Non-vanishing of Dirichlet L-functions at the Central Point

Presented by :

Sami Omar Faculté des Sciences de Tunis

ANTS VIII, Banff, 17-22 May, 2008

The complex number s is denoted by $s = \sigma + it$ Definition (A. Selberg 1989)

The Selberg Class consists of functions of complex variable F that satisfy the following conditions :

i) Dirichlet Series. For $\sigma > 1$, $F(s)$ can be written $F(s) = \sum_{n=1}^{+\infty}$ $\frac{a(n)}{n^s}$, where $a(1)=1$.

ii) Analytic Continuation. There exists an integer $m \geq 0$ such that $(s-1)^m F(s)$ has an analytic continuation of finite order.

iii) Functional Equation . There exist real numbers $Q > 0$, $\lambda_j > 0$ and for $1 \leq j \leq r$, complex numbers μ_j with $Re(\mu_j) \geq 0$ such that the function

$$
\phi(s) = Q^s \left(\prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) \right) F(s) = \gamma(s) F(s)
$$

satisfies the functional equation

$$
\phi(s)=\omega\overline{\phi}(1-s),
$$

where $\omega \in \mathbb{C}$, $|\omega| = 1$ and $\overline{\phi}(s) = \overline{\phi(\overline{s})}$. iv) Eulerian product. The function F can be written

$$
F(s) = \prod_p F_p(s),
$$

where $F_p(s)=exp$ $\sqrt{ }$ $\overline{ }$ $+$ \sum ∞ $k=1$ $b(p^k)$ p^{ks} \setminus and $b(p^k) = O(p^{k\theta})$ for a certain $\theta < \frac{1}{2}$ and p is a prime number. v) Ramanujan Hypothesis. For any fixed $\epsilon > 0$, we have as n is enough large $a(n) = O(n^{\epsilon}).$

For any function F in the Selberg class S , we define the degree of F as :

$$
d = d_F = 2 \sum_{j=1}^r \lambda_j.
$$

- We denote by S_d the set of functions of S with fixed degree d .

- We denote by $S_d^{\#}$ $\frac{\partial f}{\partial d}$ the set of functions of $S^{\text{\#}}$ with fixed degree d .

Remark :

 $(S, .)$ is a monoid.

- If $F \in S$ is entire and if $\theta \in \mathbb{R}$ then $F_{\theta}(s)$ = $F(s+i\theta)$ belongs to S (This holds also for $S^{\#}$).

Theorem. (Conrey and Ghosh 1993) If $F \in S$ then $F_p(s)$ does not have zeros in $\sigma > 1$. Therefore F does not vanish for $\sigma > 1$.

The zeros of a function in S are : - The trivial zeros

$$
-\frac{n+\mu_j}{\lambda_j}\text{ , where }n\in\mathbb{N}\text{ and }1\leq j\leq r.
$$

- The non-trivial zeros in the critical strip $0 \leq \sigma \leq 1$.

Examples :

-The Riemann zeta function is defined for σ > 1 by :

$$
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p (1 - p^{-s})^{-1}.
$$

It has the functional equation

$$
\phi(s)=\phi(1-s),
$$

where

$$
\phi(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s),
$$

where Γ is the gamma function.

-The Dirichlet L-functions is defined for $\sigma > 1$ by :

$$
L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p \left(1 - \frac{\chi(p)}{p^s} \right)^{-1},
$$

where χ is a primitive Dirichlet character (mod q). It also satisfies the functional equation

$$
\phi(s,\chi)=\tfrac{\tau(\chi)}{i^a\sqrt{q}}\phi(1-s,\overline{\chi}),
$$

where

$$
\phi(s) = \left(\frac{q}{\pi}\right)^{\frac{s}{2}} \Gamma(\frac{s}{2} + \delta) L(s, \chi),
$$

 $\tau(\chi) = \sum_{n \pmod{q}} \chi(n)e^{i\chi(n)}$ $2i\pi n$ $\overline{q}^-, \; \delta = 0$ if $\chi(-1) = 1$ and $\delta = 1$ if $\chi(-1) = -1$.

-The Dedekind zeta function is defined for σ > 1 by :

$$
\zeta_k(s) = \sum_{\mathfrak{a}} \frac{1}{(N\mathfrak{a})^s} = \prod_p (1 - Np^{-s})^{-1},
$$

where k is a number field, a runs over the ideals of k and $N\mathfrak{a}$ is the norm of \mathfrak{a} . It satisfies the functional equation :

$$
\phi(s)=\phi(1-s),
$$

where

$$
\phi(s) = \left(\frac{\sqrt{|d_k|}}{2^{r_2} \pi^2}\right)^s \Gamma(\frac{s}{2})^{r_1} \Gamma(s)^{r_2} \zeta_k(s),
$$

where d_k is the discriminant of $k, n = [k, \mathbb{Q}]$ is the degree of the extension $k \mid \mathbb{Q}$, r_1 is the number of real places of k and r_2 is the number of complex conjugates of k .

-The Elliptic Curves

Let E be an elliptic curve defined over $\mathbb Q$ by the minimal model :

 $y^2 + k_1xy + k_2y = x^3 + k_3x^2 + k_4x + k_5,$ where $k_i \in \mathbb{Z}$, $(1 \leq i \leq 5)$ and N is its conductor. We define

$$
L_E(s) = \prod_{p|N} (1 - a_p p^{-\frac{1}{2} - s})^{-1} \prod_{p\nmid N} (1 - a_p p^{-\frac{1}{2} - s} + p^{-2s})^{-1},
$$

where $a_p = p + 1 - \text{card}(E_p)$ if $(p \nmid N)$. By a theorem of Hasse, we have $a_p < 2\sqrt{p}$. Therefore $L_E(s)$ is convergent for $Re(s) > 1$ and the following functional equation can be derived as follows :

$$
\Lambda_E(s) = C \Lambda_E(1-s),
$$

where

$$
\Lambda_E(s) = (\frac{\sqrt{N}}{2\pi})^s \Gamma(s + \frac{1}{2}) L_E(s).
$$

Conjectures :

• The Riemann Hypothesis : All the non-trivial zeros lie on the line $\Re e(s) = \frac{1}{2}$: They are also simple

• The Selberg Othonormality Conjecture (SOC) :

$$
\sum_{p\leq x} \frac{a_F(p)\overline{a_G(p)}}{p} = \delta_{F,G} \log_2 x + O(1),
$$

where $\delta_{F,G} = 1$ if $F = G$ and 0 otherwise.

• The Chowla Conjecture : $L(1/2, \chi) \neq 0$ for primitive Dirichlet characters χ .

• Serre extended the Chowla Conjecture to Artin L-functions of irreducible characters of Galois extentions over Q.

Results :

• R. Balasubramanian, K. Murty 1992 : true for 4 $\%$ of characters mod q.

• H. Iwaniec, P. Sarnak 1999 : true for $1/3$ of characters mod q.

• R. Murty 1989 (GRH) : true for 50 $\%$ of characters mod q.

• E. Özluk, P. Snyder 1999 (GRH) : true for $15/16$ of fundamental discriminants d, $L(1/2, \chi_d) \neq 0.$

• K. Soundararajan 2000 : true for 87,5% of odd $d > 0$, $L(1/2, \chi_{8d}) \neq 0$.

• N. Katz, P. Sarnak 1999 : (Under the "Pair-Correlation" Conjecture for "small" zeros of L functions) : true for 100 % of $L(1/2, \chi_d) \neq 0$.

Computational Results :

• M. Watkins 2004 :

 $L(s, \chi)$ has no real zeros for real odd χ of modulus $d \leq 3 \times 10^8$. The last record was up to 3×10^5 due to Low and Purdue (1968).

• Kok Seng 2005 :

 $L(s, \chi)$ has no real zeros for real even χ of modulus $d \leq 2 \times 10^5$. The last record was up to 986 due to Rosser.

 \bullet Explicit computation of values of L -functions require $O(\sqrt{q})$ terms by using the smooth approximate functional equation : R. Rumely (93), A. Odlyzko(79), E. Tollis(98), M. Watkins (04), T. Dokchitser(04), M. Rubinstein (01) .

• Computing zeros of L -functions using the Explicit Formula in Number Theory : S. Omar (01, 08), A. Booker (06, 07), D. Miller (02).

Theorem (Explicit Formula)

Let F satisfy $F(0) = 1$ together with the following conditions :

 (A) F is even, continuous and continuously differentiable everywhere except at a finite number of points a_i , where $F(x)$ and $F'(x)$ have only a discontinuity of the first kind, such that $F(a_i) = \frac{1}{2}(F(a_i + 0) + F(a_i - 0)).$

(B) There exists a number $b > 0$ such that $F(x)$ and $F'(x)$ are $O(e^{-(\frac{1}{2}+b)|x|})$ as $|x| \to \infty$. Then the Mellin transform of F :

$$
\Phi(s) = \int_{-\infty}^{+\infty} F(x)e^{(s-\frac{1}{2})x} dx
$$

is holomorphic in every vertical strip $-a \leq \sigma \leq 1 + a$ where $0 < a < b, a < 1$ We have :

$$
\sum_{\rho} \Phi(\rho) = \ln\left(\frac{q}{\pi}\right) - I_{\delta}(F) - 2 \sum_{p,m \geq 1} \mathcal{R}e(\chi^m(p)) F(m \ln(p)) \frac{\ln(p)}{p^{m/2}}
$$

where

$$
I_{\delta}(F) = \int_0^{+\infty} \left(\frac{F(x/2)e^{-(\frac{1}{4} + \frac{\delta}{2})x}}{1 - e^{-x}} - \frac{e^{-x}}{x} \right) dx,
$$

and

$$
\delta = \begin{cases} 0 & \text{if } \chi(-1) = 1 \\ 1 & \text{if } \chi(-1) = -1. \end{cases}
$$

Conditional Bounds

We denote by γ_k the imaginary part of the k^{th} zéro of $L(s, \chi)$ and $n_{\chi} = \text{ord}L(1/2, \chi)$. Let

$$
S(y) = n_{\chi} + \sum_{k \neq 0} n_k e^{-\gamma_k^2/4y}.
$$

By the explicit formula, we have the identity

$$
S(y) = \sqrt{\frac{y}{\pi}} \left(\ln(\frac{q}{\pi}) - I_{\delta}(F_y) - 2 \sum_{p,m} \frac{\ln(p)}{p^{m/2}} \mathcal{R}e(\chi^m(p)) e^{-y(m \ln(p))^2} \right)
$$

Proposition

.

Assuming GRH, we have for all $y > 0$

$$
n_\chi \leq S(y)
$$

and

$$
\lim_{y \to 0} S(y) = n_{\chi}.
$$

Unconditional Bounds

We would have $\Re e \Phi(s) \geq 0$ for $0 \leq \sigma \leq 1$. Then, we consider $G_y(x) = \frac{F_y(x)}{\cosh(x/2)}$ where F_y is the conditional test function. Actually on both lines $\sigma = 0, 1$, $\Re e \Phi(\sigma + it) = \widehat{F}_y(t) \ge 0$.

We set

$$
T(y) = n_{\chi} + \frac{1}{2 \int_0^{+\infty} \frac{e^{-yx^2}}{\cosh(x/2)} dx} \sum_{\rho \neq \frac{1}{2}} \Re e \, \Phi(\rho).
$$

By the Explicit Formulas, we have the identity

$$
T(y) = g_y \left(\ln(\frac{q}{\pi}) - I_{\delta}(G_y) - 4 \sum_{p,m} \frac{\ln p}{1 + p^m} \mathcal{R}e(\chi^m(p)) e^{-y(m \ln p)^2} \right)
$$

where

$$
g_y = \frac{1}{2 \int_0^{+\infty} \frac{e^{-yx^2}}{\cosh(x/2)} dx}
$$

Proposition

For all $y > 0$, we have

$$
n_\chi \leq T(y)
$$

and

$$
\lim_{y \to 0} T(y) = n_{\chi}.
$$

Proposition

Under GRH $L(\frac{1}{2})$ $(\frac{1}{2},\chi) \neq 0$ holds if and only if there exists $y > 0$ such that $S(y) < 1$.

Proposition

 $L(\frac{1}{2})$ $(\frac{1}{2},\chi) \neq 0$ holds if and only if there exists $y > 0$ such that $T(y) < 1$.

Theorem

Under GRH, we have

$$
n_{\chi} \ll \frac{\ln(q)}{\ln \ln(q)},
$$

Unconditionally, we have

$$
n_{\chi} < \ln(q).
$$

Theorem

Let $\rho_{\chi} = 1/2 + i\gamma_{\chi}$ be the lowest zero on the critical line of $L(s, \chi)$.

Under GRH, we have

$$
|\gamma_{\chi}| \ll \frac{1}{\ln \ln (q)}
$$

These estimates remain true for the Selberg Class in term of the conductor.

Numerical Evidence for $n_\chi=0$

Theorem (The Li Criterion 1997)

$$
(RH) \Leftrightarrow \lambda_n = \frac{1}{(n-1)!} \frac{d^n}{ds^n} \left[s^{n-1} \log \xi(s) \right]_{s=1} \ge 0, \forall n \in \mathbb{N},
$$

where
$$
\xi(s) = s(s-1)\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s).
$$

Also, we have

$$
\lambda_n = \sum_{\rho} \left[1 - (1 - \frac{1}{\rho})^n \right],
$$

where ρ runs over the set of the non-trivial zeros of ζ .

The Generalized Li Criterion

In 1999, Bombieri and Lagarias proved the following theorem :

Let \Re be a set of complex numbers ρ of multiplicity a positive integer and such that 1 \notin $\mathfrak R$ and \sum ρ $1 + |Re(\rho)|$ $\frac{(1+|P(C(P))|}{(1+|\rho|)^2} < \infty$ then the following conditions are equivalent : 1- $Re \rho \leq \frac{1}{2}$ for any $\rho \in \Re$. $2 - \sum$ ρ Re $\sqrt{ }$ $|1 \sqrt{ }$ 1 − 1 ρ $\setminus \neg n$ \vert ≥ 0 for $n = 1, 2, ...$

Corollarly (Li's Generalized Criterion).

For any $F \in S$, we have

$$
(H R G) \Leftrightarrow \lambda_F(n) = \sum_{\rho} \left[1 - (1 - \frac{1}{\rho})^n \right] \geq 0, \ \forall \ n \in \mathbb{N},
$$

where ρ is a non-trivial zero of F and

$$
\sum_{\rho} = \lim_{T \mapsto +\infty} \sum_{|Im(\rho)| < T}.
$$

Theorem (S.Omar, K. Mazouda 2007) Let F be a function in the Selberg class. We assume that F does not vanish on the ligne $Re(s) = 1$. Then, we have

$$
\lambda_F(n) = m_F + n(\log Q_F - \frac{d_F}{2}\gamma)
$$

-
$$
\sum_{l=1}^n {n \choose l} \frac{(-1)^{l-1}}{(l-1)!} \lim_{X \to +\infty} \left\{ \sum_{k \le X} \frac{\Lambda(k)}{k} (\log k)^{l-1} - \frac{m_F}{l} (\log X)^{l} \right\}
$$

+
$$
n \sum_{j=1}^r \lambda_j \left(-\frac{1}{\lambda_j + \mu_j} + \sum_{l=1}^{+\infty} \frac{\lambda_j + \mu_j}{l(l + \lambda_j + \mu_j)} \right)
$$

-
$$
\sum_{j=1}^r \sum_{k=2}^n {n \choose k} (-\lambda_j)^k \sum_{l=1}^{+\infty} \left\{ \frac{1}{l + \lambda_j + \mu_j} \right\}^k.
$$

Theorem (S.Omar, K.Mazouda 2008) • Under (GRH), we have :

$$
\lambda_F(n) = \frac{d_F}{2} n \log n + c_F n + O\left(\sqrt{n} \log n\right),
$$

with

$$
c_F = \frac{d_F}{2}(\gamma - 1) + \frac{1}{2}\log(\lambda Q_F^2), \lambda = \prod_{j=1}^r \lambda_j^{2\lambda_j}.
$$

• If $\lambda_F(2) > 0$ then there does not exist a siegel zero for $F(s)$.