Computing L-series of hyperelliptic curves

Kiran S. Kedlaya and Andrew V. Sutherland

Massachusetts Institute of Technology

May 18, 2008

KORK ERKER ADAM ADA

The distribution of Frobenius traces

Let *C* be a genus *g* curve defined over Q. We may compute

$$
\#C/\mathbb{F}_p=p-a_p+1,
$$

for each $p \leq N$ where C has good reduction, and plot the distribution of a_p/\sqrt{p} over the interval $[-2g, 2g]$.

What does the picture look like for increasing values of *N*?

[http://math.mit.edu/ drew](http://math.mit.edu/~drew)

Other applications: Lang-Trotter, Birch-Swinnerton-Dyer, Mazur, . . .

KORK ERKER ADAM ADA

The numerator of the zeta function

$$
Z(C/\mathbb{F}_p; T) = \exp\left(\sum_{k=1}^{\infty} c_k T^k / k\right) = \frac{\mathsf{L}_{\mathsf{p}}(T)}{(1 - T)(1 - pT)}.
$$

The polynomial *Lp*(*T*) **has integer coefficients**

$$
L_p(T) = p^g T^{2g} + a_1 p^{g-1} T^{2g-1} + \cdots + a_g T^g + \cdots + a_1 T + 1.
$$

 $L_p(t)$ determines the order of the Jacobian $\#J(C/\mathbb{F})_p = L_p(1)$, the trace of Frobenius $a_p = -a_1$, and $L(C,s) = \prod L_p(p^{-s})^{-1}$.

The task at hand

Compute $L_p(T)$ for all $p \leq N$ where C has good reduction.

We will assume *C* is hyperelliptic, genus $q \leq 3$, of the form

$$
y^2=f(x),
$$

KEL KALEYKEN E YAN

where $f(x) \in \mathbb{Q}[x]$ has degree $2g + 1$ (one point at ∞).

Some questions

• Which algorithm should we use?

The task at hand

Compute $L_p(T)$ for all $p \leq N$ where *C* has good reduction.

We will assume *C* is hyperelliptic, genus $q \leq 3$, of the form

$$
y^2=f(x),
$$

KEL KALEYKEN E YAN

where $f(x) \in \mathbb{Q}[x]$ has degree $2g + 1$ (one point at ∞).

Some questions

- Which algorithm should we use? (all of them)
- How big can we make *N*, in practice?

The task at hand

Compute $L_p(T)$ for all $p \leq N$ where *C* has good reduction.

We will assume *C* is hyperelliptic, genus $q \leq 3$, of the form

$$
y^2=f(x),
$$

where $f(x) \in \mathbb{Q}[x]$ has degree $2g + 1$ (one point at ∞).

Some questions

- Which algorithm should we use? (all of them)
- How big can we make N, in practice? $(10^{11}, 10^8, 10^7)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

The complexity is necessarily exponential in *N*. We expect to compute many $L_p(T)$ for reasonably small p .

Point counting

Compute #*C*/*Fp*, #*C*/*F^p* ² ,. . . ,#*C*/*F^p g* . Time: *O*(*p*), *O*(*p* 2), *O*(*p* 3).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Point counting

Compute #*C*/*Fp*, #*C*/*F^p* ² ,. . . ,#*C*/*F^p g* . Time: *O*(*p*), *O*(*p* 2), *O*(*p* 3).

Generic group algorithms

Compute $\#J(C/F_p) = L_p(1)$ and $\#J(\tilde{C}/\mathbb{F}_p) = L_p(-1)$. Time: *O*(*p* 1/4), *O*(*p* 3/4), *O*(*p* 5/4).

K ロ X K @ X K 할 X K 할 X - 할 X YO Q Q

Point counting

Compute #*C*/*Fp*, #*C*/*F^p* ² ,. . . ,#*C*/*F^p g* . Time: *O*(*p*), *O*(*p* 2), *O*(*p* 3).

Generic group algorithms

Compute
$$
\#J(C/F_p) = L_p(1)
$$
 and $\#J(\tilde{C}/\mathbb{F}_p) = L_p(-1)$.
Time: $O(p^{1/4})$, $O(p^{3/4})$, $O(p^{5/4})$.

*p***-adic cohomological methods**

Compute Frobenius charpoly $\chi(T) = T^{-2g} L_p(T)$ mod p^k . Time: $\tilde{O}(p^{1/2})$.

KOD KOD KED KED E VOOR

Point counting

Compute #*C*/*Fp*, #*C*/*F^p* ² ,. . . ,#*C*/*F^p g* . Time: *O*(*p*), *O*(*p* 2), *O*(*p* 3).

Generic group algorithms

Compute
$$
\#J(C/F_p) = L_p(1)
$$
 and $\#J(\tilde{C}/\mathbb{F}_p) = L_p(-1)$.
Time: $O(p^{1/4})$, $O(p^{3/4})$, $O(p^{5/4})$.

*p***-adic cohomological methods**

Compute Frobenius charpoly $\chi(T) = T^{-2g} L_p(T)$ mod p^k . Time: $\tilde{O}(p^{1/2})$.

Poly-time algorithms (Schoof, Pila) not competitive for feasible *N*.*

KORK ERKER ADAM ADA

Strategy

Genus 1

Use $O(p^{1/4})$ generic group algorithm.

Genus 2

Use $O(p)$ point counting plus $O(p^{1/2})$ group operations. Switch to $O(\rho^{3/4})$ group algorithm for $\rho > 10^6.$

Genus 3

Use *O*(*p*) point counting plus *O*(*p*) group operations. Switch to $\tilde{O}(p^{1/2})$ *p*-adic plus $O(p^{1/4})$ group ops for $p > 10^5$.

"Elliptic and modular curves over finite fields and related computational issues", (Elkies 1997).

Enumerating polynomials over F*^p*

Define $\Delta f(x) = f(x + 1) - f(x)$. Enumerate $f(x)$ from $f(0)$ via

$$
f(x+1)=f(x)+\Delta f(x)
$$

Enumerate $\Delta^k f(n)$ in parallel starting from $\Delta^k f(0)$.

Complexity

Requires only *d* additions per enumerated value, versus *d* multiplications and *d* additions using Horner's method. Total for $y^2 = f(x)$ is $(d+1)p$ additions (no multiplications).

Generalizes to \mathbb{F}_{p^n} . Efficiently enumerates similar curves in parallel.

Point counting $y^2 = f(x)$ over \mathbb{F}_p

(CPU nanoseconds/point, 2.5 GHz AMD Athlon)

High speed group operation

- **•** Single-word Montgomery representation for \mathbb{F}_p .
- Explicit Jacobian arithmetic using *affine* coordinates. (unique representation of group elements)
- Modify generic algorithms to perform group operations "in parallel" to achieve $I \approx 3M$.

Randomization issues

The fastest/simplest algorithms are probabilistic.

Monte Carlo algorithms should be made Las Vegas algorithms to obtain provably correct results *and* better performance.

Non-group operations also need to be fast (e.g., table lookup).

Black box performance

(CPU nanoseconds/group operation, 2.5GHz AMD Athlon).

KID KARA KE KA E KO GO

Computing the structure of *G*

Decompose *G* as a product of cyclic groups:

- **1** Compute $|\alpha|$ for random $\alpha \in G$ to obtain $\lambda(G) = \text{lcm}|\alpha|$.
- **²** Using λ(*G*), compute a basis for each Sylow *p*-subgroup, via discrete logarithms.

See Sutherland thesis (2007) for details (avoids SNF).

Benefits of working in Jacobians

Step 1 is aided by bounds on $|G|$ and knowledge of $|G|$ mod ℓ .

Given $M \leq |G| < 2M$, step 2 takes $O(|G|^{1/4})$ group operations.

If $\lambda(G) > M$, step 2 is unnecessary (often the case).

In genus 1, structure is not required, but it is necessary for $q > 1$. K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Generalized Sato-Tate conjecture (Katz-Sarnak)

The distribution of *Lp*(*p* [−]1/2*T*) for a "typical" genus *g* curve is equal to the distribution of the characteristic polynomial of a random matrix in $USp(2q)$ (according to the Haar measure μ).

Optimized BSGS search

Using μ , we can compute the expected distance of a_1 (or better, a_2 given a_1) from its median value, and then choose an appropriate number of baby steps.

In genus 3 this reduces the expected search interval by a factor of 10.

KORKAR KERKER E VOOR

$$
y^2 = x^7 + 314159x^5 + 271828x^4 + 1644934x^3 + 57721566x^2 + 1618034x + 141421
$$

Actual *a*₂ distribution **Predicted** *a*₂ distribution

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Kedlaya's algorithm over a prime field

Approximates the $(2g \times 2g)$ matrix of the Frobenius action on the Monsky-Washnitzer cohomology, accurate modulo *p k* :

$$
\tilde{O}(pg^2k^2) = \tilde{O}(p)
$$

Improvements of Harvey (via Bostan-Gaudry-Schost)

Apply fast linear recurrence reduction to obtain:

$$
\tilde{O}(p^{1/2}g^3k^{5/2}+g^4k^4\log p)=\tilde{O}(p^{1/2})
$$

Multipoint Kronecker substitution (Harvey, 2007) improves polynomial multiplication by a factor of 3.

*L***-series computations in genus 2 and 3**

(elapsed times, 2.5GHz AMD Athlon)

K ロ X (日) X (日)

*L***-series computations in Genus 1**

(CPU seconds, 2.5 GHz AMD Athlon)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Conclusion

All source code freely available under GPL.

drew@math.mit.edu

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →