Non-vanishing of Dirichlet
L-functions at the
Central Point

Presented by :

Sami Omar
Faculté des Sciences de Tunis

ANTS VIII, Banff, 17-22 May, 2008



The complex number s is denoted by s = o}t
Definition ( A. Selberg 1989 )

The Selberg Class consists of functions of com-
plex variable F' that satisfy the following condi-
tions :

i) Dirichlet Series. For o > 1, F'(s) can be writ-
ten F(s) = Z""OO “g’;”), where a(1) = 1.

ii) Analytic Continuation. There exists an in-
teger m > 0 such that (s— 1)™F(s) has an
analytic continuation of finite order.

iii) Functional Equation . There exist real num-
bers @ >0, A; >0 and for 1 <j <r, com-
plex numbers p; with Re(u;) > 0 such that the
function

3(s) = Q* (ITl=1 T (Njs + 1)) F(s) = 7(s)F(s)

satisfies the functional equation

¢(s) = wo(l — s),



where w € C , |w| =1 and ¢(s) = ¢(5).
iv) Eulerian product. The function F can be
written

F(s) = HFp(S),
D

T2 b(pk) k k6
where Fp(s) =exp | ) | and b(p®) = O(p"?)
k=1 P
for a certain 6 <% and p is a prime number.
v) Ramanujan Hypothesis. For any fixed € > 0,

we have as n is enough large a(n) = O(n¢).




For any function F' in the Selberg class S, we
define the degree of F' as :

Tr
d=dpr =23 ).
j=1

- We denote by S; the set of functions of S
with fixed degree d.

- We denote by ij the set of functions of S#
with fixed degree d.

Remark :

- (S,.) is a monoid.

- If FF € S is entire and if 8§ € R then Fy(s) =
F(s+1i6) belongs to S (This holds also for S#).



Theorem. (Conrey and Ghosh 1993)
If FF € S then Fp(s) does not have zeros in
o > 1. Therefore F' does not vanish for ¢ > 1.

The zeros of a function in S are :
- The trivial zeros

Aty

\ , whereneNand 1 <75 <r.
J

- The non-trivial zeros in the critical
strip 0 <o < 1.



Examples :
-The Riemann zeta function is defined for o >

1 by :

1
ns

¢(s) = Z =[[a-p*"
n=1 p

It has the functional equation

¢(s) = ¢(1 —s),

where
d(s) = 721 (5)¢(s),

where [ is the gamma function.



-The Dirichlet L-functions is defined for ¢ > 1
by :

oo

—1
L(87X): Z XiZ)ZH<1_X(p ) ’
p

n=1 p?

where x is a primitive Dirichlet character (mod
q). It also satisfies the functional equation

QS(S:X) — Z_a(:;%gb(l T SaY);
where

6(s) = (£)2 T (5 4 6)L(s, ),

2
T(X) = Zn(mod ) X(M)e @, §=0if x(-1) =1
and § =1 if x(—1) = —1.



-The Dedekind zeta function is defined for o >
1 by :

() =2 e =Ha-3,

p

where k is a number field, a runs over the ideals

of £k and Na is the norm of a. It satisfies the
functional equation :

6(s) = 6(1 ),
where
6(s) = (M) F(nr(s)rs).

where d;. is the discriminant of k, n = [k, Q]
is the degree of the extension k| Q , r1 is the

number of real places of k£ and r5 is the number
of complex conjugates of k.



-The Elliptic Curves

Let E be an elliptic curve defined over Q by
the minimal model :

y? + kizy + koy = > + k3x® + kgz + ks,

where k; € Z, (1 <i<5) and N is its conduc-
tor. We define
1 1
Lp(s) = [[(Q=ap 27*) " [[(Q—app 2 *+p~ %),
pIN pIN
where ap = p+ 1 — card(Ep) if (p1 N).
By a theorem of Hasse, we have ap < 2,/p.
Therefore Lg(s) is convergent for Re(s) > 1
and the following functional equation can be
derived as follows

Ng(s) = CAR(1 - s),
where

Ng(s) = (\g—f)sr(s + %)LE(S)-



Conjectures :

e [ he Riemann Hypothesis : All the non-trivial
zeros lie on the line Re(s) = 3 : They are also
simple

e The Selberg Othonormality Conjecture (SOCQC) :

> ap(P)ag(p) _ or glogox + O(1),
px p

where ép g =1 if FF = G and O otherwise.

e The Chowla Conjecture : L(1/2,x) # 0 for
primitive Dirichlet characters x.

e Serre extended the Chowla Conjecture
to Artin L-functions of irreducible characters
of Galois extentions over Q.



Results :
e R. Balasubramanian, K. Murty 1992 :
true for 4 % of characters mod gq.

e H. Iwaniec, P. Sarnak 1999 :
true for 1/3 of characters mod gq.

e R. Murty 1989 (GRH) :
true for 50 % of characters mod gq.

e E. Ozluk, P. Snyder 1999 (GRH) :
true for 15/16 of fundamental discriminants d,

L(1/27 Xd) 7 0.

e K. Soundararajan 2000 :
true for 87,5% of odd d > 0, L(1/2,xgq) # O.

e N. Katz, P. Sarnak 1999 : (Under the " Pair-
Correlation” Conjecture for "small’ zeros of L
functions) : true for 100 % of L(1/2,x4) 7 O.



Computational Results :

e M. Watkins 2004 :

L(s,x) has no real zeros for real odd x of mo-
dulus d < 3 x 108. The last record was up to
3 x 10° due to Low and Purdue (1968).

e Kok Seng 2005 :
L(s,x) has no real zeros for real even xy of mo-
dulus d < 2 x 10°. The last record was up to
986 due to Rosser.

e Explicit computation of values of L-functions
require O(,/q) terms by using the smooth ap-
proximate functional equation : R. Rumely (93),
A. Odlyzko(79), E. Tollis(98), M. Watkins (04),
T. Dokchitser(04), M. Rubinstein (01) .

e Computing zeros of L-functions using the
Explicit Formula in Number Theory : S. Omar
(01, 08), A. Booker (06, 07), D. Miller (02).



Theorem (Explicit Formula)

Let F' satisfy F'(0) = 1 together with the fol-
lowing conditions :

(A) F'is even, continuous and continuously dif-
ferentiable everywhere except at a finite num-
ber of points a;, where F(z) and F/(z) have
only a discontinuity of the first kind, such that

F(a;) = 3(F(a; + 0) + F(a; — 0)).

(B) There exists a number b > 0 such that
1

F(xz) and F'/(z) are O(e_(§+b)“’”|) as | x |— oc.

Then the Mellin transform of F' .

“+ o0
d(s) = /_ F(w)e(s_%)wdx

oo
IS holomorphic in every vertical strip
—a<oc<1l4awhere0O<a<b a<l1



We have :

In(p)
pm/2

Y@ = In(3)-LE) -2 Y Re(x"(P)F(mIn(p))
P pym=>1

where
00 F(:B/Q)e_(%_i_%)x e T
(P = [ ~ S| da,
0 1 —e % €T
and



Conditional Bounds

We denote by ~;. the imaginary part of the k"
zéro of L(s,x) and n, = ordL(1/2,x).
Let

2
S(y) =ny + > ngpe /.
k#0
By the explicit formula, we have the identity

S(y) = \/% (In(%) — I;(F,) — QZ |n(p)R€(Xm(p>)e—y(m|n(p))2> .

pm/2

Proposition

Assuming GRH, we have for all y > 0
Ny < S(y)
and

lim S(y) = ny.
y—0



Unconditional Bounds

We would have Re $(s) > 0 for 0 < o < 1.
Then, we consider Gy(z) = Cofﬁg }2) where
Fy is the conditional test function. Actually on

both lines 0 = 0,1, Re P(co + it) = Fy(t) > 0.

We set

= S e @ (p).

fO cosehé:c/Q) dx PF3

T(y) =ny+

By the Explicit Formulas, we have the identity

T(y) = (ln( )—Ié(Gy)—llz Inp —Re(x"(p))e” y(m'”p)2>

where




Proposition
For all y > 0, we have

5% < T(?/)
and
lim T'(y) = ny.
y—0

Proposition

Under GRH

L(3,x) # 0 holds if and only if there exists
y > 0 such that S(y) < 1.

Proposition
L(3,x) # 0 holds if and only if there exists
y > 0 such that T'(y) < 1.



Theorem
Under GRH, we have

In(q)

Inin(q)’
Unconditionally, we have

Ny K

ny < In(q).

T heorem

Let py = 1/2 4 i, be the lowest zero on the
critical line of L(s,x).

Under GRH, we have

These estimates remain true for the Selberg
Class in term of the conductor.



Numerical Evidence for n, =0

q yo | max,S(yo) y max, T(y) PO n, | time
10<g< 102 | 0.3 | 0.50410 | 0.3 | 0.67812 100 0 | 50m
10°2<¢< 103 | 0.2 0.46543 0.2 0.57037 103 0 | 1l4h
103 <¢<10% | 0.11 | 0.41720 | 0.11| 0.52140 |4x103| O 4d
104 < ¢< 10% | 0.09 | 0.34512 | 0.09 | 0.37528 104 0| 6d
10°<¢< 10% | 0.08 | 0.28643 | 0.07| 0.31726 |6x10*| O | 94
106 < g < 107 | 0.07 | 0.13242 | 0.07 | 0.09642 10° 0 | 14d
10" < ¢< 10% | 0.05| 0.07830 | 0.05| 0.08347 |5x10°| 0 | 20d
108 < ¢< 10° | 0.04 | 0.05176 | 0.04| 0.06941 106 0 | 50d

109 < ¢< 100 | 0.01| 0.25871 | 0.01| 0.35762 |5x10°| O | 1804d




Theorem ( The Li Criterion 1997)

1 d"
(n—1)ldsm

where  £(s) = s(s — 1)m 2 (£)¢(s).

(RH) & M\, = [s"tlog&(s)] . _, > 0,¥n €N,

Also, we have
1 n
A=) [1—(1-2)",
0 P

where p runs over the set of the non-trivial
zeros of (.



The Generalized Li Criterion

In 1999, Bombieri and Lagarias proved the fol-
lowing theorem :

Let R be a set of complex numbers p of mul-
tiplicity a positive integer and such that 1 ¢

1 R
R and ) + [ Felp)] < oo then the following
> (14 p])?

conditions are equivalent :
1- Rep < & for any p€ R .

1 —Nn
2- > Re 1-(1--)
0 P

>0 forn=1,2,...




Corollarly ( Li's Generalized Crite-
rion).

For any F' € S, we have

(HRG)@AF(n)ZZ[l—(l—%)n] >0, VneN,
0

where p is a non-trivial zero of F' and

p [Im(p)|<T



Theorem (S.Omar, K. Mazouda 2007)
Let I be a function in the Selberg class. We
assume that F' does not vanish on the ligne
Re(s) = 1. Then, we have

Arp(n) = mp 4+ n(logQr — d—Fv)

_1)/-1 m
- £ P Fenn]

k<X

o0 N 4 i
s J J
T ”Z 3( ¥ +u]+zl(l+xj+uj>>

- L ymen Z{H/\ +u;>k'

1=1k=2

Theorem (S.Omar, K.Mazouda 2008)
e Under (GRH), we have :

d
Ap(n) = ?Fnlogn +cpn+ O (\/ﬁlog n) :
with

r

er =Ly~ 1) + 3 1090@3) A = T[22V
1=1

e If A\(2) > O then there does not exist a siegel
zero for F(s).



