated if n > 1.
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Known Results II (p-adic)

Other approaches:

I AGM (Mestre), Canonical Lift (Satoh). Methods for
curves.

I Methods using Monsky-Washnitzer cohomology / rigid
cohomology:

I Direct Method: Kedlaya (hyperelliptic curves),
Lauder-Wan (Artin-Schreier curves), Denef-Vercauteren
(Ca,b-curves), Harvey (hyperelliptic curves),
Abbott-Kedlaya-Roe (hypersurfaces).

I Deformation method: Lauder (hypersurfaces),
Gerkmann (hypersurfaces), Hubrechts (hyperelliptic
curves).

I Recursive method: Lauder.

Main problem: most algorithms turn out to be exponential
in log(p), where p is the characteristic. But for p fixed, the
complexity of p-adic algorithms is better than `-adic.
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Monsky-Washnitzer cohomology: Preliminaries

Assume U is a smooth affine variety. I.e., the coordinate ring
R of U is of the form

Fq[x1, . . . , xm]/(f 1, . . . , f k).

Let Zq = W (Fq) (unramified extension of Zp of degree r), π
the maximal ideal of Zq. Let

R1 := Zq[x1, . . . , xm]/J

such that R1/πR1
∼= R. (Existence follows from a theorem

of Elkik.)
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Monsky-Washnitzer cohomology:
Overconvergent power series

Set Zq〈x1, . . . , xm〉† to be the ring of formal power series

∞∑
i1,...,in=0

ci1,...,im x i1
1 . . . x

im
m (cI ∈ Zq)

such that v(cI ) + a(i1 + · · ·+ im) > b for some a > 0, b.

Let R†1 be

Zq〈x1, . . . , xm〉†/JZq〈x1, . . . , xm〉†.

A lift of Frobenius F : R†1 → R†1 is a Zq-linear map such that

F (xi ) ≡ xq
i mod π.

(Better: take a lift of p-Frobenius, is semi-linear.)
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Monsky-Washnitzer cohomology

Let R† := R†1 ⊗Zq Qq. Consider the de Rham complex

0 → R†
d→ Ω1

R†
d→ · · · d→ Ωn

R† → 0.

Monsky-Washnitzer cohomology is the cohomology of the
above complex, i.e.,

H i (V ,Qq) =
ker(d : Ωi

R† → Ωi+1
R† )

im(d : Ωi−1
R† → Ωi

R†)
.

The lift F of Frobenius induces an action on Ωi
R† and on

H i (U,Qq). Lefschetz Trace Formula gives

#U(Fqs ) =
n∑

i=0

(−1)i trace(qnsF−ns | H i (U,Qq)).
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Hypersurfaces

I f ∈ Fq[X0, . . . ,Xn+1] be a degree d homogeneous
polynomial.

I V ⊂ Pn+1 be the zero-set of f .

I U = Pn+1 \ V . Then

Z (U,T )Z (V ,T ) = Z (Pn+1,T ) =
n+1∏
i=0

(1− piT ).

I U is smooth and affine, hence H i (U,Qq) exists.

I Lefschetz hyperplane theorem (together with Poincaré
duality on V ), gives for V smooth

H i (U,Qq) = 0 for i 6= 0, n + 1.

I H0(U,Qq) is one-dimensional, F acts trivially.

I In the smooth case: suffices to determine Hn+1(U,Qq).
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Direct method, example

Direct method (following AKR).

I Take q = p an odd prime.

I Let V : f := w2 + x2 + y2 + z2 = 0 in P3.

I Let f := w2 + x2 + y2 + z2 ∈ Zp[w , x , y , z ] be a lift of
f .

I Let Ω be

wxyz
(

dx
x ∧ dy

y ∧ dz
z − dw

w ∧ dy
y ∧ dz

z + . . .

· · ·+ dw
w ∧ dx

x ∧ dz
z − dw

w ∧ dx
x ∧ dy

y

)
.

I H3(U,Qp) is one dimensional, spanned by

ω :=
1

f 2
Ω.
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Lift of Frobenius

I Set F (w) = wp,F (x) = xp,F (y) = yp,F (z) = zp.

I Hence F (dx
x ) = p dx

x .

I Set ∆ := f (w , x , y , z)p − f (wp, xp, yp, zp). Then using
geometric series we obtain

F (ω) =

( ∞∑
k=0

(k + 1)
(wxyz)p−1∆k

f p(k+2)

)
p3Ω.

I From ∆ ≡ 0 mod p it follows that v(cI ) is around
(i1 + i2 + i3 + i4)/p (and that this series is
overconvergent).

I Aim: compute the class of F (ω) in H3(U,Qq) modulo
pN .

I Need to start with F (ω) mod pN+M with M roughly
logp N.
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Lift of Frobenius II

I F (ω) mod pN+M equals:

N+M∑
j=0

N+M∑
k=j

(k + 1)

(
k

j

)
(wxyz)p−1f (wp, xp, yp, zp)j

f p(j+2)
p3Ω.

I Reduction of pole order: g polynomial of degree 2t − 4,
t > 2, write g := fwg1 + fxg2 + fyg3 + fzg4. (Possible
since Qq[w , x , y , z ]/(fw , fx , fy , fz) = Qq · 1.) Then

g

f t
Ω =

(g1)w + (g2)x + (g3)y + (g4)z
(t − 1)f t−1

Ω.

I Need p(N + M + 2)− 2 reductions to have pole order
2. Exponential in log(p).

I In this case we obtain F (ω) = p2ω and
#V (Fp) = p2 + 2p + 1.
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Improvements

I Method works for affine varieties. Better: cover V with
affine varieties, and count on each affine piece.
Computations take place in a polynomial ring with one
variable less.

I Using that expressions like

N+M∑
j=0

N+M∑
k=j

(k + 1)

(
k

j

)
(xyzw)p−1f (wp, xp, yp, zp)j

f p(j+2)
p3Ω.

are sparse, Harvey obtained in the hyperelliptic case an
algorithm with complexity O(

√
p) (g , r fixed).
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Improvements (Dwork’s ψ-function I)

I Can replace F by ψ such that ψ ◦ F is the identity on
Ωi

RQp
(left-inverse).

I Since F on Hn+1(U,Qq) is invertible, we have that
ψ = F−1 on Hn+1(U,Qq).

I Definition of ψ: ψ(dx
x ) = 1

p
dx
x and

ψ(whx iy jzk) =

{
wh/px i/py j/pzk/p h, i , j , k ≡ 0 mod p.
0 otherwise.

14 / 33



Point counting

Remke
Kloosterman

Point counting
algorithms

Formulation of
problem

Known results

Monsky-
Washnitzer
cohomology

Smooth
hypersurfaces

Direct method

ψ-function

Deformation method

Singular
hypersurfaces

Direct method

Deformation method

Conclusion

Open questions

Improvements (Dwork’s ψ-function II)

I Hence ψ(ω) equals

∞∑
k=0

ψ((−∆)k f p−2wxyz)

f k+2

Ω

p3wxyz

I Note v(cI ) ≥ i1 + i2 + i3 + i4 − 2.

I ψ(ω) converges p times faster than F (ω).

I Gain a factor p in the reduction algorithm, the
reduction part is polynomial in log(p).

15 / 33



Point counting

Remke
Kloosterman

Point counting
algorithms

Formulation of
problem

Known results

Monsky-
Washnitzer
cohomology

Smooth
hypersurfaces

Direct method

ψ-function

Deformation method

Singular
hypersurfaces

Direct method

Deformation method

Conclusion

Open questions

Improvements (Dwork’s ψ-function III)

I Expanding yields that ψ(ω) (modulo pN+M−3) equals

N+M∑
j=0

N+M∑
k=j

(−1)j
(k

j

)
ψ(f (j+1)p−2wxyz)

f j+1

Ω

p3wxyz

I Need to calculate f (w , x , y , z)p(N+M+1)−2 in order to
calculate ψ(ω).

I Exponential in log p.
I Prevents applying Harvey’s method.

I ψ is defined for any n-dimensional smooth affine variety,
namely ψ := 1

pn F−1 ◦ traceR†/F (R†).

I ψ is crucial for studying singular varieties.
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Deformation method I

Second idea (Deformation method):

I Assume p - d . Let

ft := (1− t)(xd
0 + · · ·+ xd

n+1) + tf .

I f0 := xd
0 + · · ·+ xd

n+1

I f1 = f .

I Action of F0 := F on Hn+1(U0) is easy to calculate.

I Take t0 ∈ Fq such that ft0 is smooth.

I t0 ∈ Qq the Teichmüller lift of t0 (tq
0 = t0 and

t0 ≡ t0 mod π).
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Deformation method II

I Can find a Picard-Fuchs equation (differential equation
associated with a family of varieties).

I Let A(t) be a solution of the Picard-Fuchs equation
with A(0) = I .

I The action of F on Hn+1(Ut0) equals

lim
t→t0

A(t)−1F0A(tq).

I Advantage: A is a function in one variable, computation
in Qq〈t〉† instead of Qq〈x0, . . . , xn+1〉†.

I Memory-efficient.

I Time complexity still O(p) (r , d , n fixed).
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Deformation method, example

I Consider the family

x2 + y2 + z2 + (1− t)w2

I The Picard-Fuchs equation equals

∂A

∂t
=

−1

2(t − 1)
A

I Hence A(t) = (1− t)−1/2.

I Ft = A(t)−1F0A(tq) = p2
√

1−t√
1−tq and

Ft0 =


p2 if 1− t0 mod p is a square
−p2 if 1− t0 mod p is not a square

p3/2 if t0 = 1
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Singular hypersurfaces

What goes wrong?

I Poincaré duality for V might fail.

I Hence it is possible that H i (U,Qq) 6= 0 for 1 ≤ i ≤ n.

I Need approaches to calculate H i (U,Qp) for 1 ≤ i ≤ n.

I Today we ignore this issue. There are classes of singular
varieties for which H i (U,Qq) = 0 for i 6= 0, n + 1 holds.
E.g., V is a surface with so-called ADE singularities.

I Assume for the rest of this talk that H i (U,Qp) = 0 for
i 6= 0, n + 1.
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Direct method

I The reduction part of the direct method uses certain
relations between cohomology classes. E.g.,

gfx
f t

Ω =
gx

(t − 1)f t−1
Ω

I If V is singular then there are “more” relations.

I Ambitious solution: identify those extra relations. Very
hard.

I Naive solution: pretend that V were smooth and look
what happens.

I To work with finite-dimensional vectors spaces we need
that ⊕kR(f )kd−n−2 is finite-dimensional where

R(f ) := Qq[x0, . . . , xn+1]/(fx0 , . . . , fxn+1).
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Direct method: Naive solution

I We need that f is smooth lift of f .

I E.g., choose f such that f mod π2 is smooth, i.e,
fx0 ≡ 0 mod π2, . . . , fxn ≡ 0 mod π2 has no solution.

I In the smooth case we have

Hn+1(U,Qq) = ⊕n+1
k=1R(f )kd−n−2.

In singular case we have that

⊕n+1
k=1R(f )kd−n−2 → Hn+1(U,Qq)

is surjective. The kernel corresponds to the missing
relations between cohomology classes.

I Naive approach: calculate F on R(f )kd−n−2.
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Direct Method: Naive Solution (Reduction)

I For the reduction algorithm we need to write g of “high
degree” as

g =
∑

gi fxi , for some gi ∈ Qq[x0, . . . , xn+1].

I We chose f to be smooth, hence R(f ) is finite
dimensional. So gi exist.

I Since V is singular we have

R(f ) = Fq[x0, . . . , xn+1]/(f x0 , . . . , f xn+1)

is infinite-dimensional.

I If g ∈ Zq[x0, . . . , xn+1] is such that g in R(f ) is
non-zero, then some of the gi need to have coefficients
with negative valuation.
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Direct Method: Naive Solution (Use ψ)

I Serious amount of division by elements of π in the
reduction algorithm.

I The convergence of F (ω) is not sufficient to
compensate.

I It is likely that for some ω, the reduction of F (ω) will
diverge.

I F−1 acting on ⊕R(f )kd−n−2 has a non-trivial kernel.

I Use ψ to determine kernel of F−1.
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Direct Method: Naive Solution (Result)

I Recall that ψ on Hn+1(U,Qq) is invertible, hence K1

the kernel of ψ : ⊕R(f )kd−n−2 → ⊕R(f )kd−n−2 is a
subspace of

K := ker
(
⊕R(f )kd−n−2 → Hn+1(U,Qq)

)
.

I Can find examples where dim K = dim K1. (See
proceedings)

I If dim K = dim K1 then

trace(ψ | ⊕R(f )kd−n−2) = trace(ψ | Hn+1(U,Qq))

I AKR with ψ counts the number of points correctly.
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Deformation at singular varieties

I Recall: Family of HS V t with complements Ut .
I Assume V 1 is singular.
I Dimension of Hn+1 drops, i.e.,

dim Hn+1(U1,Qp) < dim Hn+1(U0,Qp).
I Naively applying deformation method yields an operator

lim
t→1

Ft

on a vector space of dimension equal to
dim Hn+1(U0,Qp).

I Expect Ft to have poles at t = 1.
I Possible solution to these problems: calculate

F−1
t0 := limt→1 F−1

t . Ignore its kernel K and hope that
dim K = dim Hn+1(U0,Qp)− dim Hn+1(U1,Qp).

I Not sufficient: there exist examples such that
dim K < dim Hn+1(U0,Qp)− dim Hn+1(Ut ,Qp). (Even
when AKR works.) Analytic continuation /
Non-uniqueness of completion.
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Deformation method: Main obstruction

I Non-uniqueness of completion.

I Given a family of abstract varieties V t , for t 6= 1. If we
require that V 1 is smooth, then V 1 is (essentially)
unique (if it exists).

I If we do not require that V 1 is smooth then V 1 is
non-unique.

I The output of the deformation method is determined by
V t , for t close to 0.

I Conclusion: there is a good change the deformation
method will count the number of points of a different
family.
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Deformation method: Example

I (Different from conference proceedings)

I Consider V t : w2 + x2 + y2 + z+t(t − 2)w2 ⊂ P3, and

V
′
t ⊂ P6 given by the vanishing of: (s = 1− t)

−x5x6 + x2
4 − sx1x4,−x4x5 + x3x6 + sx2x4, x2x6 − x1x4,

−x2
5 +x3x +4+ s2x2

2 ,−x2x4 +x1x5 + sx1x2,−x2x5 + sx2
2 +x1x3

I V t
∼= V

′
t
∼= P1 × P1 for t 6= 1.

I V 1 is a cone over a conic.

I V
′
1 is the so-called second Hirzebruch surface (smooth).

Actually, V
′
1 → V 1 is a resolution of singularities and

#V
′
1(Fq) = q2 + 2q + 1 = #V 1(Fq) + q.

28 / 33



Point counting

Remke
Kloosterman

Point counting
algorithms

Formulation of
problem

Known results

Monsky-
Washnitzer
cohomology

Smooth
hypersurfaces

Direct method

ψ-function

Deformation method

Singular
hypersurfaces

Direct method

Deformation method

Conclusion

Open questions

Deformation method: Example

I Since V t = V
′
t for t small, both families have the same

Picard-Fuchs equation.

I Subtlety: some poles of Ft can be resolved by changing
the basis for Hn(V t ,Qq) in a neighborhood of t = 0 .

I One choice of basis for Hn(V t ,Qq) yields the following
Picard-Fuchs equation

∂y

∂t
=

( −1
1−t 0

0 0

)
y .

Output: q2 + q + 1. (= #V 1(Fq).)

I A second choice of basis yields

∂y

∂t
=

(
0 0
0 0

)
y .

Output: q2 + 2q + 1. (= #V
′
1(Fq).)
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Deformation method: Example

I Issue: choice of basis.

I To get a good analytic continuation of A(tq)F0A(t)−1

at t = t0 in the smooth case we need to kill all possible
singularities at t = t0.

I In the singular case, might need to kill some of the
singularities of PF-equation at t = t0.

I Seems hard to decide which singularities to kill and
which not.

I In terms of differential equations: Suppose we have a
differential equation y ′ = a

(1−t)y then changing basis

(for Hn(V t ,Qq)) corresponds to replace a with a + k,
for an integer k.

I Can get rid of integral residues.
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Conclusion

I AKR (slightly altered) extends to a class of singular
varieties.

I There is an obstruction to extend the deformation
method of Lauder and Gerkmann to singular varieties,
due to the non-uniqueness of completion of families.

I The deformation method can be used in particular cases
to calculate the number of points of a stable reduction,
or a partial resolution of singularities of a singular
hypersurface.
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Open questions

I Determine precisely for which classes varieties the above
phenomena occur, specifically:

I Find classes of varieties for which AKR (with ψ) works.

I Find classes of varieties for which Lauder-Gerkmann
calculates the number of points of a resolution of
singularities.

I Find methods to calculate H i (U,Qq) for 1 ≤ i ≤ n, if
V is singular.
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Thank you for your attention.

A corrected version of my paper will be soon available at
http://www.iag.uni-hannover.de/~kloosterman
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