
Computing L-series of hyperelliptic curves

Kiran S. Kedlaya and Andrew V. Sutherland

Massachusetts Institute of Technology

May 18, 2008

Demonstration

The distribution of Frobenius traces
Let C be a genus g curve defined over Q. We may compute

#C/Fp = p − ap + 1,

for each p ≤ N where C has good reduction, and plot the
distribution of ap/

√
p over the interval [−2g, 2g].

What does the picture look like for increasing values of N?

http://math.mit.edu/ drew

Other applications: Lang-Trotter, Birch-Swinnerton-Dyer, Mazur, . . .

http://math.mit.edu/~drew

The object of interest

The numerator of the zeta function

Z (C/Fp; T) = exp

(∞∑
k=1

ckT k/k

)
=

Lp(T)

(1− T)(1− pT)
.

The polynomial Lp(T) has integer coefficients

Lp(T) = pgT 2g + a1pg−1T 2g−1 + · · ·+ agT g + · · ·+ a1T + 1.

Lp(t) determines the order of the Jacobian #J(C/F)p = Lp(1), the
trace of Frobenius ap = −a1, and L(C, s) =

∏
Lp(p−s)−1.

A computational challenge

The task at hand
Compute Lp(T) for all p ≤ N where C has good reduction.

We will assume C is hyperelliptic, genus g ≤ 3, of the form

y2 = f (x),

where f (x) ∈ Q[x] has degree 2g + 1 (one point at ∞).

Some questions
Which algorithm should we use?

(all of them)
How big can we make N, in practice? (1011, 108, 107)

The complexity is necessarily exponential in N.
We expect to compute many Lp(T) for reasonably small p.

A computational challenge

The task at hand
Compute Lp(T) for all p ≤ N where C has good reduction.

We will assume C is hyperelliptic, genus g ≤ 3, of the form

y2 = f (x),

where f (x) ∈ Q[x] has degree 2g + 1 (one point at ∞).

Some questions
Which algorithm should we use? (all of them)
How big can we make N, in practice?

(1011, 108, 107)

The complexity is necessarily exponential in N.
We expect to compute many Lp(T) for reasonably small p.

A computational challenge

The task at hand
Compute Lp(T) for all p ≤ N where C has good reduction.

We will assume C is hyperelliptic, genus g ≤ 3, of the form

y2 = f (x),

where f (x) ∈ Q[x] has degree 2g + 1 (one point at ∞).

Some questions
Which algorithm should we use? (all of them)
How big can we make N, in practice? (1011, 108, 107)

The complexity is necessarily exponential in N.
We expect to compute many Lp(T) for reasonably small p.

Algorithms

Point counting
Compute #C/Fp, #C/Fp2 ,. . . ,#C/Fpg .
Time: O(p), O(p2), O(p3).

Generic group algorithms

Compute #J(C/Fp) = Lp(1) and #J(C̃/Fp) = Lp(−1).
Time: O(p1/4), O(p3/4), O(p5/4).

p-adic cohomological methods

Compute Frobenius charpoly χ(T) = T−2gLp(T) mod pk .
Time: Õ(p1/2).

Poly-time algorithms (Schoof, Pila) not competitive for feasible N.*

Algorithms

Point counting
Compute #C/Fp, #C/Fp2 ,. . . ,#C/Fpg .
Time: O(p), O(p2), O(p3).

Generic group algorithms

Compute #J(C/Fp) = Lp(1) and #J(C̃/Fp) = Lp(−1).
Time: O(p1/4), O(p3/4), O(p5/4).

p-adic cohomological methods

Compute Frobenius charpoly χ(T) = T−2gLp(T) mod pk .
Time: Õ(p1/2).

Poly-time algorithms (Schoof, Pila) not competitive for feasible N.*

Algorithms

Point counting
Compute #C/Fp, #C/Fp2 ,. . . ,#C/Fpg .
Time: O(p), O(p2), O(p3).

Generic group algorithms

Compute #J(C/Fp) = Lp(1) and #J(C̃/Fp) = Lp(−1).
Time: O(p1/4), O(p3/4), O(p5/4).

p-adic cohomological methods

Compute Frobenius charpoly χ(T) = T−2gLp(T) mod pk .
Time: Õ(p1/2).

Poly-time algorithms (Schoof, Pila) not competitive for feasible N.*

Algorithms

Point counting
Compute #C/Fp, #C/Fp2 ,. . . ,#C/Fpg .
Time: O(p), O(p2), O(p3).

Generic group algorithms

Compute #J(C/Fp) = Lp(1) and #J(C̃/Fp) = Lp(−1).
Time: O(p1/4), O(p3/4), O(p5/4).

p-adic cohomological methods

Compute Frobenius charpoly χ(T) = T−2gLp(T) mod pk .
Time: Õ(p1/2).

Poly-time algorithms (Schoof, Pila) not competitive for feasible N.*

Strategy

Genus 1

Use O(p1/4) generic group algorithm.

Genus 2

Use O(p) point counting plus O(p1/2) group operations.
Switch to O(p3/4) group algorithm for p > 106.

Genus 3
Use O(p) point counting plus O(p) group operations.
Switch to Õ(p1/2) p-adic plus O(p1/4) group ops for p > 105.

”Elliptic and modular curves over finite fields and related
computational issues”, (Elkies 1997).

Point counting

Enumerating polynomials over Fp

Define ∆f (x) = f (x + 1)− f (x). Enumerate f (x) from f (0) via

f (x + 1) = f (x) + ∆f (x)

Enumerate ∆k f (n) in parallel starting from ∆k f (0).

Complexity
Requires only d additions per enumerated value, versus
d multiplications and d additions using Horner’s method.
Total for y2 = f (x) is (d + 1)p additions (no multiplications).

Generalizes to Fpn . Efficiently enumerates similar curves in parallel.

polynomial finite finite
evaluation differences differences ×32

p ≈ genus 2 genus 3 genus 2 genus 3 genus 2 genus 3

218 192.4 259.8 6.0 6.8 1.1 1.1
219 186.3 251.1 6.0 6.8 1.1 1.1
220 187.3 244.1 7.2 8.0 1.1 1.3
221 172.3 240.8 8.8 9.4 1.2 1.3

222 197.9 233.9 12.1 13.4 1.2 1.3
223 229.2 285.8 12.8 14.6 2.6 2.7
224 258.1 331.8 41.2 44.0 3.5 4.7

225 304.8 350.4 53.6 55.7 4.8 4.9
226 308.0 366.9 65.4 67.8 4.8 4.6
227 318.4 376.8 70.5 73.1 4.9 5.0
228 332.2 387.8 74.6 76.5 5.1 5.2

Point counting y2 = f (x) over Fp

(CPU nanoseconds/point, 2.5 GHz AMD Athlon)

Generic group algorithms

High speed group operation
Single-word Montgomery representation for Fp.
Explicit Jacobian arithmetic using affine coordinates.
(unique representation of group elements)
Modify generic algorithms to perform group operations
“in parallel” to achieve I ≈ 3M.

Randomization issues
The fastest/simplest algorithms are probabilistic.

Monte Carlo algorithms should be made Las Vegas algorithms
to obtain provably correct results and better performance.

Non-group operations also need to be fast (e.g., table lookup).

standard Montgomery

g p ×1 ×10 ×100 ×1 ×10 ×100

1 220 + 7 501 245 215 239 89 69
1 225 + 35 592 255 216 286 93 69
1 230 + 3 683 264 217 333 98 69

2 220 + 7 1178 933 902 362 216 196
2 225 + 35 1269 942 900 409 220 197
2 230 + 3 1357 949 902 455 225 196

3 220 + 7 2804 2556 2526 642 498 478
3 225 + 35 2896 2562 2528 690 502 476
3 230 + 3 2986 2574 2526 736 506 478

Black box performance
(CPU nanoseconds/group operation, 2.5GHz AMD Athlon).

Computing the order of a generic abelian group

Computing the structure of G

Decompose G as a product of cyclic groups:
1 Compute |α| for random α ∈ G to obtain λ(G) = lcm|α|.
2 Using λ(G), compute a basis for each Sylow p-subgroup,

via discrete logarithms.
See Sutherland thesis (2007) for details (avoids SNF).

Benefits of working in Jacobians
Step 1 is aided by bounds on |G| and knowledge of |G| mod `.

Given M ≤ |G| < 2M, step 2 takes O(|G|1/4) group operations.

If λ(G) > M, step 2 is unnecessary (often the case).

In genus 1, structure is not required, but it is necessary for g > 1.

Optimizing for distribution

Generalized Sato-Tate conjecture (Katz-Sarnak)

The distribution of Lp(p−1/2T) for a “typical” genus g curve is
equal to the distribution of the characteristic polynomial of a
random matrix in USp(2g) (according to the Haar measure µ).

Optimized BSGS search
Using µ, we can compute the expected distance of a1
(or better, a2 given a1) from its median value, and then choose
an appropriate number of baby steps.

In genus 3 this reduces the expected search interval by a factor of 10.

y2 = x7+314159x5+271828x4+1644934x3+57721566x2+1618034x+141421

Actual a2 distribution Predicted a2 distribution

p-adic methods

Kedlaya’s algorithm over a prime field
Approximates the (2g × 2g) matrix of the Frobenius action on
the Monsky-Washnitzer cohomology, accurate modulo pk :

Õ(pg2k2) = Õ(p)

Improvements of Harvey (via Bostan-Gaudry-Schost)
Apply fast linear recurrence reduction to obtain:

Õ(p1/2g3k5/2 + g4k4 log p) = Õ(p1/2)

Multipoint Kronecker substitution (Harvey, 2007) improves
polynomial multiplication by a factor of 3.

genus 2 genus 3

N ×1 ×8 ×1 ×8

216 1 < 1 43 13
217 4 2 1:49 18
218 12 3 4:42 41
219 40 7 12:43 1:47
220 2:32 24 36:14 4:52
221 10:46 1:38 1:45:36 13:40
222 40:20 5:38 5:23:31 41:07
223 2:23:56 19:04 16:38:11 2:05:40
224 8:00:09 1:16:47 6:28:25
225 26:51:27 3:24:40 20:35:16
226 11:07:28
227 36:48:52

L-series computations in genus 2 and 3
(elapsed times, 2.5GHz AMD Athlon)

N PARI Magma smalljac v2 smalljac v3

216 0.26 0.29 0.07 0.04
217 0.55 0.59 0.15 0.08
218 1.17 1.24 0.30 0.16
219 2.51 2.53 0.62 0.31
220 5.46 5.26 1.29 0.63
221 11.67 11.09 2.65 1.30
222 25.46 23.31 5.53 2.68
223 55.50 49.22 11.56 5.57
224 123.02 104.50 24.31 11.66
225 266.40 222.56 51.60 24.54
226 598.16 476.74 110.29 52.07
227 1367.46 1017.55 233.94 111.24
228 3152.91 2159.87 498.46 239.32
229 7317.01 4646.24 1065.28 518.16
230 17167.29 10141.28 2292.74 1130.85

L-series computations in Genus 1

(CPU seconds, 2.5 GHz AMD Athlon)

Conclusion

All source code freely available under GPL.

drew@math.mit.edu

	Introduction
	Problem definition

	Implementation
	Optimizations

	Results
	Benchmarks

