Computing L-series of hyperelliptic curves

Kiran S. Kedlaya and Andrew V. Sutherland

Massachusetts Institute of Technology

May 18, 2008

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The distribution of Frobenius traces

Let *C* be a genus *g* curve defined over \mathbb{Q} . We may compute

$$\#C/\mathbb{F}_{p}=p-a_{p}+1,$$

for each $p \le N$ where *C* has good reduction, and plot the distribution of a_p/\sqrt{p} over the interval [-2g, 2g].

What does the picture look like for increasing values of N?

http://math.mit.edu/ drew

Other applications: Lang-Trotter, Birch-Swinnerton-Dyer, Mazur, ...

(日) (日) (日) (日) (日) (日) (日)

The numerator of the zeta function

$$Z(C/\mathbb{F}_p; T) = \exp\left(\sum_{k=1}^{\infty} c_k T^k / k\right) = \frac{\mathsf{L}_{\mathsf{p}}(\mathsf{T})}{(1-T)(1-pT)}.$$

The polynomial $L_{\rho}(T)$ has integer coefficients

$$L_p(T) = p^g T^{2g} + a_1 p^{g-1} T^{2g-1} + \dots + a_g T^g + \dots + a_1 T + 1.$$

 $L_p(t)$ determines the order of the Jacobian $\#J(C/\mathbb{F})_p = L_p(1)$, the trace of Frobenius $a_p = -a_1$, and $L(C, s) = \prod L_p(p^{-s})^{-1}$.

The task at hand

Compute $L_p(T)$ for all $p \leq N$ where *C* has good reduction.

We will assume *C* is hyperelliptic, genus $g \leq$ 3, of the form

$$y^2=f(x),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $f(x) \in \mathbb{Q}[x]$ has degree 2g + 1 (one point at ∞).

Some questions

Which algorithm should we use?

The task at hand

Compute $L_p(T)$ for all $p \leq N$ where *C* has good reduction.

We will assume *C* is hyperelliptic, genus $g \leq$ 3, of the form

$$y^2=f(x),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $f(x) \in \mathbb{Q}[x]$ has degree 2g + 1 (one point at ∞).

Some questions

- Which algorithm should we use? (all of them)
- How big can we make N, in practice?

The task at hand

Compute $L_p(T)$ for all $p \leq N$ where *C* has good reduction.

We will assume *C* is hyperelliptic, genus $g \leq$ 3, of the form

$$y^2=f(x),$$

where $f(x) \in \mathbb{Q}[x]$ has degree 2g + 1 (one point at ∞).

Some questions

- Which algorithm should we use? (all of them)
- How big can we make N, in practice? $(10^{11}, 10^8, 10^7)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The complexity is necessarily exponential in *N*. We expect to compute many $L_p(T)$ for reasonably small *p*.

Point counting

Compute $\#C/F_p$, $\#C/F_{p^2}$,..., $\#C/F_{p^g}$. Time: O(p), $O(p^2)$, $O(p^3)$.

Point counting

Compute $\#C/F_p$, $\#C/F_{p^2}$,..., $\#C/F_{p^g}$. Time: O(p), $O(p^2)$, $O(p^3)$.

Generic group algorithms

Compute $\#J(C/F_p) = L_p(1)$ and $\#J(\tilde{C}/\mathbb{F}_p) = L_p(-1)$. Time: $O(p^{1/4})$, $O(p^{3/4})$, $O(p^{5/4})$.

・ロト・日本・日本・日本・日本

Point counting

Compute $\#C/F_p$, $\#C/F_{p^2}$,..., $\#C/F_{p^g}$. Time: O(p), $O(p^2)$, $O(p^3)$.

Generic group algorithms

Compute
$$\#J(C/F_p) = L_p(1)$$
 and $\#J(\tilde{C}/\mathbb{F}_p) = L_p(-1)$.
Time: $O(p^{1/4})$, $O(p^{3/4})$, $O(p^{5/4})$.

p-adic cohomological methods

Compute Frobenius charpoly $\chi(T) = T^{-2g}L_p(T) \mod p^k$. Time: $\tilde{O}(p^{1/2})$.

(日) (日) (日) (日) (日) (日) (日)

Point counting

Compute $\#C/F_p$, $\#C/F_{p^2}$,..., $\#C/F_{p^g}$. Time: O(p), $O(p^2)$, $O(p^3)$.

Generic group algorithms

Compute $\#J(C/F_p) = L_p(1)$ and $\#J(\tilde{C}/\mathbb{F}_p) = L_p(-1)$. Time: $O(p^{1/4})$, $O(p^{3/4})$, $O(p^{5/4})$.

p-adic cohomological methods

Compute Frobenius charpoly $\chi(T) = T^{-2g}L_p(T) \mod p^k$. Time: $\tilde{O}(p^{1/2})$.

Poly-time algorithms (Schoof, Pila) not competitive for feasible N.*

(日) (日) (日) (日) (日) (日) (日)

Strategy

Genus 1

Use $O(p^{1/4})$ generic group algorithm.

Genus 2

Use O(p) point counting plus $O(p^{1/2})$ group operations. Switch to $O(p^{3/4})$ group algorithm for $p > 10^6$.

Genus 3

Use O(p) point counting plus O(p) group operations. Switch to $\tilde{O}(p^{1/2})$ *p*-adic plus $O(p^{1/4})$ group ops for $p > 10^5$.

"Elliptic and modular curves over finite fields and related computational issues", (Elkies 1997).

Enumerating polynomials over \mathbb{F}_{ρ}

Define $\Delta f(x) = f(x+1) - f(x)$. Enumerate f(x) from f(0) via

 $f(x+1) = f(x) + \Delta f(x)$

Enumerate $\Delta^k f(n)$ in parallel starting from $\Delta^k f(0)$.

Complexity

Requires only *d* additions per enumerated value, versus *d* multiplications and *d* additions using Horner's method. Total for $y^2 = f(x)$ is (d + 1)p additions (no multiplications).

Generalizes to \mathbb{F}_{p^n} . Efficiently enumerates similar curves in parallel.

	polynomial evaluation		fin differe	ite ences	fini differenc	finite differences ×32	
$p \approx$	genus 2	genus 3	genus 2	genus 3	genus 2	genus 3	
2 ¹⁸	192.4	259.8	6.0	6.8	1.1	1.1	
2 ¹⁹	186.3	251.1	6.0	6.8	1.1	1.1	
2 ²⁰	187.3	244.1	7.2	8.0	1.1	1.3	
2 ²¹	172.3	240.8	8.8	9.4	1.2	1.3	
2 ²²	197.9	233.9	12.1	13.4	1.2	1.3	
2 ²³	229.2	285.8	12.8	14.6	2.6	2.7	
2 ²⁴	258.1	331.8	41.2	44.0	3.5	4.7	
2 ²⁵	304.8	350.4	53.6	55.7	4.8	4.9	
2 ²⁶	308.0	366.9	65.4	67.8	4.8	4.6	
2 ²⁷	318.4	376.8	70.5	73.1	4.9	5.0	
2 ²⁸	332.2	387.8	74.6	76.5	5.1	5.2	

Point counting $y^2 = f(x)$ over \mathbb{F}_p

(CPU nanoseconds/point, 2.5 GHz AMD Athlon)

High speed group operation

- Single-word Montgomery representation for \mathbb{F}_p .
- Explicit Jacobian arithmetic using *affine* coordinates. (unique representation of group elements)
- Modify generic algorithms to perform group operations "in parallel" to achieve $I \approx 3M$.

Randomization issues

The fastest/simplest algorithms are probabilistic.

Monte Carlo algorithms should be made Las Vegas algorithms to obtain provably correct results *and* better performance.

Non-group operations also need to be fast (e.g., table lookup).

		standard			Montgomery		
g	p	×1	×10	×100	×1	×10	×100
1	$2^{20} + 7$	501	245	215	239	89	69
1	$2^{25} + 35$	592	255	216	286	93	69
1	$2^{30} + 3$	683	264	217	333	98	69
2	$2^{20} + 7$	1178	933	902	362	216	196
2	$2^{25} + 35$	1269	942	900	409	220	197
2	$2^{30} + 3$	1357	949	902	455	225	196
3	$2^{20} + 7$	2804	2556	2526	642	498	478
3	$2^{25} + 35$	2896	2562	2528	690	502	476
3	$2^{30} + 3$	2986	2574	2526	736	506	478

Black box performance

(CPU nanoseconds/group operation, 2.5GHz AMD Athlon).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Computing the order of a generic abelian group

Computing the structure of G

Decompose G as a product of cyclic groups:

- Compute $|\alpha|$ for random $\alpha \in G$ to obtain $\lambda(G) = |cm|\alpha|$.
- 2 Using $\lambda(G)$, compute a basis for each Sylow *p*-subgroup, via discrete logarithms.

See Sutherland thesis (2007) for details (avoids SNF).

Benefits of working in Jacobians

Step 1 is aided by bounds on |G| and knowledge of $|G| \mod \ell$.

Given $M \le |G| < 2M$, step 2 takes $O(|G|^{1/4})$ group operations.

If $\lambda(G) > M$, step 2 is unnecessary (often the case).

In genus 1, structure is not required, but it is necessary for g > 1.

Generalized Sato-Tate conjecture (Katz-Sarnak)

The distribution of $L_p(p^{-1/2}T)$ for a "typical" genus *g* curve is equal to the distribution of the characteristic polynomial of a random matrix in USp(2g) (according to the Haar measure μ).

Optimized BSGS search

Using μ , we can compute the expected distance of a_1 (or better, a_2 given a_1) from its median value, and then choose an appropriate number of baby steps.

In genus 3 this reduces the expected search interval by a factor of 10.

(日) (日) (日) (日) (日) (日) (日)

$$y^2 = x^7 + 314159x^5 + 271828x^4 + 1644934x^3 + 57721566x^2 + 1618034x + 141421$$

Actual a2 distribution

Predicted a₂ distribution

Kedlaya's algorithm over a prime field

Approximates the $(2g \times 2g)$ matrix of the Frobenius action on the Monsky-Washnitzer cohomology, accurate modulo p^k :

$$\tilde{O}(pg^2k^2) = \tilde{O}(p)$$

Improvements of Harvey (via Bostan-Gaudry-Schost)

Apply fast linear recurrence reduction to obtain:

$$ilde{O}(p^{1/2}g^3k^{5/2}+g^4k^4\log p)= ilde{O}(p^{1/2})$$

Multipoint Kronecker substitution (Harvey, 2007) improves polynomial multiplication by a factor of 3.

	gen	us 2	genus 3		
Ν	×1	×8	×1	×8	
2 ¹⁶	1	< 1	43	13	
2 ¹⁷	4	2	1:49	18	
2 ¹⁸	12	3	4:42	41	
2 ¹⁹	40	7	12:43	1:47	
2 ²⁰	2:32	24	36:14	4:52	
2 ²¹	10:46	1:38	1:45:36	13:40	
2 ²²	40:20	5:38	5:23:31	41:07	
2 ²³	2:23:56	19:04	16:38:11	2:05:40	
2 ²⁴	8:00:09	1:16:47		6:28:25	
2 ²⁵	26:51:27	3:24:40		20:35:16	
2 ²⁶		11:07:28			
2 ²⁷		36:48:52			

L-series computations in genus 2 and 3

(elapsed times, 2.5GHz AMD Athlon)

Ν	PARI	Magma	smalljac v2	smalljac v3
2 ¹⁶	0.26	0.29	0.07	0.04
2 ¹⁷	0.55	0.59	0.15	0.08
2 ¹⁸	1.17	1.24	0.30	0.16
2 ¹⁹	2.51	2.53	0.62	0.31
2 ²⁰	5.46	5.26	1.29	0.63
2 ²¹	11.67	11.09	2.65	1.30
2 ²²	25.46	23.31	5.53	2.68
2 ²³	55.50	49.22	11.56	5.57
2 ²⁴	123.02	104.50	24.31	11.66
2 ²⁵	266.40	222.56	51.60	24.54
2 ²⁶	598.16	476.74	110.29	52.07
2 ²⁷	1367.46	1017.55	233.94	111.24
2 ²⁸	3152.91	2159.87	498.46	239.32
2 ²⁹	7317.01	4646.24	1065.28	518.16
2 ³⁰	17167.29	10141.28	2292.74	1130.85

L-series computations in Genus 1

(CPU seconds, 2.5 GHz AMD Athlon)

Conclusion

All source code freely available under GPL.

drew@math.mit.edu

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで