Non-vanishing of Dirichlet L-functions at the Central Point

Presented by :

Sami Omar Faculté des Sciences de Tunis

ANTS VIII, Banff, 17-22 May, 2008

The complex number s is denoted by $s = \sigma + it$ **Definition (A. Selberg 1989)**

The Selberg Class consists of functions of complex variable F that satisfy the following conditions :

i) Dirichlet Series. For $\sigma > 1$, F(s) can be written $F(s) = \sum_{n=1}^{+\infty} \frac{a(n)}{n^s}$, where a(1) = 1.

ii) Analytic Continuation. There exists an integer $m \ge 0$ such that $(s-1)^m F(s)$ has an analytic continuation of finite order.

iii) Functional Equation . There exist real numbers Q > 0, $\lambda_j > 0$ and for $1 \le j \le r$, complex numbers μ_j with $Re(\mu_j) \ge 0$ such that the function

$$\phi(s) = Q^s \left(\prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) \right) F(s) = \gamma(s) F(s)$$

satisfies the functional equation

$$\phi(s) = \omega \overline{\phi}(1-s),$$

where $\omega \in \mathbb{C}$, $|\omega| = 1$ and $\overline{\phi}(s) = \overline{\phi(\overline{s})}$. iv) Eulerian product. The function F can be written

$$F(s) = \prod_p F_p(s),$$

where $F_p(s) = exp\left(\sum_{k=1}^{+\infty} \frac{b(p^k)}{p^{ks}}\right)$ and $b(p^k) = O(p^{k\theta})$ for a certain $\theta < \frac{1}{2}$ and p is a prime number. v) Ramanujan Hypothesis. For any fixed $\epsilon > 0$, we have as n is enough large $a(n) = O(n^{\epsilon})$. For any function F in the Selberg class S, we define the degree of F as :

$$d = d_F = 2\sum_{j=1}^r \lambda_j.$$

- We denote by S_d the set of functions of S with fixed degree d.

- We denote by $S_d^{\#}$ the set of functions of $S^{\#}$ with fixed degree d.

Remark :

- (S, .) is a monoid.

- If $F \in S$ is entire and if $\theta \in \mathbb{R}$ then $F_{\theta}(s) = F(s+i\theta)$ belongs to S (This holds also for $S^{\#}$).

Theorem. (Conrey and Ghosh 1993) If $F \in S$ then $F_p(s)$ does not have zeros in $\sigma > 1$. Therefore F does not vanish for $\sigma > 1$.

The zeros of a function in S are :

- The trivial zeros

$$-rac{n+\mu_j}{\lambda_j}$$
 , where $n\in\mathbb{N}$ and $1\leq j\leq r.$

- The non-trivial zeros in the critical strip $0 \le \sigma \le 1$.

Examples :

-The Riemann zeta function is defined for $\sigma >$ 1 by :

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p (1 - p^{-s})^{-1}.$$

It has the functional equation

$$\phi(s) = \phi(1-s),$$

where

$$\phi(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s),$$

where Γ is the gamma function.

-The Dirichlet *L*-functions is defined for $\sigma > 1$ by :

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p \left(1 - \frac{\chi(p)}{p^s}\right)^{-1},$$

where χ is a primitive Dirichlet character (mod q). It also satisfies the functional equation

$$\phi(s,\chi) = rac{ au(\chi)}{i^a\sqrt{q}}\phi(1-s,\overline{\chi})$$
 ,

where

$$\phi(s) = \left(\frac{q}{\pi}\right)^{\frac{s}{2}} \Gamma(\frac{s}{2} + \delta) L(s, \chi),$$

 $\tau(\chi) = \sum_{n \pmod{q}} \chi(n) e^{\frac{2i\pi n}{q}}, \ \delta = 0 \text{ if } \chi(-1) = 1$ and $\delta = 1$ if $\chi(-1) = -1$. -The Dedekind zeta function is defined for $\sigma >$ 1 by :

$$\zeta_k(s) = \sum_{\mathfrak{a}} \frac{1}{(N\mathfrak{a})^s} = \prod_p (1 - Np^{-s})^{-1},$$

where k is a number field, \mathfrak{a} runs over the ideals of k and $N\mathfrak{a}$ is the norm of \mathfrak{a} . It satisfies the functional equation :

$$\phi(s) = \phi(1-s),$$

where

$$\phi(s) = \left(\frac{\sqrt{|d_k|}}{2^{r_2}\pi^{\frac{n}{2}}}\right)^s \Gamma(\frac{s}{2})^{r_1} \Gamma(s)^{r_2} \zeta_k(s),$$

where d_k is the discriminant of k, $n = [k, \mathbb{Q}]$ is the degree of the extension $k | \mathbb{Q}$, r_1 is the number of real places of k and r_2 is the number of complex conjugates of k.

-The Elliptic Curves

Let E be an elliptic curve defined over \mathbb{Q} by the minimal model :

 $y^2 + k_1xy + k_2y = x^3 + k_3x^2 + k_4x + k_5,$ where $k_i \in \mathbb{Z}$, $(1 \le i \le 5)$ and N is its conductor. We define

$$L_E(s) = \prod_{p|N} (1 - a_p p^{-\frac{1}{2} - s})^{-1} \prod_{p \nmid N} (1 - a_p p^{-\frac{1}{2} - s} + p^{-2s})^{-1},$$

where $a_p = p + 1 - \operatorname{card}(E_p)$ if $(p \nmid N)$. By a theorem of Hasse, we have $a_p < 2\sqrt{p}$. Therefore $L_E(s)$ is convergent for $\mathcal{R}e(s) > 1$ and the following functional equation can be derived as follows :

$$\Lambda_E(s) = C\Lambda_E(1-s),$$

where

$$\Lambda_E(s) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s + \frac{1}{2}) L_E(s).$$

Conjectures :

• The Riemann Hypothesis : All the non-trivial zeros lie on the line $\Re e(s) = \frac{1}{2}$: They are also simple

• The Selberg Othonormality Conjecture (SOC) :

$$\sum_{p \le x} \frac{a_F(p)\overline{a_G(p)}}{p} = \delta_{F,G} \log_2 x + O(1),$$

where $\delta_{F,G} = 1$ if F = G and 0 otherwise.

• The Chowla Conjecture : $L(1/2, \chi) \neq 0$ for primitive Dirichlet characters χ .

• Serre extended the Chowla Conjecture to Artin *L*-functions of irreducible characters of Galois extentions over \mathbb{Q} .

Results :

• R. Balasubramanian, K. Murty 1992 : true for 4 % of characters mod q.

• H. Iwaniec, P. Sarnak 1999 : true for 1/3 of characters mod q.

• R. Murty 1989 (GRH) : true for 50 % of characters mod q.

• E. Özluk, P. Snyder 1999 (GRH) : true for 15/16 of fundamental discriminants d, $L(1/2, \chi_d) \neq 0$.

• K. Soundararajan 2000 : true for 87,5% of odd d > 0, $L(1/2, \chi_{8d}) \neq 0$.

• N. Katz, P. Sarnak 1999 : (Under the "Pair-Correlation" Conjecture for "small" zeros of Lfunctions) : true for 100 % of $L(1/2, \chi_d) \neq 0$.

Computational Results :

• M. Watkins 2004 :

 $L(s,\chi)$ has no real zeros for real odd χ of modulus $d \leq 3 \times 10^8$. The last record was up to 3×10^5 due to Low and Purdue (1968).

• Kok Seng 2005 :

 $L(s,\chi)$ has no real zeros for real even χ of modulus $d \leq 2 \times 10^5$. The last record was up to 986 due to Rosser.

• Explicit computation of values of *L*-functions require $O(\sqrt{q})$ terms by using the smooth approximate functional equation : R. Rumely (93), A. Odlyzko(79), E. Tollis(98), M. Watkins (04), T. Dokchitser(04), M. Rubinstein (01).

• Computing zeros of *L*-functions using the Explicit Formula in Number Theory : S. Omar (01, 08), A. Booker (06, 07), D. Miller (02).

Theorem (Explicit Formula)

Let F satisfy F(0) = 1 together with the following conditions :

(A) F is even, continuous and continuously differentiable everywhere except at a finite number of points a_i , where F(x) and F'(x) have only a discontinuity of the first kind, such that $F(a_i) = \frac{1}{2}(F(a_i + 0) + F(a_i - 0)).$

(B) There exists a number b > 0 such that F(x) and F'(x) are $O(e^{-(\frac{1}{2}+b)|x|})$ as $|x| \to \infty$. Then the Mellin transform of F:

$$\Phi(s) = \int_{-\infty}^{+\infty} F(x) e^{(s - \frac{1}{2})x} dx$$

is holomorphic in every vertical strip $-a \le \sigma \le 1 + a$ where 0 < a < b, a < 1

We have :

$$\sum_{\rho} \Phi(\rho) = \ln\left(\frac{q}{\pi}\right) - I_{\delta}(F) - 2\sum_{p,m \ge 1} \mathcal{R}e(\chi^m(p))F(m\ln(p))\frac{\ln(p)}{p^{m/2}}$$

where

$$I_{\delta}(F) = \int_{0}^{+\infty} \left(\frac{F(x/2)e^{-(\frac{1}{4} + \frac{\delta}{2})x}}{1 - e^{-x}} - \frac{e^{-x}}{x} \right) \, dx,$$

and

$$\delta = \begin{cases} 0 & \text{if } \chi(-1) = 1 \\ 1 & \text{if } \chi(-1) = -1. \end{cases}$$

Conditional Bounds

We denote by γ_k the imaginary part of the k^{th} zéro of $L(s,\chi)$ and $n_{\chi} = \operatorname{ord} L(1/2,\chi)$. Let

$$S(y) = n_{\chi} + \sum_{k \neq 0} n_k e^{-\gamma_k^2/4y}.$$

By the explicit formula, we have the identity

$$S(y) = \sqrt{\frac{y}{\pi}} \left(\ln(\frac{q}{\pi}) - I_{\delta}(F_y) - 2 \sum_{p,m} \frac{\ln(p)}{p^{m/2}} \mathcal{R}e(\chi^m(p)) e^{-y(m\ln(p))^2} \right)$$

Proposition

Assuming GRH, we have for all y > 0

$$n_{\chi} \leq S(y)$$

and

$$\lim_{y\to 0} S(y) = n_{\chi}.$$

Unconditional Bounds

We would have $\Re e \Phi(s) \ge 0$ for $0 \le \sigma \le 1$. Then, we consider $G_y(x) = \frac{F_y(x)}{\cosh(x/2)}$ where F_y is the conditional test function. Actually on both lines $\sigma = 0, 1$, $\Re e \Phi(\sigma + it) = \widehat{F_y}(t) \ge 0$.

We set

$$T(y) = n_{\chi} + \frac{1}{2\int_{0}^{+\infty} \frac{e^{-yx^{2}}}{\cosh(x/2)} dx} \sum_{\rho \neq \frac{1}{2}} \Re e \, \Phi(\rho).$$

By the Explicit Formulas, we have the identity

$$T(y) = g_y \left(\ln(\frac{q}{\pi}) - I_{\delta}(G_y) - 4 \sum_{p,m} \frac{\ln p}{1 + p^m} \mathcal{R}e(\chi^m(p)) e^{-y(m \ln p)^2} \right)$$

where

$$g_y = \frac{1}{2\int_0^{+\infty} \frac{e^{-yx^2}}{\cosh(x/2)} dx}$$

Proposition

For all y > 0, we have

$$n_{\chi} \leq T(y)$$

and

$$\lim_{y\to 0} T(y) = n_{\chi}.$$

Proposition

Under GRH $L(\frac{1}{2},\chi) \neq 0$ holds if and only if there exists y > 0 such that S(y) < 1.

Proposition

 $L(\frac{1}{2},\chi) \neq 0$ holds if and only if there exists y > 0 such that T(y) < 1.

Theorem

Under GRH, we have

$$n_{\chi} \ll rac{\ln(q)}{\ln\ln(q)},$$

Unconditionally, we have

$$n_\chi < \ln(q)$$
.

Theorem

Let $\rho_{\chi} = 1/2 + i\gamma_{\chi}$ be the lowest zero on the critical line of $L(s,\chi)$.

Under GRH, we have

$$|\gamma_{\chi}| \ll rac{1}{\ln \ln(q)}$$

These estimates remain true for the Selberg Class in term of the conductor.

Numerical Evidence for $n_{\chi} = 0$

q	yo	$\max_{\chi} \mathbf{S}(\mathbf{y_0})$	У	$\max_{\chi} T(y)$	p_0	\mathbf{n}_{χ}	time
$10 \le q < 10^2$	0.3	0.50410	0.3	0.67812	100	0	50 <i>m</i>
$10^2 \le q < 10^3$	0.2	0.46543	0.2	0.57037	10 ³	0	14h
$10^3 \le q < 10^4$	0.11	0.41720	0.11	0.52140	$4 imes 10^3$	0	4 <i>d</i>
$10^4 \le q < 10^5$	0.09	0.34512	0.09	0.37528	104	0	6 <i>d</i>
$10^5 \le q < 10^6$	0.08	0.28643	0.07	0.31726	$6 imes 10^4$	0	9 <i>d</i>
$10^6 \le q < 10^7$	0.07	0.13242	0.07	0.09642	10 ⁵	0	14 <i>d</i>
$10^7 \le q < 10^8$	0.05	0.07830	0.05	0.08347	$5 imes 10^5$	0	20 <i>d</i>
$10^8 \le q < 10^9$	0.04	0.05176	0.04	0.06941	10 ⁶	0	50 d
$10^9 \le q < 10^{10}$	0.01	0.25871	0.01	0.35762	$5 imes 10^6$	0	180 d

Theorem (The Li Criterion 1997)

$$(RH) \Leftrightarrow \lambda_n = \frac{1}{(n-1)!} \frac{d^n}{ds^n} \left[s^{n-1} \log \xi(s) \right]_{s=1} \ge 0, \forall n \in \mathbb{N},$$

where $\xi(s) = s(s-1)\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s).$

Also, we have

$$\lambda_n = \sum_{
ho} \left[1 - (1 - rac{1}{
ho})^n
ight]$$
 ,

where ρ runs over the set of the non-trivial zeros of ζ .

The Generalized Li Criterion

In 1999, Bombieri and Lagarias proved the following theorem :

Let \mathfrak{R} be a set of complex numbers ρ of multiplicity a positive integer and such that $1 \notin \mathfrak{R}$ and $\sum_{\rho} \frac{1 + |Re(\rho)|}{(1 + |\rho|)^2} < \infty$ then the following conditions are equivalent : $1 - Re\rho \leq \frac{1}{2}$ for any $\rho \in \mathfrak{R}$. $2 - \sum_{\rho} Re \left[1 - \left(1 - \frac{1}{\rho} \right)^{-n} \right] \geq 0$ for n = 1, 2, ...

Corollarly (Li's Generalized Criterion).

For any $F \in S$, we have

$$(H \ R \ G) \Leftrightarrow \lambda_F(n) = \sum_{\rho} \left[1 - (1 - \frac{1}{\rho})^n \right] \ge 0, \ \forall \ n \in \mathbb{N},$$

where ρ is a non-trivial zero of F and

$$\sum_{\rho} = \lim_{T \mapsto +\infty} \sum_{|Im(\rho)| < T}.$$

Theorem (S.Omar, K. Mazouda 2007) Let F be a function in the Selberg class. We assume that F does not vanish on the ligne Re(s) = 1. Then, we have

$$\lambda_{F}(n) = m_{F} + n(\log Q_{F} - \frac{d_{F}}{2}\gamma)$$

$$- \sum_{l=1}^{n} \binom{n}{l} \frac{(-1)^{l-1}}{(l-1)!} \lim_{X \to +\infty} \left\{ \sum_{k \le X} \frac{\Lambda(k)}{k} (\log k)^{l-1} - \frac{m_{F}}{l} (\log X)^{l} \right\}$$

$$+ n \sum_{j=1}^{r} \lambda_{j} \left(-\frac{1}{\lambda_{j} + \mu_{j}} + \sum_{l=1}^{+\infty} \frac{\lambda_{j} + \mu_{j}}{l(l+\lambda_{j} + \mu_{j})} \right)$$

$$- \sum_{j=1}^{r} \sum_{k=2}^{n} \binom{n}{k} (-\lambda_{j})^{k} \sum_{l=1}^{+\infty} \left\{ \frac{1}{l+\lambda_{j} + \mu_{j}} \right\}^{k}.$$

Theorem (S.Omar, K.Mazouda 2008)
Under (GRH), we have :

$$\lambda_F(n) = \frac{d_F}{2} n \log n + c_F n + O\left(\sqrt{n} \log n\right),$$

with

$$c_F = \frac{d_F}{2}(\gamma - 1) + \frac{1}{2}\log(\lambda Q_F^2), \lambda = \prod_{j=1}^r \lambda_j^{2\lambda_j}.$$

• If $\lambda_F(2) > 0$ then there does not exist a siegel zero for F(s).